
NeatSeq-Flow: A Lightweight High-Throughput Sequencing Workflow Platform

for Non-Programmers and Programmers Alike.

Menachem Sklarz1,*, Liron Levin1, Michal Gordon1, Vered Chalifa-Caspi1,*

1
National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Beer-Sheva,

Israel,

* Corresponding authors

Abstract

Biologists often find it necessary to execute bioinformatic workflows (WFs) as part of their

research. However, operation of most WF-management platforms requires at least some

programming expertise. Here we describe NeatSeq-Flow, a platform that enables users

with no programming knowledge to design and execute complex high-throughput

sequencing WFs on their own computer or computer cluster. Workflows are composed of

modules. NeatSeq-Flow provides a large compendium of pre-built modules as well as a

generic module. Advanced users can also generate custom-made, sophisticated modules

using templates and only basic Python commands. Modules and WFs are easily shareable.

To execute a WF, through either the graphical user interface or the command line, users

need to only specify modules’ order and parameters (workflow design) and input file

locations (sample information). WF execution is parallelized on both samples and analysis

steps, and progress can be tracked in real time. Results are obtained in a neat directory

structure, along with a self-sustaining WF backup for reproducibility. NeatSeq-Flow

operates by shell-script generation, allowing full transparency of the WF process.

NeatSeq-Flow supports CONDA for easy installation and portability of entire environments.

All these features make NeatSeq-Flow an easy-to-use WF platform without compromising

flexibility, reproducibility, transparency and efficiency.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

Availability: http://neatseq-flow.readthedocs.io/en/latest/

Contact: sklarz@bgu.ac.il

Introduction

Modern biological experiments involving High-Throughput Sequencing (HTS) produce

large amounts of data, which scientists must analyze in order to reach the kernel of

information of interest. Usually, analysis of the data is composed of several operations,

each of which consists of calling a program with inputs, receiving the outputs and passing

them on to the next step. Often, the analysis is parallelized on multiple processing units

(CPUs) or cluster nodes, thus saving execution time. The bioinformatician will typically

write short shell scripts that execute the different operations and send them sequentially

to a computer cluster job scheduler for execution on distributed nodes.

Creating and executing these script-based workflows (WFs) is time consuming and error

prone, especially when considering projects with hundreds or thousands of samples, with

many steps and plenty of intermediate files, or when the same analysis has to be

repeated with different combinations of programs and parameters.

To address these and other issues, many commendable efforts have been made to create

platforms for automating execution of such WFs (for examples, Refs. 1- 6), a review of

which was published a couple of years ago (7).

Most of the available WF platforms fall into two main categories: systems using a

graphical user interface (GUI, e.g. Galaxy (8)) and command-line based systems (e.g.

Nextflow (1), Snakemake (2) and SUSHI (3)). While intended for scientists with no

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

programming experience, GUI-based systems usually have limited flexibility and

transparency, and they often do require programming expertise in order to assimilate new

tools or to perform complex WFs. On the other hand, command-line based systems are

much more flexible and enable tailor made WF designs. However, command-line based

systems require programming (e.g. in Groovy, Python or Ruby) even at the design stage

of the WFs and are intended for dedicated, expert bioinformaticians.

We have developed NeatSeq-Flow, a lightweight, easy to use, yet powerful WF platform,

which offers the advantages of the two worlds presented above. NeatSeq-Flow can be

executed either from the command-line or using a dedicated GUI. It is easy to use for

non-programmers and programmers alike, and in the same time it provides great

flexibility and power.

NeatSeq-Flow as well as it’s GUI are written in Python and are easily installed, optionally

using the CONDA package, dependency and environment manager (https://conda.io).

NeatSeq-Flow is modular, can use existing as well as newly devised modules, and can

execute both publicly-available and in-house programs. Ready-to-use workflows are

available for common Bioinformatics analyses such as RNA-Seq, ChIP-Seq, variant calling,

shotgun and amplicon metagenomics (https://neatseq-

flow.readthedocs.io/projects/neatseq-flow-modules/en/latest/#neatseq-flow-workflows).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

Main Advantages

NeatSeq-Flow WFs are conceptually based on three elements: sample information (files’

physical location and type), modules and WF design. This setup enables advantages such

as the use of the same WF design on different sets of samples as well as using different

WFs on the same set of samples, all of this without changing the individual elements.

Moreover, this independency of elements makes them easily shared between users and

eventually forms a repository of WFs and modules ready to be used on new sample sets

or to be re-edited to form new types of WFs and modules.

The three elements of a WF contain all the information required for its reproduction and

are therefore stored by NeatSeq-Flow as a self-sufficient backup for this purpose.

Execution of the WF is fully under the user’s control, using easily understood shell scripts

generated by NeatSeq-Flow. These scripts also contain directives enabling parallelization

and ensuring sequential execution. In addition, when executing WFs on a computer

cluster the user can also determine to which node a step will be sent according to the step

requirements such as the amount of memory and number of CPUs or by specifying a

specific node name.

HTS analyses typically produce numerous intermediate and final files. NeatSeq-Flow

automatically determines and manages the location of these files, and handles their

transfer between WF steps. By the end of a WF execution, all files are neatly organized in

an intuitive directory structure.

Designing and running NeatSeq-Flow WFs using existing modules does not require any

programming knowledge and with the use of the included "generic module" most Linux-

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

based programs having command-line arguments are also covered, making NeatSeq-Flow

accessible to a wide variety of users.

NeatSeq-Flow is designed to be used locally, either on a single computer or on a computer

cluster. Optionally, the user may also install NeatSeq-Flow GUI and use it locally. Thus, all

analyses can be done within firewalls, and no trafficking of big data to remote servers is

required.

Finally, NeatSeq-Flow supports the use of CONDA for easy installation of NeatSeq-Flow

with most of its dependent HTS analysis programs. The use of CONDA environments does

not require "superuser" privileges (”sudo”) and helps save time and effort in setting up a

WF to work on the user’s own computer system. Moreover, in complex WFs CONDA

relieves the user from the need to deal with interdependency issues among the installed

programs. Most importantly, CONDA facilitates sharing of WFs by enabling delivery of

entire environments for HTS analyses.

Description of NeatSeq-Flow

NeatSeq-Flow can create and execute WFs on any set of samples and operations. A

schematic diagram of NeatSeq-Flow and a detailed example are provided in Figs. 1 and

S1.

NeatSeq-Flow operations are implemented as modules, where each module is a wrapper

for a program. A program could be anything executable from the Linux command-line,

from a simple script to a complex software tool, either publicly available (e.g.Trinity (9),

BWA (10), Bowtie (11), QIIME2 (12)) or an in-house program. A list of pre-built modules

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

is available at NeatSeq-Flow module and workflow repository, http://neatseq-

flow.readthedocs.io/projects/neatseq-flow-modules/en/latest/. Creation of new modules

requires basic Python programming knowledge and is easily achieved using a provided

template (Fig. S2). In addition, NeatSeq-Flow includes a generic module which can

execute any Linux-based program having command-line arguments (in conventional

formats). Usage of the generic module does not require any programming knowledge and

may thus enable non-programmers to make full use of NeatSeq-Flow for running their

own set of programs even if they are not available in NeatSeq-Flow module repository.

Figure 1. Outline of workflow execution with

NeatSeq-Flow. A. A conceptual design of the WF

takes on the form of a directed acyclic graph where

nodes represent steps, arrows represent

interdependencies between steps, and convergence

(e.g. step 6) represents a step which is dependent

on several previous steps. B. Based on the WF

design, the user creates sample- and parameter-

definition files, and provides the input files. C.

NeatSeq-Flow Script generator is executed,

creating a set of structured shell scripts. D. The

shell scripts are typically executed on a computer

cluster. Step dependencies are maintained through

directives within the shell scripts. E. Script outputs,

WF log and other accompanying files are neatly

organized in a directory structure.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

The order of the operations, i.e. the WF, is specified in a user-provided "parameter file"

(see an example in Fig S1C). The parameter file may either be created manually using a

text editor, or through NeatSeq-Flow GUI (See animated demonstration at

https://github.com/bioinfo-core-BGU/NeatSeq-Flow-GUI). The WF is composed of steps,

where each step calls a module. A certain module may be called by several distinct steps,

e.g. each time with different parameters. For each step, the user defines which previous

step(s) need to be completed before the current step executes, thus imposing "step

dependencies". The flow of steps may be perceived as a directed acyclic graph (Fig. 1A

and see example in Fig. S1A), meaning that a step may be preceded either by a single

step (e.g. Bowtie2 (13) precedes Samtools (14) in Fig S1A), or by a convergence of

several steps (e.g. MultiQC MultiQC (15) in Fig S1A). Typically, steps are implemented at

one of two levels: per sample (e.g. alignment to a reference) or per project (e.g. de novo

assembly of the reads from all samples). Finally, for each step the user may define the

module's parameters (e.g. the use of the mem algorithm at the BWA mapper module in

Fig. S1C), the program's parameters (e.g. –B for mismatch penalty in BWA mem in Fig.

S1C) and, optionally, step-specific cluster parameters (e.g. use nodes with certain

memory/CPU requirements or run on specific node name(s)).

The set of raw input files (e.g. FASTQ and FASTA files) can be placed in a directory or

directories of the user's choice, and their location(s) and sample attributions should be

defined in a "sample file" (see example in Fig. S1B). The "sample file" may be created

manually using a text editor or through NeatSeq-Flow GUI. From this point onwards, the

user is relieved from the need to know or manage the locations of intermediate or final

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

files, or to transfer files between WF steps. WF output file locations are determined by

NeatSeq-Flow such that they are neatly organized in an intuitive directory structure (Fig.

S1E).

Once the user provides NeatSeq-Flow with sample and parameter files, NeatSeq-Flow

creates a hierarchy of shell scripts (Fig 1C,D and Fig S1E): a "master script" that calls all

step-level scripts; step level scripts that call all sample- or project-level scripts; and

sample- and/or project-level scripts that call the relevant programs. The latter shell

scripts contain the code for executing the programs, including input and output file

locations, user-defined parameters and dependency directives. All scripts are stored in a

neat directory structure (see example in Fig. S1E).

Execution of the WF takes place by running the WF’s master shell script (Fig. 1D). Step

dependencies encoded in the shell scripts ensure the correct order of step execution.

Parallelization is both sample-wise as well as step-wise for steps that are on independent

branches of the WF (e.g. running several mapping programs as in Fig. S1A or running the

same program with different parameter sets). The user may choose to execute only part

of the WF; only a certain step; or even only a certain step on a certain sample, by

executing the relevant shell script(s) from the script hierarchy. During WF execution,

NeatSeq-Flow "Terminal Monitor" may be used to follow the WF progress in real time and

to alert for execution errors (Fig S1D).

The WF output files are neatly organized in the "data" directory by module, step and

sample (see example in Fig. S1E), making it easy to locate required information.

Additionally, execution start and end times as well as maximum memory requirements are

written to a log file. Debugging is facilitated by storing STDERR and STDOUT of the shell

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

scripts in dedicated directories. All WF elements necessary for its execution, i.e. its

parameter file, sample file and used modules, are copied into a dedicated backup

directory. This enables reproducing the WF at any time in the future. Needless to say, the

shell scripts themselves, together with the sample and parameter files, constitute the

ultimate documentation for the WF performed. Sharing WFs is facilitated by a shared

repository of modules and parameter files (http://neatseq-

flow.readthedocs.io/projects/neatseq-flow-modules/en/latest/).

Implementation

NeatSeq-Flow script generator, NeatSeq-Flow GUI and NeatSeq-Flow modules are written

in Python. The parameter file uses the intuitive YAML format. Program paths (e.g. physical

location of Bowtie2 executable) are specified by the user at the top of the parameter file

and are easily edited, thus ensuring portability of NeatSeq-Flow and its modules across

different computers (Fig. S1C). Input and output file paths of WF steps are determined

"on the fly" by the script generator (see below), and are not hard coded in NeatSeq-Flow

nor in the parameter file. This concept enables the modules and parameter files to be

independent of actual file locations and therefore shareable.

Step dependencies are implemented as follows: In the parameter file, the user specifies

for each step, which other step(s), called "base step(s)", must precede it (Fig. S1C);

During execution of the script generator, for each step, the script generator writes a

directive into the relevant shell script to hold the execution of the current step’s program

until the base step’s program terminates.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

Information sharing between WF steps is implemented as follows: each module contains a

definition of the required input file types and the expected output file types, e.g. for

BLAST, the module defines FASTA and BLAST-database as inputs and BLAST result file as

output. The output file locations are determined by the script generator for each step and

stored in an internal data structure which is then passed on to the next step in the WF. In

turn, each step can search the data structure for its required input file types (for more

details see Fig S3). This design enables great flexibility for the user to thread together

steps, with the only requirement being that for each step its required input file type(s)

were created by at least one of its predecessor step(s).

The generic module does not contain a definition of input and output file types, therefore

in steps that use a generic module, the user has to specify the input and output file types

in the parameter file. An example of calling the generic module is provided in Fig. S4, and

a full specification is available in NeatSeq-Flow documentation (http://neatseq-

flow.readthedocs.io/projects/neatseq-flow-

modules/en/latest/Module_docs/GenericModule.html)

To summarize, the script generator generates the shell scripts as follows: for each step it

(1) writes a directive into the relevant shell script, to hold the execution of the current

step’s program until the base step’s program terminates; (2) checks that the input file

type(s) of the current step’s module are compatible with the output file types of its

predecessors step(s); (3) constructs unique file paths for the outputs of the current step

and stores them in the internal data structure as appropriate types; (4) retrieves from the

data structure the file paths of its required input files, generated by previous steps; (5)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

constructs the shell command for calling this step’s program with the input and output file

paths, and writes the command in the relevant shell script.

Conclusions and Future Perspective

NeatSeq-Flow allows the user to execute diverse and extensive HTS analyses on computer

clusters, while avoiding the tedious task of composing numerous error free shell scripts.

Execution of the actual WF is controlled by information depicted in the shell scripts

produced by NeatSeq-Flow, while the user has the freedom to choose which steps and

which samples to execute. A WF in NeatSeq-Flow is defined by sample and parameter files

and together with the modules used they ensure clear documentation and reproducibility.

Furthermore, once the shell scripts are produced by NeatSeq-Flow, they plainly reveal all

the operations applied to the data, with nothing "hidden behind the scenes". NeatSeq-

Flow is written in plain Python, such that adding new modules to the software is a

straightforward process. A generic module is also provided, enabling calling programs

directly, without pre-built modules. Accordingly, NeatSeq-Flow may easily be extended to

include new protocols and software packages. It is our hope that the community of users

will contribute additional modules as well as dedicated WF designs to the public.

Programmers and non-programmers alike may benefit from easy WF design and execution

of NeatSeq-Flow, through either the command-line or the GUI. NeatSeq-Flow is in

constant use by our group for a multitude of analysis procedures, and has proven to be

priceless in time saving and error reduction. NeatSeq-Flow is under continuous agile

development and improvement. NeatSeq-Flow is general-purpose and may easily be

adjusted to work on different types of analyses other than HTS.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgements

This research used the High Performance Computing Facility at Ben-Gurion University.

Conflict of Interest: none declared.

References

1. Di Tommaso,P., Chatzou,M., Floden,E.W., Barja,P.P., Palumbo,E. and Notredame,C.

(2017) Nextflow enables reproducible computational workflows. Nat. Biotechnol., 35, 316-
319.

2. Köster,J. and Rahmann,S. (2012) Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics, 28, 2520-2522.

3. Sadedin,S.P., Pope,B. and Oshlack,A. (2012) Bpipe: A tool for running and managing

bioinformatics pipelines. Bioinformatics, 28, 1525-1526.

4. Stocker,G., Rieder,D. and Trajanoski,Z. (2004) ClusterControl: A web interface for

distributing and monitoring bioinformatics applications on a linux cluster. Bioinformatics,
20, 805-807.

5. Linke,B., Giegerich,R. and Goesmann,A. (2011) Conveyor: A workflow engine for
bioinformatic analyses. Bioinformatics, 27, 903-911.

6. Hatakeyama,M., Opitz,L., Russo,G., Qi,W., Schlapbach,R. and Rehrauer,H. (2016)

SUSHI: An exquisite recipe for fully documented, reproducible and reusable NGS data
analysis. BMC Bioinformatics, 17, 228.

7. Goecks,J., Nekrutenko,A. and Taylor,J. (2010) Galaxy: A comprehensive approach for

supporting accessible, reproducible, and transparent computational research in the life
sciences. Genome Biol., 11, R86.

8. Grabherr,M.G., Haas,B.J., Yassour,M., Levin,J.Z., Thompson,D.A., Amit,I., Adiconis,X.,

Fan,L., Raychowdhury,R. and Zeng,Q. (2011) Full-length transcriptome assembly from
RNA-seq data without a reference genome. Nat. Biotechnol., 29, 644.

9. Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics, 25, 1754-1760.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

10. Langmead,B., Trapnell,C., Pop,M. and Salzberg,S.L. (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol., 10,

R25.

11. Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with bowtie 2.

Nat. Methods, 9, 357-359.

12. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G.,

Abecasis,G., Durbin,R. and 1000 Genome Project Data Processing Subgroup. (2009) The
sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079.

13. Ewels,P., Magnusson,M., Lundin,S. and Käller,M. (2016) MultiQC: Summarize analysis
results for multiple tools and samples in a single report. Bioinformatics, 32, 3047-3048.

Figure legends

Figure 1. Outline of workflow execution with NeatSeq-Flow. A. A conceptual design

of the WF takes on the form of a directed acyclic graph where nodes represent steps,

arrows represent interdependencies between steps, and convergence (e.g. step 6)

represents a step which is dependent on several previous steps. B. Based on the WF

design, the user creates sample- and parameter-definition files, and provides the input

files. C. NeatSeq-Flow Script generator is executed, creating a set of structured shell

scripts. D. The shell scripts are typically executed on a computer cluster. Step

dependencies are maintained through directives within the shell scripts. E. Script outputs,

WF log and other accompanying files are neatly organized in a directory structure.

Figure S1. Example of NeatSeq-Flow workflow: A. Graphical presentation B. Sample

file C. Parameter file D. Terminal Monitor E. Output directory structure

Figure S2. Template for a new Module: A. Sample-level module template B. Project-

level module template

Figure S3. Implementation of managing file transfer between steps

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S4. Example of usage and implementation of the generic module

References

1. Di Tommaso,P., Chatzou,M., Floden,E.W., Barja,P.P., Palumbo,E. and Notredame,C.

(2017) Nextflow enables reproducible computational workflows. Nat. Biotechnol., 35, 316-
319.

2. Köster,J. and Rahmann,S. (2012) Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics, 28, 2520-2522.

3. Hatakeyama,M., Opitz,L., Russo,G., Qi,W., Schlapbach,R. and Rehrauer,H. (2016)

SUSHI: An exquisite recipe for fully documented, reproducible and reusable NGS data

analysis. BMC Bioinformatics, 17, 228.

4. Sadedin,S.P., Pope,B. and Oshlack,A. (2012) Bpipe: A tool for running and managing

bioinformatics pipelines. Bioinformatics, 28, 1525-1526.

5. Stocker,G., Rieder,D. and Trajanoski,Z. (2004) ClusterControl: A web interface for

distributing and monitoring bioinformatics applications on a linux cluster. Bioinformatics,
20, 805-807.

6. Linke,B., Giegerich,R. and Goesmann,A. (2011) Conveyor: A workflow engine for
bioinformatic analyses. Bioinformatics, 27, 903-911.

7. Leipzig,J. (2016) A review of bioinformatic pipeline frameworks. Briefings in
Bioinformatics, bbw020.

8. Goecks,J., Nekrutenko,A. and Taylor,J. (2010) Galaxy: A comprehensive approach for

supporting accessible, reproducible, and transparent computational research in the life

sciences. Genome Biol., 11, R86.

9. Grabherr,M.G., Haas,B.J., Yassour,M., Levin,J.Z., Thompson,D.A., Amit,I., Adiconis,X.,

Fan,L., Raychowdhury,R. and Zeng,Q. (2011) Full-length transcriptome assembly from
RNA-seq data without a reference genome. Nat. Biotechnol., 29, 644.

10. Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics, 25, 1754-1760.

11. Langmead,B., Trapnell,C., Pop,M. and Salzberg,S.L. (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol., 10,
R25.

12. Bolyen,E., Rideout,J.R., Dillon,M.R., Bokulich,N.A., Abnet,C., Al-Ghalith,G.A.,

Alexander,H., Alm,E.J., Arumugam,M. and Asnicar,F. (2018) QIIME 2: Reproducible,

interactive, scalable, and extensible microbiome data science. PeerJ Preprints 6:
e27295v1 https://doi.org/10.7287/peerj.preprints.27295v1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

13. Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with bowtie 2.
Nat. Methods, 9, 357-359.

14. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G.,

Abecasis,G., Durbin,R. and 1000 Genome Project Data Processing Subgroup. (2009) The

sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079.

15. Ewels,P., Magnusson,M., Lundin,S. and Käller,M. (2016) MultiQC: Summarize analysis

results for multiple tools and samples in a single report. Bioinformatics, 32, 3047-3048.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/173005doi: bioRxiv preprint

https://doi.org/10.1101/173005
http://creativecommons.org/licenses/by-nc-nd/4.0/

