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Abstract

Of late, there has been a growing interest in studying brain networks, particularly, for understanding spon-
taneous temporal changes in functional brain networks. Recently, phase synchrony based methods have
been proposed to track instantaneous time-resolved functional connectivity without any need of windowing
the data. This paper extends one such recently used phase synchrony measure in two steps. First, multiple
temporal models are built from four-mode tensor that are further clustered to detect dynamic brain network
communities. This clustering is based on spatio-temporal data and hence, is named as Spatio-Temporal
Clustering (STC). Second, a method is proposed to rank all the communities allowing the proposed model
to deal with multiple communities of differing time evolution. This helps in the comparison of network
communities, especially, when available communities are too dense to provide relevant information for com-
parison. The ranking of communities allows for the dimensionality reduction of communities, while still
maintaining the key brain networks. Intrinsic time-varying functional connectivity has been investigated for
large scale brain networks, including default-mode network (DMN), visual network (VN), cognitive control
network (CCN), auditory network (AN), etc. The proposed method provides a new complementary tool to
investigate dynamic network states at a high temporal resolution and is tested on resting-state functional
MRI data of 26 typically developing controls (TDC) and 35 autism spectrum disorder (ASD) subjects.
Simulation results demonstrate that ASD subjects have altered dynamic brain networks compared to TDC.

Keywords: Functional MRI, Resting-state brain networks, Dynamic functional connectivity,
Instantaneous phase synchrony, Autism spectrum disorder

1. Introduction

Functional connectivity analysis in brain is
an important method in neuroscience for func-
tional brain networks discovery Bullmore & Sporns
(2009); Friston (2011); Biswal et al. (1995). The
functional Magnetic Resonance Imaging (fMRI)
provides information about large-scale functional
brain networks such as visual network (VN),
somato-motor Network (SMN), auditory network
(AN), cognitive control network (CCN), default-
mode network (DMN) etc. Fox & Raichle (2007);
Doucet et al. (2011); Hacker et al. (2013); Power
et al. (2011); Thomas Yeo et al. (2011). The con-
ventional static connectivity analysis assume brain
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networks to be constant during the entire time du-
ration of an fMRI scan session and therefore, fails
to account for the time-varying nature of brain net-
works. Increasingly, dynamic functional connectiv-
ity (dFC) is being used to capture and character-
ize time-varying brain networks Chang & Glover
(2010); Sakoğlu et al. (2010); Kiviniemi et al. (2011)
as supported by a growing body of research suggest-
ing for dynamic reconfiguration of brain networks
Jones et al. (2012); Allen et al. (2014); Leonardi
et al. (2013); Hutchison et al. (2013b); Zalesky et al.
(2014); Calhoun et al. (2014).

A sliding-window (SW) approach is commonly
used on fMRI time series data to elucidate dynamic
aspects of functional brain networks (see Hutchison
et al. (2013a) for review). In this approach, brain
networks are assumed to be time-invariant within a
predefined window duration. This window is subse-
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quently shifted either by one or many time points to
estimate temporal changes in brain networks. How-
ever, this method is suboptimal due to the strong
dependence of observations in dFC on the window
size and the overlap between windows Shakil et al.
(2016); Hindriks et al. (2016). Moreover, there may
be abrupt changes in the functional connectivity at
different time points. Hence, fixed window assump-
tion of SW analysis may not necessarily hold true
Monti et al. (2017).

Besides considering conventional SW approach,
other attempts have been made to find instan-
taneous patterns of dFC without windowing and
hence, with no need of struggling with choosing the
right window length Glerean et al. (2012); Ponce-
Alvarez et al. (2015); Omidvarnia et al. (2016);
Demirta et al. (2016); Córdova-Palomera et al.
(2017). Phase difference between the time series of
regions is one such instantaneous measure of dFC
and is commonly known as phase synchrony. This
approach computes connectivity at every time point
and hence, alleviates the need of choosing window
length. Moreover, this method allows extraction of
dynamic functional connectivity at higher temporal
resolution compared to the state-of-the-art sliding-
window approach. To date, several studies have
utilized phase synchrony measure to compute dFC
in resting state fMRI Glerean et al. (2012); Ponce-
Alvarez et al. (2015); Omidvarnia et al. (2016);
Demirta et al. (2016); Córdova-Palomera et al.
(2017).

In the present study, we seek whole-brain dy-
namic brain networks’ topology using instantaneous
phase measure computed using the Hilbert trans-
form Glerean et al. (2012). In this approach, first,
a signal is bandpass filtered. Next, instantaneous
phase is estimated from the signal’s analytic form
obtained from the Hilbert transform. We propose
to use this measure to build dynamic brain net-
works.

After obtaining dFC, next task is to identify
communities of densely connected regions and to
study their temporally dynamic profiles from mul-
tiple temporal snapshots of phase synchrony matri-
ces. Related work of identifying communities using
phase-synchrony based time-varying matrices is im-
plemented by decomposing a three-mode tensor of
regional connectivity at different times and then an-
alyzing and linking the changes in the community
structures Ponce-Alvarez et al. (2015). For exam-
ple, in Ponce-Alvarez et al. (2015), tensor decompo-
sition based method on three-mode tensor (region

× region × time) is applied to obtain a few sig-
nificant components. Each component consists of
three vectors, namely, loading vectors. The first
two loading vectors are related to regions and are
used to generate communities. The third loading
vector contains temporal information of a commu-
nity’s time-varying dynamic profile. We observe
that direct utilization of tensor decomposition fails
to provide a good model for dynamic brain network
communities due to random fluctuation of loading
vectors related to regions. Interpretations of these
vectors does not provide consistent results.

To overcome the above issue, we propose
a Spatio-Temporal Clustering (STC) framework
based on the temporal models learned from tensor
decomposed loading vectors. Our framework iden-
tifies multiple clusters from each temporal model.
This results in many clusters, with a time loading
vector for each cluster. With a number of iden-
tified clusters, we rank them using our proposed
Combined Cluster Score (CCS) based on edge val-
ues between regions in a cluster and corresponding
temporal loading vector. Thus, we obtain multiple
dynamic brain networks communities. We will for-
malize our proposed model in the next few sections.

Major contributions of this work are as follows:

� We provide a spatio-temporal clustering frame-
work to detect dynamic brain network commu-
nities using K -means clustering and Silhouette
criterion. Our model allows a region to belong
to multiple network communities and hence,
provides a novel method to detect overlapping
dynamic brain network communities.

� We provide a method to rank all the clusters
that allows our model to deal with a large num-
ber of clusters having different temporal evo-
lution. This helps with the comparison of net-
work communities, especially when available
communities are too dense to provide relevant
information for comparison.

� We differentiate subjects suffering with autism
spectrum disorder from healthy controls using
the proposed dynamic functional connectivity
analysis. In addition, we provide a new anal-
ysis tool to explore dynamic functional con-
nectivity and characterize relationship between
regions of interests (ROIs) without explicitly
defining window length as required in the con-
ventional ’sliding window’ based dynamic func-
tional connectivity analysis.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 24, 2017. ; https://doi.org/10.1101/172981doi: bioRxiv preprint 

https://doi.org/10.1101/172981
http://creativecommons.org/licenses/by-nc-nd/4.0/


The organization of this paper is as follows: Sec-
tion 2 describes materials used in this paper. Sec-
tion 3 explains the steps to learn and track dynamic
brain network communities and their temporal evo-
lution profile. Section 4 reports experiments with
real data. In the end, discussion and conclusions
are presented in section 5 and 6, respectively.

Notations: We use lowercase boldface letters for
vectors (e.g. a), capital boldface letters for matrices
(e.g. A), italics letters for scalars (e.g. a or A), and
Euler script letters for tensors (e.g. A).

2. Materials

2.0.1. Data Acquisition

In this paper, we have used publicly available
Autism dataset contributed by Georgetown Uni-
versity, a collection site of Autism Brain Image
Data Exchange II (ABIDEII) http://fcon_1000.

projects.nitrc.org/indi/abide/. To exclude
effects of multiple sites, we analyzed data col-
lected at a single site (here Georgetown Univer-
sity). This site was choosen because of the avail-
ability of a larger number of adolescent males with
ASD. The fMRI data of 55 healthy subjects (Typi-
cally Developing Controls (TDC)) (8.1−13.8 years)
and 51 Autism Spectrum Disorder (ASD) subjects
(8.1−13.9 years) is available. A total of 152 brain
volume fMRI data has been collected with Echo
Time (TE) equal to 30 milli-seconds (ms) and Rep-
etition Time (TR) equal to 2000 ms. Each brain
volume consists of an acquisition of 43 brain slices of
size 64×64. A three-dimensional structural magne-
tization prepared rapid gradient echo T1-weighted
image is acquired for every subject with TR = 2530
ms, flip angle = 7

◦
, FOV = 256 × 256 mm2, and

the number of brain slices equal to 176.

2.0.2. Data Preprocessing

The resting-state fMRI data are pre-processed
using SPM12 (Statistical Parametric Mapping;
http://www.fil.ion.ucl.ac.uk/spm/software/

spm12/). We discarded first five volumes to allow
the magnetization to reach to the steady state
value. Next, all functional volumes are slice
time corrected using the middle slice as a refer-
ence followed by motion correction. Functional
scans are spatially normalized onto the Montreal
Neurological Institute (MNI) space using the
DARTEL procedure, i.e., using the transformation
parameters provided by the T1-weighted image

normalization, resulting in functional images of di-
mension 53× 63× 52 (resampled to 3-mm isotropic
voxels). Further, data is smoothed with a Gaussian
kernel with 6 mm full width half maximum.

Finally, we regress out nuisance variables (6 head
motion parameters, average cerebro-spinal fluid sig-
nal from ventricular masks, and average white mat-
ter signal from white matter mask) from each
voxel’s time series followed by bandpass filtering us-
ing a butterworth filter to reduce the low frequency
drift and high frequency noise. Hilbert transform
is computed for narrowband filtered signals and
hence, requires prefiltering of signals. To this end,
we bandpass filtered the data in the frequency range
of 0.01 to 0.08 Hz. In general, this bandwidth fil-
tering in fMRI is believed to minimize the low fre-
quency drift and the high frequency noise.

Temporal artifacts were identified in each sub-
ject’s data by calculating the framewise displace-
ment (FD) from the derivatives of the six rigid-body
realignment parameters estimated during motion
correction step Power et al. (2014). Subjects with
more than 45 brain volumes (30% of total brain vol-
umes) having FD > 0.5 mm were excluded from fur-
ther analysis (TDC group 4/55; ASD group 12/51).
We did not perform scrubbing of data because this
may lead to alterations in the temporal structure of
data Power et al. (2014).

We included only the male subjects in the study
because brain network differences associated with
gender may confound differences between the TDC
and ASD groups. After quality control, a total of 26
TDC and 35 ASD subjects remained for our anal-
ysis. A two-sample t-test with unequal variance
showed no significant difference (at p < 0.05 signif-
icance level) in the age of two groups (Table-1).

2.0.3. Brain Parcellation

After preprocessing, brain data is parcellated
into 90 anatomical predefined ROIs via Automated
Anatomical Labeling (AAL) atlas Tzourio-Mazoyer
et al. (2002). In this atlas, 45 ROIs lie in the left
brain hemisphere and 45 ROIs lie in the right brain
hemisphere. Region-representative time series are
found for every ROI by averaging time-series of all
voxels belonging to the same ROI. This resulted
into a matrix X of dimension T ×N , where T de-
notes the number of time points (or the number
of times a brain volume is scanned) equal to 147
for a given subject’s fMRI data and N denotes the
number of ROIs equal to 90 for the AAL atlas.
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Table 1: Summary of TDC versus ASD Subjects’ Data

Characteristic
TDC
(S=26)

ASD (S=35)
p-
value

Gender Male Male
Age (years)
Mean (SD) 10.9 (1.62) 11.17 (1.49) 0.50
Range 8.06−13.79 8.25−13.91
Full Scale IQ

Mean (SD)
120.32
(13.53)

119.06¶

(14.18)
0.73

Range 91−148 95−149
ADI-R
Social total A − 19.74¶ (5.28)
Verbal total BV − 14.97¶ (4.91)
RRB total C − 5.09¶ (2.38)
R Onset total D − 2.56¶ (1.23)
ADOS
Total − 10.52Υ (4.61)
Communication − 3.18Υ(1.54)
Social − 7.33Υ (3.53)
Stereo Behavior − 1.89Υ (1.58)

TDC: Typically Developing Control; ASD: Autism Spectrum
Disorder; ADI-R: Autism Diagnostic Interview-Revised; So-
cial total A: Reciprocal Social Interaction Subscore A; Verbal
total BV: Abnormalities in Verbal Communication Subscore;
RRB total C: Restricted, Repetitive, and Stereotyped Pat-
terns of Behavior; ADOS: Autism Diagnostic Observation;
Stereo Behavior: Stereotyped Behaviors and Restricted In-
terest. Column on the right displays p-values for two sample
t-test for each sample characteristic. ¶One subject’s score
is missing. ΥSeven ASD subjects do not have these scores.
’−’ signifies that these scores are not available for the TDC
group.

3. Learning and Tracking Dynamic Brain
Network Communities

Following steps are proposed for identifying the
underlying dynamic brain networks (Fig.1):

Step-1 We utilize phase synchrony based instanta-
neous measure to compute adjacency matri-
ces of dynamic functional connectivity at each
time instant and for all subjects.

Step-2 Tensor decomposition of four-mode tensor (re-
gion × region × time × subject) is carried out
into components that are used to learn multi-
ple temporal models representing evolution of
brain regions over time.

Step-3 K -means clustering is used to extract clusters
from each learned temporal model.

Step-4 We rank the identified clusters using our pro-
posed cluster scoring metric. Clusters with
high scores are labeled as dynamic brain net-
works that are identified at the group-level.

3.1. Time Varying Phase Synchrony Measure

First, we compute phase synchrony based connec-
tivity matrices of ROIs at all time instants. This
allows greater temporal resolution of dynamic func-
tional connectivity compared to the state-of-the-art
SW approach.

Hilbert transform of averaged BOLD time series
of each ROI is computed to obtain analytic sig-
nals, written as A(t)cos(ϕ(t))), where A(t) and ϕ(t)
denote the instantaneous amplitude and instanta-
neous phase, respectively. We removed the first and
last ten time points from further analysis in order to
reduce border effects caused by Hilbert transform.
For any two i and j ROIs, pairwise phase difference
ranged between 0 to π is computed as:

∆ϕij =

{
|ϕi − ϕj | , if |ϕi − ϕj | ≤ π

2π − |ϕi − ϕj | , otherwise.
(1)

Using the pairwise phase differences between all
pairs of ROIs, the instantaneous coupling matrix
(ICM) C(t), normalized between 0 to 1, is com-
puted as

Cij(t) = 1−∆ϕij/π. (2)

The matrix C(t) in the above equation contains
values between 0 (no phase matching) and 1 (per-
fect phase matching). Next, we converted this ma-
trix into sparse, undirected binary matrix using
thresholding, as has been done previously in Ponce-
Alvarez et al. (2015); Demirta et al. (2016) for phase
synchrony based fMRI experiments. Hence, bi-
narized instantaneous coupling matrix Cb(t) from
C(t) is computed as:

Cbij(t) =

{
Cij(t) = 1, ∆ϕij < τ
Cij(t) = 0, otherwise

(3)

where τ denotes a threshold on pairwise phase dif-
ferences matrix ∆ϕij that is ranged from 0 to π.

3.1.1. Selection of threshold

Recently, in Ponce-Alvarez et al. (2015) posi-
tions with pairwise phase difference of more than
a threshold value of π

6 are set to zero in ICM. We
have utilized the same value of τ in (3) to obtain the
adjacency matrix Cb

s(t) at time t for subject s. We
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Figure 1: A) High resolution binarized instantaneous coupling matrices are computed for every subject at each time instant,
B) Resulting four-mode tensor of dimension N ×N × T × S is decomposed using non-negative PARAFAC decomposition with

Q components. C) The temporal model of ROIs in each component is represented by matrix Vq (q = 1, 2, ..., Q). D)
K -means clustering is used to obtain dynamic brain networks from each temporal model. E) Networks are ranked using our

combined cluster score (CCS) presented in Section 3.4 to obtain multiple dynamic brain networks.

denote this matrix as the binarized instantaneous
coupling matrix (BICM).

A fixed edge threshold has been considered for ex-
tracting biologically significant edges in many pre-
vious studies (e.g., a threshold of 30% means retain-
ing the highest valued top 30% connections) Achard
et al. (2006); Deuker et al. (2009); Zhang et al.
(2016). However, on ICM, the 30% edge threshold
results in high thresholding value upto π

3 at some
time instants. Moreover, it is not necessarily true
that a fixed number of edges will be active at all
time instants. Hence, in order to avoid any bias

from results due to the choice of threshold, all ex-
periments are performed with a fixed threshold of
π
6 as has been done in Ponce-Alvarez et al. (2015)
instead of choosing some fixed number of signifi-
cant edges. The collection of Cb

s(t) for all subjects
s = 1, 2, ....., S for each group forms a four-mode
tensor X(t) ∈ RN×N×T×S as shown in Fig.1A,
where N denotes the number of ROIs, S denotes
the total number of subjects of the corresponding
group (TDC or ASD), and T denotes the number
of time points.
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3.2. Learning Temporal Models using Subject-
Summarized Spatio-Temporal Tensor

We carry out tensor factorization of the 4-mode
T ∈ RN×N×T×S into a linear combination of mul-
tiple rank-one tensors to learn multiple tempo-
ral models for uncovering the underlying network
structures (Fig.1B). This can be achieved by using
parallel factor (PARAFAC) decomposition (a.k.a.
canonical decomposition) Harshman (1970); Kolda
& Bader (2009) as:

T ≈
Q∑
q=1

λqaq ◦ bq ◦ tq ◦ sq, (4)

where ‘◦’ denotes the outer product and, aq ∈
RN×1 and bq ∈ RN×1 are the loading vectors cor-
responding to regions N, tq ∈ RT×1 is the time
loading vector containing temporal information for
tracking the dynamic profile of communities, and
sq ∈ RS×1 is the subject loading vector. Q denotes
the number of rank-one tensors (or components)
and λq is the singular value corresponding to com-
ponent q. The decomposition in (4) can also be
expressed as:

T ≈ DAQ ×1 BQ ×2 TQ ×2 SQ, (5)

where D = diag(λ1, λ2, ...λQ) and AQ =
[a1, ...,aQ], BQ = [b1, ...,bQ], TQ = [t1, ..., tQ]
and SQ = [s1, ..., sQ] are the matrices containing
loading vectors of each of the four modes. AQ (or
BQ) in (5) represents ROI specific loading vectors
with their corresponding temporal evolution infor-
mation available in matrix TQ. The column dimen-
sion of each of the component matrix is Q in the
PARAFAC model.

Due to the symmetricity in the adjacency matrix
of size N × N in the first two modes, component
matrix AQ is equal to BQ. Moreover, modes one
and two of tensor T correspond to adjacency matri-
ces with non-negative values. Hence, we add non-
negative constraint on all the four matrices AQ,
BQ, TQ, and SQ in (5). In particular, we carry
out non-negative tensor factorization (NNTF) Kim
& Park (2012); Cichocki et al. (2009). Implementa-
tion of NNTF-based PARAFAC decomposition was
based on the non-negative alternate least squares
method Paatero & Tapper (1994) combined with
a block-coordinate-descent technique Kim & Park
(2012), also used recently for fMRI experiments
Ponce-Alvarez et al. (2015).

3.2.1. Selection of Q

The value of Q in (4) or (5) needs to be specified
for PARAFAC decomposition. For each value of
Q, we extracted communities and compared them
with the standard known functional brain networks.
We considered a range of 2 to 10 for Q and finally,
selected Q with the highest value of normalized mu-
tual information (NMI).

3.2.2. Computation of Temporal Models

Next, we computed temporal models Vq (q =
1, 2, ..., Q) from every qth component using the load-
ing vectors contained in matrices AQ (or BQ) and
TQ, where Vq = aq× tᵀq ∈ RN×T . The symbol (.)ᵀ

denotes transpose of a vector and vectors aq and
tq represent qth column of matrices AQ and TQ,
respectively (Fig.1C).

3.3. Spatio-Temporal Clustering (STC) Framework

We hypothize that clustering of temporal model
Vq along the time dimension (for all Q number
of components separately) would capture dynamic
brain network communities. Thus, first, clusters
are estimated from every temporal model Vq, q =
1, 2, ..., Q using K -means clustering (Fig.1D) Jain
& Dubes (1988). We chose K -means clustering al-
gorithm for two reasons. First, this problem does
not require advanced algorithms beyond K -means
and second, K -means is a fast, easy, and simple
clustering algorithm.

A parameter search for the best number of clus-
ters K in K -means clustering is done using the
silhouette criterion index Rousseeuw (1987). The
value of K that leads to the highest silhouette value
is chosen. Silhouette index value is ranged be-
tween -1 to 1 with large positive value indicating
good clustering. Note that an initial range of K
is set between 1 to 10 as the maximum number of
brain networks, generally available in AAL atlas, is
eight such as Visual Network (VN), Auditory Net-
work (AN), Bilateral Limbic Network (BLN), De-
fault Mode Network (DMN), Somato-Motor Net-
work (SMN), Subcortical Network (SN), Memory
Network (MN), and Cognitive Control Network
(CCN).

We used the Euclidean distance metric for K -
means clustering and repeated K -means algorithm
500 times with random initialization of cluster cen-
ters. Clustering result that yielded tightest clusters
in terms of Euclidean distance metric was consid-
ered for further analysis.
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3.4. Ranking of Clusters to Obtain Dynamic Brain
Network Communities

After obtaining Kq clusters from each of the qth

component, we require to identify relevant com-

munities from a pool of C
kq
q (q = 1, ..., Q and

kq = 1, ...,Kq) clusters. We use the term cluster
to refer to results obtained from STC and the term
communities to specify ranked and hence, relevant
clusters that denote network communities.

To find relevant communities from all available
clusters, we create a novel ranking method that
is based on two scores: first is the “connectivity
strength” and second is the “temporal strength”.
Both these scores are combined to define “Com-
bined Cluster Score” in the next subsection that
eventually helps with the ranking of clusters.

3.4.1. Connectivity Strength

Connectivity strength of a cluster is related to the
strength of connectivity between ROIs belonging to
that cluster. A relevant and significant cluster will
have a group of tightly interconnected ROIs result-
ing in a high value of connectivity strength. Owing
to this, connectivity strength is considered as an
important attribute of cluster score.

First, we compute the connectivity matrix Mq

using the loading vector aq ∈ RN×1 defined in (4)
as Mq = aqa

′
q ∈ RN×N . Since we are only in-

terested in ROIs that are part of the given clus-
ter kq, we compute the desired connectivity matrix

Mkq
q = aq,kq (p)aq,kq (p)′ ∈ Rp×p, where p denotes

ROIs that are part of cluster kq and the correspond-
ing aq,kq is defined as the effective loading vector of
regions lying in that cluster.

Each entry Mkq
q (i, j) informs about the strength

of connection between two ROIs i and j. We pro-
pose to utilize the sum of all entries in this matrix
to compute the connectivity strength of cluster kq
and define this as:

ηkqq =

∑p
i=1

∑p
j=1 M

kq
q (i, j)

p2
, (6)

where q = 1, ..., Q, kq = 1, ...,Kq, and division by
the total number of entries (a measure of number
of regions) is a normalization step with respect to
the size of the cluster.

3.4.2. Temporal Strength

Next, we describe the temporal strength score.
In general, brain networks are known to be vary-
ing over time. Hence, the strength of communities

should depend on their temporally varying profile.
Thus, the scoring of a cluster should include both
the connectivity strength score (6) and the tempo-
ral strength score.

To assess the temporal strength of clusters be-
longing to the qth component, we utilize the time
loading vector tq of the qth component to define the
temporal strength score of all of its clusters as:

τq =
T∑
i=1

tq(i), (7)

where q = 1, ..., Q and τq is the summation of all
weight values of tq loading vector. In general, a high
value of τq signifies that the region is activated for
most of the duration of scan.

3.4.3. Combined Cluster Score

We use the connectivity strength η
kq
q defined in

(6) and the temporal strength score τq defined in
(7) to propose the Combined Cluster Score (CCS)
of each cluster as:

CCSkqq = λq × ηkqq × τq, (8)

where q = 1, ..., Q, kq = 1, ...,Kq, and λq is the
PARAFAC decomposition factor of component q
specified in (4). This is to note that CCS defined
above is general and is valid for both the overlap-
ping and non-overlapping communities, although
we are detecting overlapping communities.

After computing CCS for each cluster using (8),
we generate a ranked list of clusters in the decreas-
ing sorted order of CCS. Clusters at the top of the
list are more densely connected compared to the
rest of the clusters. Higher ranked clusters provide
us the desired dynamic functional brain networks.

4. Experiments and Evaluations

In this section, we extract communities that are
altered in autism subjects compared to the healthy
subjects. First, we computed the phase synchrony
based BICM using (3) for the cohort of 26 TDC and
35 ASD subjects obtained from the ABIDE project.

Subject-level ICM and BICM computed at four
random time points of one randomly chosen subject
from both TDC and ASD groups are shown in Fig.2.
It is difficult to find differences between the two
groups by visualizing these matrices, representing
regional modular connectivity.
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4.1. High Resolution Temporal Models

We applied NNTF-based PARAFAC decompo-
sition on four-mode tensor T of both the groups
(TDC and ASD) and obtained Q temporal mod-
els, as discussed in section 3.2. We chose an initial
value of Q in the range of 2 to 10. We observed the
highest NMI value at Q=10 for both the groups and
hence, factorized tensor T into Q=10 components.

A typical randomly chosen regional loading vec-
tor aq is shown in Fig.3A and its temporal profile
tq is displayed in Fig.3B for both the TDC and
ASD groups. The bottom panel of Fig.3 shows the
corresponding temporal model Vq depicting inter-
regional connectivity strength changing over time.

4.2. Extraction of Statistically Different Compo-
nents between ASD and TDC Groups

In order to identify altered components of ASD
compared to TDC, we define the strength of each
component using the temporal, subject and region’s
loading vectors as dq = tq(

∑
i aq(i))(

∑
i sq(i)).

The formulation of strength of components for
three-mode tensor was first proposed in social net-
works Gauvin et al. (2014). We extended this for
the case of 4-mode
tensor, where fourth mode of tensor contains in-
formation about subjects. We used two-sample t-
test (at p < 0.05) on the strengths of components
of TDC and ASD groups for identifying compo-
nents that are statistically different between the two
groups. We also corrected for multiple comparison
using false discovery rate (FDR) at α= 0.05 Ben-
jamini & Hochberg (1995). This process is shown
in Fig. 4 and the results of this statistical test are
shown in Table-2.

4.3. Community Structure and the Associated
Temporal Activity Patterns

We considered only those temporal models Vq

that corresponded to statistically different compo-
nents across ASD and TDC groups. We applied
K -means clustering on each of these selected tem-
poral models separately to identify multiple clusters
corresponding to each temporal model. Optimum
value of K is decided based on the maximum value
of Silhouette index. From Table-2, we note that
components#1, 2, 4, 5, 7, and 9 are statistically
different (FDR corrected, p < 0.05) between the
two groups. However, the number of communities
between these components except for component#1

are few. Since the number of functional brain net-
works are around 7 to 10, it shows that these com-
ponents are doing random grouping of regions in
a few communities. Hence, only component#1 is
considered to be different between the two groups.

Clusters/communities of component#1 are
ranked with the proposed CCS score in (8), where
different ranking of the same region between
groups (TDC versus ASD) and clustering with
different regions between groups specify differences
in activation and connectivity patterns between
the two groups, respectively.

Tables-3 and 4 illustrate the region-level descrip-
tion of communities obtained from component#1
of both the groups. We list communities accord-
ing to the decreasing order of the CCS score. Fig.5
presents these communities on the axial brain slice.
Here, we also present ground-truth labels of com-
munities present in the AAL atas for comparison.
The temporal evolution of these communities in
both the groups is presented in Fig.6.

Our results on TDC group in Table-3 reveal
that the highest CCS community is comprised of
4 ROIs (community 1 in Table-3) containing the
left dorsal, medial, medial orbital superior frontal
gyrus, and gyrus rectus, forming a network asso-
ciated with DMN and BLN. In general, these re-
gions are strongly active in healthy brain during
the rest condition Monk et al. (2009). On the
other hand, ASD group results in 4 bilateral lim-
bic regions (hippocampus, parahippocampal gyrus,
amygdala and right temporal pole superior tempo-
ral gyrus) that are clustered in the first community.
Previous studies also reported hyperconnectiviy in
the right parahippocampal gyrus of ASD compared
to the TDC group Monk et al. (2009).

Next, we present the lowest ranked regions of all
networks in ASD compared to TDC group in Ta-
ble 5. From this table, we observe that the pro-
posed method could find 20 altered lowest ranked
regions in ASD group (two sample t-test, FDR cor-
rected p < 0.05). These regions belong to VN
(superior parietal gyrus), BLN (left olfactory cor-
tex, gyrus rectus, right inferior temporal gyrus),
DMN (superior frontal gyrus, orbital part middle
frontal gyrus, anterior and posterior cingulate cor-
tex, median cingulate cortex, angular gyrus, and
precuneus), SMN (precentral and posterior gyrus,
supplementary motor area, right paracentral lob-
ule), SCN (caudate nucleus), LN (supramarginal
gyrus), and CCN (middle frontal gyrus, inferior
frontal gyrus, and inferior parietal gyrus).
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Figure 2: The ICM and BICM at four (randomly chosen) time points (10, 45, 90, and 120) on one subject chosen randomly
from both the groups: A) TDC B) ASD.
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Figure 3: Plot of one randomly chosen regional loading vector aq , its temporal loading vector tq , and the corresponding
matrix Vq for both A) TDC and B) ASD groups.

Table 3: List of regions forming communities in the
TDC group for component # 1

Networks Anatomical Description

Table 3 (continued)

DMN- Left superior frontal gyrus (dorsolateral)
Superior frontal gyrus (medial)
Superior frontal gyrus (medial orbital)
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Table 2: Identified phase synchrony based statistically different components (marked with bold p-values) between
the two groups (two-sample t-test, FDR corrected p < 0.05)

Component# 1 2 3 4 5 6 7 8 9 10

TDC Number of Communities 8 2 2 2 6 2 2 2 2 2

ASD Number of Communities 10 2 2 2 2 2 2 2 2 8

p-value of t-test on
strength vectors of corre-
sponding components of
ASD and TDC groups

2.51e-
21

1.48e-
26

0.08 2.48e-
21

8.72e-
25

0.01 1.14e-
05

0.024 0.06e-
02

0.04

Component i of TDC 
and ASD

Strength vector di of 
TDC and ASD

Statistically 
different

Yes

No

Consider statistically 
different communities 

extracted from  ith

temporal model Vi

from both the groups 

i=
 i+

1
 u

n
ti

l i
=Q

i=1

Figure 4: Identification of statistically different
components between TDC and ASD groups using the

strength vectors of components.

Table 3 (continued)
BLN Gyrus rectus

DMN- Right superior frontal gyrus (dorsolateral)
Superior frontal gyrus (orbital part)
Middle frontal gyrus (orbital part)
Anterior cingulate cortex
Angular gyrus

CCN- Left middle frontal gyrus
LN- Right middle temporal gyrus
BLN Left olfactory cortex

Temporal pole middle temporal gyrus

CCN- Right middle frontal gyrus
Inferior frontal gyrus (orbital part)
Right inferior parietal gyrus

Table 3 (continued)
BLN- left olfactory cortex

Right inferior temporal gyrus
SMN- Postcentral gyrus

Right paracentral lobule
LN Left middle temporal gyrus

SMN- Precental gyrus
Right supplementary motor area
Left paracentral lobule

CCN- Right inferior frontal gyrus (opercular
part)
Inferior frontal gyrus (triangular part)
Left Inferior parietal gyrus

DMN- Right median cingulate gyrus
Posterior cingulate gyrus

LN- Right supramarginal gyrus
AN- Right superior temporal gyrus
BLN Right temporal pole superior temporal

gyrus
Left inferior temporal gyrus

AN- Rolandic operculum
Heschl gyrus
Left superior temporal gyrus

SMN- Left supplementary motor area
DMN- Left median cingulate gyrus

Right precuneus
VN- Right superior parietal gyrus
LN- Left supramarginal gyrus
SCN- Caudate nucleus

Right pallidum
BLN Left temporal pole superior temporal

gyrus

CCN- Left inferior frontal gyrus (opercular part)
Right insula

BLN- Hippocampus
Parahippocampal gyrus
Right Amygdala

VN- Right inferior occipital gyrus
Left superior parietal gyrus
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Visual Network (VN)

Bilateral Limbic Network (BLN)

Default Mode Network (DMN)

Somato-Motor Network (SMN)

Subcortical Network (SCN)

Language Network (LN)

Cognitive Control Network (CCN)

Auditory Network (AN)

A)

B) C)

DMN-BLN

CCN-BLN-SMN-LN

SMN-CCN-DMN-LN-AN-BLN

AN-SMN-DMN-VN-LN-SCN-BLN

CCN-BLN-VN-DMN-SCN

CCN-BLN-VN-SCN

VN

DMN-CCN-LN-BLN

BLN

AN-BLN-CCN-SCN

DMN-BLN-CCN-VN-SMN

CCN-DMN-VN-SMN-SCN

SMN-VN-LN-DMN-SCN

CCN-DMN-VN

DMN-CCN-VN

VN-AN-BLN-LN

DMN-CCN 

DMN-CCN

Figure 5: List of communities in A) AAL atlas, B) TDC group (component 1-8 communities), and C) ASD group
(component 1-10 communities). We have presented TDC and ASD communities according to their CCS ranking

score.

A) B)

Figure 6: Temporal dynamics of component#1 in both the groups: A) TDC, B) ASD.

Table 3 (continued)
DMN- Left precuneus
SCN Putamen

Left pallidum
Right thalamus

CCN- Left insula
BLN- Left amygdala
VN- Right superior occipital gyrus

Middle occipital gyrus
Left inferior occipital gyrus
Fusiform gyrus

SCN Left thalamus

VN Calcarine fissure
Cuneus
Lingual gyrus

Table 3 (continued)
Left superior occipital gyrus

Abbreviations: VN- Visual Network; SMN- Somato-Motor
Network; AN- Auditory Network; CCN- Cognitive Control
Network; DMN- Default Mode Network; BLN - Bilateral
Limbic Network; SCN - Subcortical Network; LN -
Language Network. Left and right signify regions in the left
and right hemispheres of the brain, respectively.

Table 4: List of regions forming communities in the
ASD group for component # 1

Networks Antomical description
BLN Hippocampus
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Table 4 (continued)

Parahippocampal gyrus
Amygdala
Right Temporal pole superior temporal
gyrus

VN- Fusiform gyrus
AN- Left Heschl gyrus

Superior temporal gyrus
BLN- Left Temporal pole superior temporal

gyrus
Temporal pole middle temporal gyrus

LN Middle temporal gyrus
AN- Rolandic operculum

Right heschl gyrus
BLN- Olfactory cortex

Right gyrus rectus
Left inferior temporal gyrus

CCN- Right insula
SCN Putamen

Right pallidum
Thalamus

DMN- Superior frontal gyrus (medial orbital)
Left posterior cingulate cortex

BLN- Left gyrus rectus
Right inferior temporal gyrus

CCN- Left insula
VN- Lingual gyrus

Left inferior occipital gyrus
SMN Left paracentral lobule
CCN- Right inferior frontal gyrus (orbital

part)
DMN- Right posterior cingulate cortex
VN- Calcarine fissure

Left middle occipital gyrus
Right inferior occipital gyrus

SMN- Postcentral gyrus
Right paracentral lobule

SCN Left pallidum
SMN- Precental gyrus

Supplementary motor area
VN- Left superior occipital gyrus

Right middle occipital gyrus
LN- Supramarginal gyrus
DMN Left angular gyrus
SCN Caudate nucleus
CCN- Left inferior frontal gyrus (orbital part)
DMN- Right Superior frontal gyrus (medial)

Table 4 (continued)

Left anterior cingulate cortex
Median cingulate gyrus
Right angular gyrus

VN Cuneus
Right superior occipital gyrus
Right superior parietal gyrus

DMN- Right superior frontal gyrus (orbital
part)
Left Superior frontal gyrus (medial)
Left anterior cingulate cortex
Precuneus

CCN- Inferior frontal gyrus (opercular part)
Right inferior frontal gyrus (triangular
part)

VN Left superior parietal gyrus
DMN Right Superior frontal gyrus (dorsolat-

eral)
Left superior frontal gyrus (orbital part)
Middle frontal gyrus (orbital part)

CCN Left Inferior frontal gyrus (triangular
part)
Inferior parietal gyrus

DMN- Left superior frontal gyrus
(dorsolateral)

CCN Middle frontal gyrus

5. Discussion

In this work, we have attempted to develop a
better understanding of dynamic fluctuations oc-
curring in the resting-state FC of diseased and nor-
mal subjects. FC is often computed and interpreted
within some fixed time duration. These are known
as static brain networks. Recently, results have
been reported on the instantaneous interpretation
of dynamic FC computed by utilizing the phase dif-
ference between pairs of voxels’ time series. This
phase difference is one of the ways to measure tem-
poral dynamics between regions and is commonly
known as phase synchrony.

We examined dynamic reconfiguration of func-
tional brain networks via our proposed method
based on ICM, generated from phase synchrony.
These matrices are thresholded to preserve the
small, but significantly relevant phase synchrony
range. Next, the 4-mode tensor is decomposed us-
ing NNTF to build multiple temporal models. This
is followed by K -means clustering and the ranking
of resulting clusters via the proposed CCS measure.
This complete process yields appropriate communi-
ties. We built communities for both the healthy and
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Table 5: Lowest ranked altered brain regions in ASD compared to TDC

Networks AAL regions
VN Superior parietal gyrus

BLN Left olfactory cortex
Gyrus rectus

Right inferior temporal gyrus
DMN Superior frontal gyrus

Middle frontal gyrus (orbital part)
Anterior cingulate cortex
Median cingulate gyrus

Posterior cingulate cortex
Angular gyrus

Precuneus
SMN Precentral gyrus

Supplementary motor area
Posterior gyrus

Right paracentral lobule
SCN Caudate nucleus
LN Supramarginal gyrus

CCN Middle frontal gyrus
Inferior frontal gyrus
Inferior parietal gyrus

autistic subjects to understand the probable alter-
ations of networks in neuro-disorders.

5.1. Community Structure of dFC States in Healthy
Brain

By learning and tracking dynamic brain network
communities (Section 2), we find many clusters of
commonly reported functional brain networks in-
cluding the default mode network, visual, cognitive,
somato-motor, auditory, bilateral limbic, subcorti-
cal, and language networks (Table-3). This sug-
gests that binarized instantaneous coupling matri-
ces of phase synchrony contain meaningful informa-
tion about the large scale brain networks of healthy
individuals within 0.01 to 0.08 Hz. Hence, we pro-
pose a novel framework of modeling and interpret-
ing dFC that are evolving over time.

We observe that the resting-state communities on
TDC, transiently emerge and dissolve in time (Fig.
6), giving rise to dynamic reconfiguration of brain
networks. Consistent with our findings, temporal
fluctuations of dFCs have also been reported earlier
using sliding window analysis of fMRI signals on
healthy subjects.

5.2. Within Group Differences in Autism

ASD causes abnormality in functional brain net-
works via a variety of underlying genetic and ac-

quired causes Yao et al. (2016). Thus, study of
brain networks in ASD is a key for understanding
the altered functioning in the diseased brain. In
order to meet this goal and to have a better un-
derstanding of altered brain networks in ASD, we
learned the community structures of communities
in the ASD group (Section 2).

Our analysis suggests that compared to the TDC
group, autism subjects show reduced ranked (and
hence, weakly connected) communities of VN, BLN,
DMN, SMN, SCN, LN, and CCN.

5.3. Characterizing Regions Distinctive in Autistic
Disorder

We carried out detailed investigation on the com-
munities in both the groups. In particular, we want
to know regions observed with less ranking in ASD,
i.e., hypo-active regions in ASD.

5.3.1. Hypo-active Regions in ASD

Hypo-active regions include the VN (superior
parietal gyrus), BLN (left olfactory cortex, gyrus
rectus, right inferior temporal gyrus), DMN (supe-
rior frontal gyrus, orbital part middle frontal gyrus,
anterior and posterior cingulate cortex, median
cingulate cortex, angular gyrus, and precuneus),
SMN (precentral and posterior gyrus, supplemen-
tary motor area, right paracentral lobule), SCN
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(caudate nucleus), LN (supramarginal gyrus), and
CCN (middle frontal gyrus, inferior frontal gyrus,
and inferior parietal gyrus).

5.4. Limitations and Future Directions

The method developed in this work allows us to
extract a group level using undirected phase syn-
chrony measure. However, directionality aspect of
brain networks should also be exploited for com-
plete understanding of diseased brain networks. Di-
rected adjacency matrix weights can be estimated
using time-shifted version of region time series, as
opposed to dFC.

Correlation of Hilbert envelopes also provides
information about functional connectivity O’Neill
et al. (2017). However, in this work, we have
discarded the magnitude of the analytic signals,
also known as Hilbert envelope. The examination
of Hilbert envelope based correlations might bring
new important findings about brain networks and
hence, in future, we would like to utilize both en-
velope and phase information of Hilbert transform
for building more robust brain networks.

In Autism, although brain regions show activa-
tion on internal or external stimuli, there is altered
connectivity between regions and hence, the func-
tional brain networks are affected. This problem
leads to reduced attention, difficulty in prioritizing
tasks, inhibition in brain required for executing in-
tended tasks, and behavioral problems as stated in
the previous section. These problems add difficulty
for their caretakers as well. The work carried out
in this paper on dynamic functional brain networks
can be utilized to develop interventions for these
subjects as part of neuro-rehabilitation. We plan
to take up this challenge as the future work.

6. Conclusions

In conclusion, a novel methodology has been pro-
posed for estimating dynamic brain network com-
munities that are computed at every time instant.
We present application of the proposed framework
on ASD subjects demonstrating altered dynamic
brain network communities in autism subjects com-
pared to the TDC group. This further supports the
hypothesis that autism is a disorder affecting brain
networks. We observe that the proposed method-
ology is able to report changes in large scale net-
works such as DMN, VN, BLN, SMN, SCN, LN
and CCN. Impaired connectivity in the resting state

brain networks is due to the impairment in neuro-
psychological function that suggests that study of
communities is a potential biomarker in ASD. We
have observed reduced ranked activation in differ-
ent communities. This suggests that instantaneous
functional connectivity can play a key role in the
study of reorganization of brain networks.
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