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Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus
from camels causing significant mortality and morbidity in humans in the Arabian
Peninsula. The epidemiology of the virus remains poorly understood, and while case-
based and seroepidemiological studies have been employed extensively throughout the
epidemic, viral sequence data have not been utilised to their full potential. Here we use
existing MERS-CoV sequence data to explore its phylodynamics in two of its known
major hosts, humans and camels. We employ structured coalescent models to show
that long-term MERS-CoV evolution occurs exclusively in camels, whereas humans act
as a transient, and ultimately terminal host. By analysing the distribution of human
outbreak cluster sizes and zoonotic introduction times we show that human outbreaks
in the Arabian peninsula are driven by seasonally varying zoonotic transfer of viruses
from camels. Without heretofore unseen evolution of host tropism, MERS-CoV is
unlikely to become endemic in humans.
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Introduction

Middle East respiratory syndrome coronavirus (MERS-CoV), endemic in camels in the
Arabian Peninsula, is the causative agent of zoonotic infections and limited outbreaks in
humans. The virus, first discovered in 2012 (Zaki et al., 2012; Boheemen et al., 2012),
has caused more than 2000 infections and over 700 deaths, according to the World Health
Organization (WHO) (World Health Organization, 2017). Its epidemiology remains obscure,
largely because infections are observed among the most severely affected individuals, such as
older males with comorbidities (Assiri et al., 2013a; The WHO MERS-CoV Research Group,
2013). While contact with camels is often reported, other patients do not recall contact
with any livestock, suggesting an unobserved community contribution to the outbreak (The
WHO MERS-CoV Research Group, 2013). Previous studies on MERS-CoV epidemiology
have used serology to identify factors associated with MERS-CoV exposure in potential
risk groups (Reusken et al., 2015, 2013). Such data have shown high seroprevalence in
camels (Müller et al., 2014; Corman et al., 2014; Chu et al., 2014; Reusken et al., 2013,
2014) and evidence of contact with MERS-CoV in workers with occupational exposure to
camels (Reusken et al., 2015; Müller et al., 2015). Separately, epidemiological modelling
approaches have been used to look at incidence reports through time, space and across
hosts (Cauchemez et al., 2016).

Although such epidemiological approaches yield important clues about exposure patterns
and potential for larger outbreaks, much inevitably remains opaque to such approaches
due to difficulties in linking cases into transmission clusters in the absence of detailed
information. Where sequence data are relatively cheap to produce, genomic epidemiological
approaches can fill this critical gap in outbreak scenarios (Liu et al., 2013; Gire et al., 2014;
Grubaugh et al., 2017). These data often yield a highly detailed picture of an epidemic
when complete genome sequencing is performed consistently and appropriate metadata
collected (Dudas et al., 2017). Sequence data can help discriminate between multiple and
single source scenarios (Gire et al., 2014; Quick et al., 2015), which are fundamental to
quantifying risk (Grubaugh et al., 2017). Sequencing MERS-CoV has been performed as
part of initial attempts to link human infections with the camel reservoir (Memish et al.,
2014), nosocomial outbreak investigations (Assiri et al., 2013b) and routine surveillance
(Park et al., 2015). A large portion of MERS-CoV sequences come from outbreaks within
hospitals, where sequence data have been used to determine whether infections were isolated
introductions or were part of a larger hospital-associated outbreak (Fagbo et al., 2015).
Similar studies on MERS-CoV have taken place at broader geographic scales, such as cities
(Cotten et al., 2013).

It is widely accepted that recorded human MERS-CoV infections are a result of at least
several introductions of the virus into humans (Cotten et al., 2013) and that contact with
camels is a major risk factor for developing MERS, per WHO guidelines (World Health
Organization, 2016). Previous studies attempting to quantify the actual number of spillover
infections have either relied on case-based epidemiological approaches (Cauchemez et al.,
2016) or employed methods agnostic to signals of population structure within sequence
data (Zhang et al., 2016). Here we use a dataset of 274 MERS-CoV genomes to investigate
transmission patterns of the virus between humans and camels.
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Here, we use an explicit model of metapopulation structure and migration between dis-
crete subpopulations, referred to here as demes (Vaughan et al., 2014), derived from
the structured coalescent (Notohara, 1990). Unlike approaches that model host species
as a discrete phylogenetic trait of the virus using continuous-time Markov processes (or
simpler, parsimony based, approaches) (Faria et al., 2013; Lycett et al., 2016), population
structure models explicitly incorporate contrasts in deme effective population sizes and
migration between demes. By estimating independent coalescence rates for MERS-CoV in
humans and camels, as well as migration patterns between the two demes, we show that
long-term viral evolution of MERS-CoV occurs exclusively in camels. Our results suggest
that spillover events into humans are seasonal and might be associated with the calving
season in camels. However, we find that MERS-CoV, once introduced into humans, follows
transient transmission chains that soon abate. Using Monte Carlo simulations we show
that R0 for MERS-CoV circulating in humans is much lower than the epidemic threshold
of 1.0 and that correspondingly the virus has been introduced into humans hundreds of
times.

Results

MERS-CoV is predominantly a camel virus

The structured coalescent approach we employ (see Methods) identifies camels as a reservoir
host where most of MERS-CoV evolution takes place (Figure 1), while human MERS
outbreaks are transient and terminal with respect to long-term evolution of the virus
(Figure S1). Across 174 MERS-CoV genomes collected from humans, we estimate a
median of 56 separate camel-to-human cross-species transmissions (95% highest posterior
density (HPD): 48–63). While we estimate a median of 3 (95% HPD: 0–12) human-
to-camel migrations, the 95% HPD interval includes zero and we find that no such
migrations are found in the maximum clade credibility tree (Figure 1). Correspondingly,
we observe substantially higher camel-to-human migration rate estimates than human-to-
camel migration rate estimates (Figure S2). This inference derives from the tree structure
wherein human viruses appear as clusters of highly related sequences nested within the
diversity seen in camel viruses, which themselves show significantly higher diversity and
less clustering. This manifests as different rates of coalescence with camel viruses showing
a scaled effective population size Neτ of 3.49 years (95% HPD: 2.71–4.38) and human
viruses showing a scaled effective population of 0.24 years (95% HPD: 0.14–0.34).

We believe that the small number of inferred human-to-camel migrations are induced by
the migration rate prior, while some are derived from phylogenetic proximity of human
sequences to the apparent “backbone” of the phylogenetic tree. This is most apparent in
lineages in early-mid 2013 that lead up to sequences comprising the MERS-CoV clade
dominant in 2015, where owing to poor sampling of MERS-CoV genetic diversity from
camels the model cannot completely dismiss humans as a potential alternative host. The
first sequences of MERS-CoV from camels do not appear in our data until November
2013. Our finding of negligible human-to-camel transmission is robust to choice of prior
(Figure S2).
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Figure 1. Typed maximum clade credibility tree of MERS-CoV genomes from 174
human viruses and 100 camel viruses. Maximum clade credibility (MCC) tree showing
inferred ancestral hosts for MERS-CoV recovered with the structured coalescent. The vast majority
of MERS-CoV evolution is inferred to occur in camels (orange) with human outbreaks (blue)
representing evolutionary dead-ends for the virus. Confidence in host assignment is depicted as
a colour gradient, with increased uncertainty in host assignment (posterior probabilities close
to 0.5) shown as grey. While large clusters of human cases are apparent in the tree, significant
contributions to human outbreaks are made by singleton sequences, likely representing recent
cross-species transmissions that were caught early.

The repeated and asymmetric introductions of short-lived clusters of MERS-CoV sequences
from camels into humans leads us to conclude that MERS-CoV epidemiology in humans is
dominated by zoonotic transmission (Figure 1 and S1). We observe dense terminal clusters
of MERS-CoV circulating in humans that are of no subsequent relevance to the evolution
of the virus. These clusters of presumed human-to-human transmission are then embedded
within extensive diversity of MERS-CoV lineages inferred to be circulating in camels, a
classic pattern of source-sink dynamics. Our findings suggest that instances of human
infection with MERS-CoV are more common than currently thought, with exceedingly
short transmission chains mostly limited to primary cases that might be mild and ultimately
not detected by surveillance or sequencing. Structured coalescent analyses recover the
camel-centered picture of MERS-CoV evolution despite sequence data heavily skewed
towards non-uniformly sampled human cases and are robust to choice of prior. Comparing
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these results with a currently standard discrete trait analysis (Lemey et al., 2009) approach
for ancestral state reconstruction shows dramatic differences in host reconstruction at
internal nodes (Figure S3). Discrete trait analysis reconstruction identifies both camels and
humans as important hosts for MERS-CoV persistence, but with humans as the ultimate
source of camel infections. A similar approach has been attempted previously (Zhang et al.,
2016), but this interpretation of MERS-CoV evolution disagrees with lack of continuing
human transmission chains outside of Arabian peninsula, low seroprevalence in humans and
very high seroprevalence in camels across Saudi Arabia. We suspect that this particular
discrete trait analysis reconstruction is false due to biased data, i.e. having nearly twice as
many MERS-CoV sequences from humans (n = 174) than from camels (n = 100) and the
inability of the model to account for and quantify vastly different rates of coalescence in the
phylogenetic vicinity of both types of sequences. We can replicate these results by either
applying the same model to current data (Figure S3) or by enforcing equal coalescence
rates within each deme in the structured coalescent model (Figure S4).

MERS-CoV shows seasonal introductions

We use the posterior distribution of MERS-CoV introduction events from camels to
humans (Figure 1) to model seasonal variation in zoonotic transfer of viruses. We identify
four months (April, May, June, July) when the odds of MERS-CoV introductions are
increased (Figure 2) and four when the odds are decreased (August, September, November,
December). Camel calving is reported to occur from October to February (Almutairi
et al., 2010), with rapidly declining maternal antibody levels in calves within the first
weeks after birth (Wernery, 2001). It is possible that MERS-CoV sweeps through each
new camel generation once critical mass of susceptibles is reached (Martinez-Bakker et al.,
2014), leading to a sharp rise in prevalence of the virus in camels and resulting in increased
force of infection into the human population. Strong influx of susceptibles and subsequent
sweeping outbreaks in camels may explain evidence of widespread exposure to MERS-CoV
in camels from seroepidemiology (Müller et al., 2014; Corman et al., 2014; Chu et al., 2014;
Reusken et al., 2013, 2014).

Although we find evidence of seasonality in zoonotic spillover timing, no such relationship
exists for sizes of human sequence clusters (Figure 2B). This is entirely expected, since
little seasonality in human behaviour that could facilitate MERS-CoV transmission is
expected following an introduction. Similarly, we do not observe any trend in human
sequence cluster sizes over time (Figure 2B, Spearman ρ = 0.06, p = 0.68), suggesting
that MERS-CoV outbreaks in humans are neither growing nor shrinking in size. This
is not surprising either, since MERS-CoV is a camel virus that has to date, experienced
little-to-no selective pressure to improve transmissibility between humans.

MERS-CoV is poorly suited for human transmission

Structured coalescent approaches clearly show humans to be a terminal host for MERS-
CoV, implying poor transmissibility. However, we wanted to translate this observation
into an estimate of the basic reproductive number R0 to provide an intuitive epidemic
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Figure 2. Seasonality of MERS-CoV introduction events. A) Posterior density estimates
partitioned by month showing the 95% highest posterior density interval for relative odds ratios of
MERS-CoV introductions into humans. Posterior means are indicated with circles. Evidence for
increased or decreased risk (95% HPD excludes 1.0) for introductions are indicated by black or
white circles, respectively. Hatched area spanning October to February indicates the camel calving
season. B) Sequence cluster sizes and inferred dates of introduction events. Each introduction
event is shown as a vertical line positioned based on the median introduction time, as recovered
by structured coalescent analyses and coloured by time of year with height indicating number of
descendant sequences recovered from human cases. 95% highest posterior density intervals for
introductions of MERS-CoV into humans are indicated with coloured lines, coloured by median
estimated introduction time. The black dotted line indicates the joint probability density for
introductions. We find little correlation between date and size of introduction (Spearman ρ = 0.06,
p = 0.68).

behaviour metric that does not require expertise in reading phylogenies. The parameter
R0 determines expected number of secondary cases in a single infections as well as the
distribution of total cases that result from a single introduction event into the human
population (Equation 1, Methods). We estimate R0 along with other relevant parameters
via Monte Carlo simulation in two steps. First, we simulate case counts across multiple
outbreaks totaling 2000 cases using Equation 1 and then we subsample from each case
cluster to simulate sequencing of a fraction of cases. Sequencing simulations are performed
via a multivariate hypergeometric distribution, where the probability of sequencing from a
particular cluster depends on available sequencing capacity (number of trials), numbers of
cases in the cluster (number of successes) and number of cases outside the cluster (number
of failures). In addition, each hypergeometric distribution used to simulate sequencing is
concentrated via a bias parameter, that enriches for large sequence clusters at the expense
of smaller ones (for its effects see Figure S5). This is a particularly pressing issue, since a
priori we expect large hospital outbreaks of MERS to be overrepresented in sequence data,
whereas sequences from primary cases will be sampled exceedingly rarely. We record the
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number, mean, standard deviation and skewness (third standardised moment) of sequence
cluster sizes in each simulation (left-hand panel in Figure 3) and extract the subset of
Monte Carlo simulations in which these summary statistics fall within the 95% highest
posterior density observed in the empirical MERS-CoV data from structured coalescent
analyses. We record R0 values, as well as the number of case clusters (equivalent to number
of zoonotic introductions), for these empirically matched simulations. A schematic of this
Monte Carlo procedure is shown in Figure S6. Since the total number of cases is fixed
at 2000, higher R0 results in fewer larger transmission clusters, while lower R0 results in
many smaller transmission clusters.

Figure 3. Monte Carlo simulations of human transmission clusters. Leftmost scatter plot
shows the distribution of individual Monte Carlo simulation sequence cluster size statistics (mean
and skewness) coloured by the R0 value used for the simulation. The dotted rectangle identifies the
95% highest posterior density bounds for sequence cluster size mean and skewness observed for
empirical MERS-CoV data. The distribution of R0 values that fall within 95% HPDs for sequence
cluster size mean, standard deviation, skewness and number of introductions, is shown in the
middle, on the same y-axis. Bins falling inside the 95% percentiles are coloured by R0, as in the
leftmost scatter plot. The distribution of total number of introductions associated with simulations
matching MERS-CoV sequence clusters is shown on the right. Darker shade of grey indicates bins
falling within the 95% percentiles. Monte Carlo simulations indicate R0 for MERS-CoV in humans
is likely to be below 1.0, with numbers of zoonotic transmissions numbering in the hundreds.

We find that observed phylogenetic patterns of sequence clustering strongly support R0

below 1.0 (middle panel in Figure 3). Mean R0 value observed in matching simulations is
0.72 (95% percentiles 0.57–0.90), suggesting the inability of the virus to sustain transmission
in humans. Lower values for R0 in turn suggest relatively large numbers of zoonotic transfers
of viruses into humans (right-hand panel in Figure 3). Median number of cross-species
introductions observed in matching simulations is 592 (95% percentiles 311-811). Our
results suggest a large number of unobserved MERS primary cases. Given this, we also
performed simulations where the total number of cases is doubled to 4000 to explore the
impact of dramatic underestimation of MERS cases. In these analyses R0 values tend to
decrease even further as numbers of introductions go up, although very few simulations
match currently observed MERS-CoV sequence data (Figure S7).

Overall, our analyses indicate that MERS-CoV is poorly suited for human-to-human
transmission, with an estimated R0 < 0.90 and sequence sampling likely to be biased
towards large hospital outbreaks (Figure S5). All matching simulations exhibit highly
skewed distributions of case cluster sizes with long tails (Figure S8), which is qualitatively
similar to the results of (Cauchemez et al., 2016). We find that simulated sequence cluster
sizes resemble observed sequence cluster sizes in the posterior distribution, with a slight
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Figure 4. Recombinant features of MERS-CoV phylogenies. A) Marginal posterior
probabilities of taxa collected from humans belonging to the same clade in phylogenies derived
from different parts of the genome. Taxa are ordered according to phylogeny of fragment 2 (genome
positions 21001 to 29364) reduced to just the human tips and is displayed on the left. Human
clusters are largely well-supported as monophyletic and consistent across trees of both genomic
fragments. B) Tanglegram connecting the same taxa between a phylogeny derived from fragment 1
(left, genome positions 1 to 21000) and fragment 2 (right, genome positions 21001 to 29364), reduced
to just the human tips and branches with posterior probability < 0.1 collapsed. Human clusters
exhibit limited diversity and corresponding low levels of incongruence within an introduction cluster.

reduction in mid-sized clusters in simulated data (Figure S9). Given these findings, and
the fact that large outbreaks of MERS occurred in hospitals, the combination of frequent
spillover of MERS-CoV into humans and occasional outbreak amplification via poor hygiene
practices (Assiri et al., 2013b; Chen et al., 2017) appear sufficient to explain observed
epidemiological patterns of MERS-CoV.

Recombination shapes MERS-CoV diversity

Recombination has been shown to occur in all genera of coronaviruses, including MERS-
CoV (Lai et al., 1985; Makino et al., 1986; Keck et al., 1988; Kottier et al., 1995; Herrewegh
et al., 1998). In order to quantify the degree to recombination has shaped MERS-CoV
genetic diversity we used two recombination detection approaches across partitions of taxa
corresponding to inferred MERS-CoV clades. Both methods rely on sampling parental
and recombinant alleles within the alignment, although each quantifies different signals
of recombination. One hallmark of recombination is the ability to carry alleles derived
via mutation from one lineage to another, which appear as repeated mutations taking
place in the recipient lineage, somewhere else in the tree. The PHI (pairwise homoplasy
index) test quantifies the appearance of these excessive repeat mutations (homoplasies)
within an alignment (Bruen et al., 2006). Another hallmark of recombination is clustering
of alleles along the genome, due to how template switching, the primary mechanism
of recombination in RNA viruses, occurs. 3Seq relies on the clustering of nucleotide
similarities along the genome between sequence triplets – two potential parent-donors and
one candidate offspring-recipient sequences (Boni et al., 2007).
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Both tests can give spurious results in cases of extreme rate heterogeneity and sampling
over time (Dudas and Rambaut, 2016), but both tests have not been reported to fail
simultaneously. PHI and 3Seq methods consistently identify most of the apparent ‘backbone’
of the MERS-CoV phylogeny as encompassing sequences with evidence of recombination
(Figure S10). Neither method can identify where in the tree recombination occurred, but
each full asterisk in Figure S10 should be interpreted as the minimum partition of data
that still captures both donor and recipient alleles involved in a recombination event. This
suggests a non-negligible contribution of recombination in shaping existing MERS-CoV
diversity. As done previously (Dudas and Rambaut, 2016), we show large numbers of
homoplasies in MERS-CoV data (Figure S11) with some evidence of genomic clustering
of such alleles. These results are consistent with high incidence of MERS-CoV in camels
(Müller et al., 2014; Corman et al., 2014; Chu et al., 2014; Reusken et al., 2014; Ali et al.,
2017), allowing for co-infection with distinct genotypes and thus recombination to occur.

Owing to these findings, we performed a sensitivity analysis in which we partitioned the
MERS-CoV genome into two fragments and identified human outbreak clusters within each
fragment. We find strong similarity in the grouping of human cases into outbreak clusters
between fragments (Figure 4A). Between the two trees in figure 4B four (out of 54) ‘human’
clades are expanded where either singleton introductions or two-taxon clades in fragment 2
join other clades in fragment 1. For the reverse comparison there are five ‘human’ clades
(out of 53) in fragment 2 that are expanded. All such clades have low divergence (figure
4B) and thus incongruences in human clades are more likely to be caused by differences
in deme assignment rather than actual recombination. And while we observe evidence of
distinct phylogenetic trees from different parts of the MERS-CoV genome (Figure 4B),
human clades are minimally affected and large portions of the posterior probability density
in both parts of the genome are concentrated in shared clades (Figure S12). Additionally,
we observe the same source-sink dynamics between camel and human populations in trees
constructed from separate genomic fragments as were observed in the original full genome
tree (Figures 1, 4B).

Observed departures from strictly clonal evolution suggest that while recombination is an
issue for inferring MERS-CoV phylogenies, its effect on the human side of MERS outbreaks
is minimal, as expected if humans represent a transient host with little opportunity for
co-infection. MERS-CoV evolution on the reservoir side is complicated by recombination,
though is nonetheless still largely amenable to phylogenetic methods. Amongst other
parameters of interest, recombination is expected to interfere with molecular clocks, where
transferred genomic regions can give the impression of branches undergoing rapid evolution,
or branches where recombination results in reversions appearing to evolve slow. In addition
to its potential to influence tree topology, recombination in molecular sequence data is an
erratic force with unpredictable effects. We suspect that the effects of recombination in
MERS-CoV data are reigned in by a relatively small effective population size of the virus in
Saudi Arabia (see next section) where haplotypes are fixed or nearly fixed, thus preventing
an accumulation of genetic diversity that would then be reshuffled via recombination.
Nevertheless, we choose not to report on any particular estimates for times of common
ancestors (tMRCAs), even though these are expected to be somewhat robust for dating
human clusters, and we do not report on the evolutionary rate of the virus, even though it
appears to fall firmly within the expected range for RNA viruses: regression of nucleotide
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differences to Jordan-N3/2012 genome against sequence collection dates yields a rate of
4.59× 10−4 subs/site/year, Bayesian structured coalescent estimate from primary analysis
9.57× 10−4 (95% HPDs: 8.28− 10.9× 10−4) subs/site/year.

MERS-CoV shows population turnover in camels

Here we attempt to investigate MERS-CoV demographic patterns in the camel reservoir.
We supplement camel sequence data with a single earliest sequence from each human
cluster, treating viral diversity present in humans as a sentinel sample of MERS-CoV
diversity circulating in camels. This removes conflicting demographic signals sampled
during human outbreaks, where densely sampled closely related sequences from humans
could be misconstrued as evidence of demographic crash in the viral population.

Figure 5. Demographic history of MERS-CoV in Arabian peninsula camels. Demo-
graphic history of MERS-CoV in camels, as inferred via a skygrid coalescent tree prior (Gill
et al., 2013). Three skygrid reconstructions are shown, red and orange for each of the stationary
distributions reached by MCMC with the whole genome and a black one where the genome was
split into ten partitions. Shaded interval indicates the 95% highest posterior density interval for the
product of generation time and effective population size, Neτ . Midline tracks the inferred median
of Neτ .

Despite lack of convergence, neither of the two demographic reconstructions show evidence
of fluctuations in the relative genetic diversity (Neτ) of MERS-CoV over time (Figure 5).
We recover a similar demographic trajectory when estimating Neτ over time with a skygrid
tree prior across the genome split into ten fragments with independent phylogenetic trees
to account for confounding effects of recombination (Figures 5, S13). However, we do
note that coalescence rate estimates are high relative to the sampling time period, with a
mean estimate of Neτ at 3.49 years (95% HPD: 2.71–4.38), and consequently MERS-CoV
phylogeny resembles a ladder, as often seen in human influenza A virus phylogenies (Bedford
et al., 2011).

This empirically estimated effectived population can be compared to the expected effective
population size in a simple epidemiological model. At endemic equilibrium, we expect
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scaled effective population size Neτ to follow I / 2β, where β is the equilibrium rate of
transmission and I is the equilibrium number of infecteds (Frost and Volz, 2010). We
assume that β is constant and is equal to the rate of recovery. Given a 20 day duration
of infection in camels (Adney et al., 2014), we arrive at β = 365/20 = 18.25 infections
per year. Given extremely high seroprevalence estimates within camels in Saudi Arabia
(Müller et al., 2014; Corman et al., 2014; Chu et al., 2014; Reusken et al., 2013, 2014),
we expect camels to usually be infected within their first year of life. Therefore we can
estimate the rough number of camel infections per year as the number of calves produced
each year. We find there are 830 000 camels in Saudi Arabia (Abdallah and Faye, 2013)
and that female camels in Saudi Arabia have an average fecundity of 45% (Abdallah and
Faye, 2013). Thus, we expect 830 000× 0.50× 0.45 = 186 750 new calves produced yearly
and correspondingly 186 750 new infections every year, which spread over 20 day intervals
gives an average prevalence of I = 10 233 infections. This results in an expected scaled
effective population size Neτ = 280.4 years.

Comparing expected Neτ to empirical Neτ we arrive at a ratio of 80.3 (64.0–103.5). This is
less than the equivalent ratio for human measles virus (Bedford et al., 2011) and is in line
with the expectation from neutral evolutionary dynamics plus some degree of transmission
heterogeneity (Volz et al., 2013) and seasonal troughs in prevalence. Thus, we believe
that the ladder-like appearance of the MERS-CoV tree can likely be explained by entirely
demographic factors.

Discussion

MERS-CoV epidemiology

In this study we aimed to understand the drivers of MERS coronavirus transmission in
humans and what role the camel reservoir plays in perpetuating the epidemic in the Arabian
peninsula by using sequence data collected from both hosts (174 from humans and 100
from camels). We showed that currently existing models of population structure (Vaughan
et al., 2014) can identify distinct demographic modes in MERS-CoV genomic data, where
viruses continuously circulating in camels repeatedly jump into humans and cause small
outbreaks doomed to extinction (Figures 1, S1). This inference succeeds under different
choices of priors for unknown demographic parameters (Figure S2) and in the presence
of strong biases in sequence sampling schemes (Figure 3). When rapid coalescence in the
human deme is not allowed (Figure S4) structured coalescent inference loses power and
ancestral state reconstruction is nearly identical to that of discrete trait analysis (Figure
S3). When allowed different deme-specific population sizes, the structured coalescent model
succeeds because a large proportion of human sequences fall into tightly connected clusters,
which informs a low estimate for the population size of the human deme. This in turn
informs the inferred state of long ancestral branches in the phylogeny, i.e. because these
long branches are not immediately coalescing, they are most likely in camels.

From sequence data we identify at least 50 zoonotic introductions of MERS-CoV into
humans from the reservoir (Figure 1), from which we extrapolate that hundreds more
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such introductions must have taken place (Figure 3). Although we recover migration rates
from our model (Figure S2), these only pertain to sequences and in no way reflect the
epidemiologically relevant per capita rates of zoonotic spillover events. We also looked
at potential seasonality in MERS-CoV spillover into humans. Our analyses indicated a
period of three months where the odds of a sequenced spillover event are increased, with
timing consistent with an enzootic amongst camel calves (Figure 2). As a result of our
identification of large and asymmetric flow of viral lineages into humans we also find that the
basic reproduction number for MERS-CoV in humans is well below the epidemic threshold
(Figure 3). Having said that, there are highly customisable coalescent methods available
that extend the methods used here to accommodate time varying migration rates and
population sizes, integrate alternative sources of information and fit to stochastic nonlinear
models (Rasmussen et al., 2014), which would be more appropriate for MERS-CoV. Some
distinct aspects of MERS-CoV epidemiology could not be captured in our methodology,
such as hospital outbreaks where R0 is expected to be consistently closer to 1.0 compared
to community transmission of MERS-CoV. Outside of coalescent-based models there
are population structure models that explicitly relate epidemiological parameters to the
branching process observed in sequence data (Kühnert et al., 2016), but often rely on
specifying numerous informative priors and can suffer from MCMC convergence issues.

Strong population structure in viruses often arises through limited gene flow, either due
to geography (Dudas et al., 2017), ecology (Smith et al., 2009) or evolutionary forces
(Turner et al., 2005; Dudas et al., 2015). On a smaller scale population structure can
unveil important details about transmission patterns, such as identifying reservoirs and
understanding spillover trends and risk, much as we have done here. When properly
understood naturally arising barriers to gene flow can be exploited for more efficient disease
control and prevention, as well as risk management.

Transmissibility differences between zoonoses and pandemics

Severe acute respiratory syndrome (SARS) coronavirus, a Betacoronavirus like MERS-CoV,
caused a serious epidemic in humans in 2003, with over 8000 cases and nearly 800 deaths.
Since MERS-CoV was also able to cause significant pathogenicity in the human host it was
inevitable that parallels would be drawn between MERS-CoV and SARS-CoV at the time
of MERS discovery in 2012. Although we describe the epidemiology of MERS-CoV from
sequence data, indications that MERS-CoV has poor capacity to spread human-to-human
existed prior to any sequence data. SARS-CoV swept through the world in a short period
of time, but MERS cases trickled slowly and were restricted to the Arabian Peninsula
or resulted in self-limiting outbreaks outside of the region, a pattern strongly indicative
of repeat zoonotic spillover. Infectious disease surveillance and control measures remain
limited, so much like the SARS epidemic in 2003 or the H1N1 pandemic in 2009, zoonotic
pathogens with R0 > 1.0 are probably going to be discovered after spreading beyond
the original location of spillover. Even though our results show that MERS-CoV does
not appear to present an imminent global threat, we would like to highlight that its
epidemiology is nonetheless concerning.

Pathogens Bacillus anthracis, Andes hantavirus (Martinez et al., 2005), monkeypox (Reed
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et al., 2004) and influenza A are able to jump species barriers but only influenza A viruses
have historically resulted in pandemics (Lipsitch et al., 2016). MERS-CoV may join the
list of pathogens able to jump species barriers but not spread efficiently in the new host.
Since its emergence in 2012, MERS-CoV has caused self-limiting outbreaks in humans with
no evidence of worsening outbreaks over time. However, sustained evolution of the virus
in the reservoir and continued flow of viral lineages into humans provides the substrate
for a more transmissible variant of MERS-CoV to possibly emerge. Previous modeling
studies (Antia et al., 2003; Park et al., 2013) suggest a positive relationship between initial
R0 in the human host and probability of evolutionary emergence of a novel strain which
passes the supercritical threshold of R0 > 1.0. This leaves MERS-CoV in a precarious
position; on one hand its current R0 of ∼0.7 is certainly less than 1, but its proximity to
the supercritical threshold raises alarm. With very little known about the fitness landscape
or adaptive potential of MERS-CoV, it is incredibly challenging to predict the likelihood
of the emergence more transmissible variants. In light of these difficulties, we encourage
continued genomic surveillance of MERS-CoV in the camel reservoir and from sporadic
human cases to rapidly identify a supercritical variant, if one does emerge.
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Methods

Sequence data

All MERS-CoV sequences were downloaded from GenBank and accession numbers are
given in Table S1. Sequences without accessions were kindly shared by Ali M. Somily,
Mazin Barry, Sarah S. Al Subaie, Abdulaziz A. BinSaeed, Fahad A. Alzamil, Waleed Zaher,
Theeb Al Qahtani, Khaldoon Al Jerian, Scott J.N. McNabb, Imad A. Al-Jahdali, Ahmed
M. Alotaibi, Nahid A. Batarfi, Matthew Cotten, Simon J. Watson, Spela Binter, and Paul
Kellam prior to publication. Fragments of some strains submitted to GenBank as separate
accessions were assembled into a single sequence. Only sequences covering at least 50% of
MERS-CoV genome were kept, to facilitate later analyses where the alignment is split into
two parts in order to account for effects of recombination (Dudas and Rambaut, 2016).
Sequences were annotated with available collection dates and hosts, designated as camel or
human, aligned with MAFFT (Katoh and Standley, 2013), and edited manually. Protein
coding sequences were extracted and concatenated, reducing alignment length from 30130
down to 29364, which allowed for codon-partitioned substitution models to be used. The
final dataset consisted of 174 genomes from human infections and 100 genomes from camel
infections (Table S1).

Phylogenetic analyses

Primary analysis, structured coalescent

For our primary analysis, the MultiTypeTree module (Vaughan et al., 2014) of BEAST
v2.4.3 (Bouckaert et al., 2014) was used to specify a structured coalescent model with
two demes – humans and camels. At time of writing structured population models are
available in BEAST v2 (Bouckaert et al., 2014) but not in BEAST v1 (Drummond et al.,
2012). We use the more computationally intensive MultiTypeTree module (Vaughan et al.,
2014) over approximate methods also available in BEAST v2, such as BASTA (Maio et al.,
2015), MASCOT (Mueller et al., 2017), and PhyDyn (Volz, 2011). Structured coalescent
model implemented in the MultiTypeTree module (Vaughan et al., 2014) estimates four
parameters: rate of coalescence in human viruses, rate of coalescence in camel viruses, rate
of migration from the human deme to the camel deme and rate of migration from the
camel deme to the human deme. Analyses were run on codon position partitioned data
with two separate HKY+Γ4 (Hasegawa et al., 1985; Yang, 1994) nucleotide substitution
models specified for codon positions 1+2 and 3. A relaxed molecular clock with branch
rates drawn from a lognormal distribution (Drummond et al., 2006) was used to infer the
evolutionary rate from date calibrated tips. Default priors were used for all parameters
except for migration rates between demes for which an exponential prior with mean 1.0
was used. All analyses were run for 200 million steps across ten independent Markov
chains (MCMC runs) and states were sampled every 20 000 steps. Due to the complexity of
multitype tree parameter space 50% of states from every analysis were discarded as burn-in,
convergence assessed in Tracer v1.6 and states combined using LogCombiner distributed
with BEAST v2.4.3 (Bouckaert et al., 2014). Three chains out of ten did not converge
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and were discarded altogether. This left 70 000 states on which to base posterior inference.
Posterior sets of typed (where migrating branches from structured coalescent are collapsed,
and migration information is left as a switch in state between parent and descendant nodes)
trees were summarised using TreeAnnotator v2.4.3 with the common ancestor heights
option (Heled and Bouckaert, 2013). A maximum likelihood phylogeny showing just the
genetic relationships between MERS-CoV genomes from camels and humans was recovered
using PhyML (Guindon et al., 2003) under a HKY+Γ4 (Hasegawa et al., 1985; Yang, 1994)
nucleotide substitution model and is shown in Figure S14.

Control, structured coalescent with different prior

As a secondary analysis to test robustness to choice of prior, we set up an analysis where
we increased the mean of the exponential distribution prior for migration rate to 10.0.
All other parameters were identical to the primary analysis and as before 10 independent
MCMC chains were run. In this case, two chains did not converge. This left 80 000 states
on which to base posterior inference. Posterior sets of typed trees were summarised using
TreeAnnotator v2.4.3 with the common ancestor heights option (Heled and Bouckaert,
2013).

Control, structured coalescent with equal deme sizes

To better understand where statistical power of the structured coalescent model lies we
set up a tertiary analysis where a model was set up identically to the first structured
coalescent analysis, but deme population sizes were enforced to have the same size. This
analysis allowed us to differentiate whether statistical power in our analysis is coming from
effective population size contrasts between demes or the backwards-in-time migration rate
estimation. Five replicate chains were set up, two of which failed to converge after 200
million states. Combining the three converging runs left us with 15 000 trees sampled
from the posterior distribution, which were summarised in TreeAnnotator v2.4.3 with the
common ancestor heights option (Heled and Bouckaert, 2013).

Control, structured coalescent with more than one tree per genome

Due to concerns that recombination might affect our conclusions (Dudas and Rambaut,
2016), as an additional secondary analysis, we also considered a scenario where alignments
were split into two fragments (fragment 1 comprised of positions 1-21000, fragment 2 of
positions 21000-29364), with independent clocks, trees and migration rates, but shared
substitution models and deme population sizes. Fragment positions were chosen based on
consistent identification of the region around nucleotide 21000 as a probable breakpoint
by GARD (Pond et al., 2006) by previous studies into SARS and MERS coronaviruses
(Hon et al., 2008; Dudas and Rambaut, 2016). All analyses were set to run for 200 million
states, subsampling every 20 000 states. Chains not converging after 200 million states
were discarded. 20% of the states were discarded as burn-in, convergence assessed with
Tracer 1.6 and combined with LogCombiner. Three chains out of ten did not converge.
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This left 70 000 states on which to base posterior inference. Posterior sets of typed trees
were summarised using TreeAnnotator v2.4.3 with the common ancestor heights option
(Heled and Bouckaert, 2013).

Control, discrete trait analysis

A currently widely used approach to infer ancestral states in phylogenies relies on treating
traits of interest (such as geography, host, etc.) as features evolving along a phylogeny as
continuous time Markov chains with an arbitrary number of states (Lemey et al., 2009).
Unlike structured coalescent methods, such discrete trait approaches are independent from
the tree (i.e. demographic) prior and thus unable to influence coalescence rates under
different trait states. Such models have been used in the past to infer the number of
MERS-CoV host jumps (Zhang et al., 2016) with results contradicting other sources of
information. In order to test how a discrete trait approach compares to the structured
coalescent we used our 274 MERS-CoV genome data set in BEAST v2.4.3 (Bouckaert
et al., 2014) and specified identical codon-partitioned nucleotide substitution and molecular
clock models to our structured coalescent analysis. To give the most comparable results
we used a constant population size coalescent model, as this is the demographic function
for each deme in the structured coalescent model. Five replicate MCMC analyses were run
for 200 million states, three of which converged onto the same posterior distribution. The
converging chains were combined after removing 20 million states as burn-in to give a total
of 27 000 trees drawn from the posterior distribution. These trees were then summarised
using TreeAnnotator v2.4.5 with the common ancestor heights option (Heled and Bouckaert,
2013).

Introduction seasonality

We extracted the times of camel-to-human introductions from the posterior distribution of
multitype trees. This distribution of introduction times was then discretised as follows: for
sample k = 1, 2, . . . , L from the posterior, Zijk was 1 if there as an introduction in month i
and year j and 0 otherwise. We model the sum of introductions at month i and year j
across the posterior sample Yij =

∑L
k=1 Zijk with the hierarchical model:

Yij ∼ Binomial(L, θij)

θij = logistic(αj + βi)

αj ∼ Normal(µy, σy)

µy ∼ Normal(0, 1)

σy ∼ Cauchy(0, 2.5)

βi ∼ Normal(0, σm)

σm ∼ Cauchy(0, 2.5),

where αj represents the contribution of year to expected introduction count and βi represents
the contribution of month to expected introduction count. Here, logistic(αj + βi) =
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exp(αj+βi)
exp(αj+βi)+1 . We sampled posterior values from this model via the Markov chain Monte

Carlo methods implemented in Stan (Carpenter et al., 2016). Odds ratios of introductions
were computed for each month i as ORi = exp(βi).

Epidemiological analyses

Here, we employ a Monte Carlo simulation approach to identify parameters consistent with
observed patterns of sequence clustering (Figure S6). Our structured coalescent analyses
indicate that every MERS outbreak is a contained cross-species spillover of the virus from
camels into humans. The distribution of the number of these cross-species transmissions
and their sizes thus contain information about the underlying transmission process. At
heart, we expect fewer larger clusters if fundamental reproductive number R0 is large and
more smaller clusters if R0 is small. A similar approach was used in Grubaugh et al. (2017)
to estimate R0 for Zika introductions into Florida.

Branching process theory provides an analytical distribution for the number of eventual
cases j in a transmission chain resulting from a single introduction event with R0 and
dispersion parameter ω (Blumberg and Lloyd-Smith, 2013). This distribution follows

Pr(j|R0, ω) =
Γ(ωj + j − 1)

Γ(ωj) Γ(j + 1)

(R0
ω )j−1

(1 + R0
ω )ωj+j−1

. (1)

Here, R0 represents the expected number of secondary cases following a single infection
and ω represents the dispersion parameter assuming secondary cases follow a negative
binomial distribution (Lloyd-Smith et al., 2005), so that smaller values represent larger
degrees of heterogeneity in the transmission process.

As of 10 May 2017, the World Health Organization has been notified of 1952 cases of
MERS-CoV (World Health Organization, 2017). We thus simulated final transmission
chain sizes using Equation 1 until we reached an epidemic comprised of N = 2000 cases.
10 000 simulations were run for 121 uniformly spaced values of R0 across the range [0.5–1.1]
with dispersion parameter ω fixed to 0.1 following expectations from previous studies of
coronavirus behavior (Lloyd-Smith et al., 2005). Each simulation results in a vector of
outbreak sizes c, where ci is the size of the ith transmission cluster and

∑K
i=1 ci = 2000

and K is the number of clusters generated.

Following the underlying transmission process generating case clusters c we simulate a
secondary process of sampling some fraction of cases and sequencing them to generate data
analogous to what we empirically observe. We sample from the case cluster size vector c
without replacement according to a multivariate hypergeometric distribution (Algorithm
1). The resulting sequence cluster size vector s contains K entries, some of which are zero
(i.e. case clusters not sequenced), but

∑K
i=1 si = 174 which reflects the number of human

MERS-CoV sequences used in this study. Note that this “sequencing capacity” parameter
does not vary over time, even though MERS-CoV sequencing efforts have varied in intensity,
starting out slow due to lack of awareness, methods and materials and increasing in response
to hospital outbreaks later. As the default sampling scheme operates under equiprobable
sequencing, we also simulated biased sequencing by using concentrated hypergeometric
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distributions where the probability mass function is squared (bias = 2) or cubed (bias = 3)
and then normalized. Here, bias enriches the hypergeometric distribution so that sequences
are sampled with weights proportional to (cbias1 , cbias2 , . . . , cbiask ). Thus, bias makes larger
clusters more likely to be ‘sequenced’.

After simulations were completed, we identified simulations in which the recovered distri-
bution of sequence cluster sizes s fell within the 95% highest posterior density intervals
for four summary statistics of empirical MERS-CoV sequence cluster sizes recovered via
structured coalescent analysis: number of sequence clusters, mean, standard deviation and
skewness (third central moment). These values were 48-61 for number of sequence clusters,
2.87–3.65 for mean sequence cluster size, 4.84–6.02 for standard deviation of sequence
cluster sizes, and 415.40–621.06 for skewness of sequence cluster sizes.

We performed a smaller set of simulations with 2500 replicates and twice the number of
cases, i.e.

∑K
i=1Ci = 4000, to explore a dramatically underreported epidemic. Additionally,

we performed additional smaller set of simulations on a rougher grid of R0 values (23
values, 0.50–1.05), with 5 values of dispersion parameter ω (0.002, 0.04, 0.1, 0.5, 1.0) and 3
levels of bias (1, 2, 3) to justify our choice of dispersion parameter ω that was fixed to 0.1
in the main analyses (Figure S15).

Data: Array of case cluster sizes in outbreak c = (c1, c2, . . . , cK), sequences available M ,
total outbreak size N , where N =

∑K
i=1 ci.

Result: Array of sequence cluster sizes sampled: s = (s1, s2, . . . , sK).
Draw si from a hypergeometric distribution with ci successes, N − ci failures after M
trials;
while i < K do

i = i+ 1;
M = M − si−1;
Compute the probability mass function (pmf) for all possible values of si,
p = (p(0)bias, p(1)bias, . . . , p(ci)

bias)× (
∑

i p
bias
i )−1, where p(·) is the pmf for a

hypergeometric distribution with ci successes, N − ci failures after M trials;
Draw a sequence cluster size si from array of potential sequence cluster sizes
(0, 1, . . . , ci) according to p;

end
Add remaining sequences to last sequence cluster cK = M − sK−1;
Algorithm 1: Multivariate hypergeometric sampling scheme. Pseudocode de-
scribes the multivariate hypergeometric sampling scheme that simulates sequencing. Proba-
bility of sequencing a given number of cases from a case cluster depends on cluster size and
sequences left (i.e. “sequencing capacity”). The bias parameter determines how probability
mass function of the hypergeometric distribution is concentrated.

Demographic inference of MERS-CoV in the reservoir

In order to infer the demographic history of MERS-CoV in camels we used the results
of structured coalescent analyses to identify introductions of the virus into humans. The
oldest sequence from each cluster introduced into humans was kept for further analysis.
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This procedure removes lineages coalescing rapidly in humans, which would otherwise
introduce a strong signal of low effective population size. These subsampled MERS-CoV
sequences from humans were combined with existing sequence data from camels to give us a
dataset with minimal demographic signal coming from epidemiological processes in humans.
Sequences belonging to the outgroup clade where most of MERS-CoV sequences from
Egypt fall were removed out of concern that MERS epidemics in Saudi Arabia and Egypt
are distinct epidemics with relatively poor sampling in the latter. Were more sequences of
MERS-CoV available from other parts of Africa we speculate they would fall outside of
the diversity that has been sampled in Saudi Arabia and cluster with early MERS-CoV
sequences from Jordan and sequences from Egyptian camels. However, currently there are
no indications of what MERS-CoV diversity looks like in camels east of Saudi Arabia. A
flexible skygrid tree prior (Gill et al., 2013) was used to recover estimates of relative genetic
diversity (Neτ) at 50 evenly spaced grid points across six years, ending at the most recent
tip in the tree (2015 August) in BEAST v1.8.4 (Drummond et al., 2012), under a relaxed
molecular clock with rates drawn from a lognormal distribution (Drummond et al., 2006)
and codon position partitioned (positions 1 + 2 and 3) HKY+Γ4 (Hasegawa et al., 1985;
Yang, 1994) nucleotide substitution models. At time of writing advanced flexible coalescent
tree priors from the skyline family, such as skygrid (Gill et al., 2013) are available in BEAST
v1 (Drummond et al., 2012) but not in BEAST v2 (Bouckaert et al., 2014). We set up five
independent MCMC chains to run for 500 million states, sampling every 50 000 states. This
analysis suffered from poor convergence, where two chains converged onto one stationary
distribution, two to another and the last chain onto a third stationary distribution, with
high effective sample sizes. Demographic trajectories recovered by the two main stationary
distributions are very similar and differences between the two appear to be caused by
convergence onto subtly different tree topologies. This non-convergence effect may have
been masked previously by the use of all available MERS-CoV sequences from humans
which may have lead MCMC towards one of the multiple stationary distributions.

To ensure that recombination was not interfering with the skygrid reconstruction we also
split our MERS-CoV alignment into ten parts 2937 nucleotides long. These were then used
as separate partitions with independent trees and clock rates in BEAST v1.8.4 (Drummond
et al., 2012). Nucleotide substitution and relaxed clock models were set up identically to
the whole genome skygrid analysis described above (Drummond et al., 2006; Hasegawa
et al., 1985; Yang, 1994). Skygrid coalescent tree prior (Gill et al., 2013) was used jointly
across all ten partitions for demographic inference. Five MCMC chains were set up, each
running for 200 million states, sampling every 20 000 states.

Data availability

Sequence data and all analytical code is publicly available at https://github.com/blab/
structured-mers.
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Table S1. Strain names, accessions (where available), identified host and reported collection dates
for MERS-CoV genomes used in this study.

strain accession host collection date

1 KSA-378 KJ713296 camel 2013-11
2 KSA-363 KJ713298 camel 2013-11
3 KSA-503 KJ713297 camel 2013-11
4 KSA-376 KJ713299 camel 2013-11
5 KSA-505 KJ713295 camel 2013-11
6 Jeddah-1 KF917527 camel 2013-11-08
7 NRCE-HKU205 KJ477102 camel 2013-11-15
8 KFU-HKU1 KJ650297 camel 2013-11-30
9 KFU-HKU13 KJ650295 camel 2013-12-30

10 Camel Egypt NRCE-HKU271 camel 2013-12-30
11 Camel Egypt NRCE-HKU270 camel 2013-12-30
12 KFU-HKU19Dam KJ650296 camel 2013-12-30
13 Qatar 2 2014 KJ650098 camel 2014-02-16
14 UAE/D469-14 KU242424 camel 2014-03-04
15 UAE/D511-14 KU242423 camel 2014-03-12
16 Jeddah/F13A/2014 KT368824 camel 2014-05
17 UAE/D1164.10/2014 KP719928 camel 2014-06
18 UAE/D1339.2/2014 KP719931 camel 2014-06
19 UAE/D1164.11/2014 KP719929 camel 2014-06
20 UAE/D1164.9/2014 KP719927 camel 2014-06
21 UAE/D1209/2014 KP719933 camel 2014-06
22 UAE/D1164.14/2014 KP719930 camel 2014-06
23 UAE/D1243.12/2014 KP719932 camel 2014-06
24 D1164.1/14 KX108937 camel 2014-06-02
25 Riyadh/Ry23N/2014 KT368825 camel 2014-07
26 Riyadh/Ry84N/2014 KT368826 camel 2014-07
27 Jeddah/S93/2014 KT368855 camel 2014-09
28 Jeddah/401/2014 KT368827 camel 2014-09
29 Jeddah/S100/2014 KT368853 camel 2014-09
30 Jeddah/S99/2014 KT368857 camel 2014-09
31 Jeddah/S94/2014 KT368856 camel 2014-09
32 Jeddah/S73/2014 KT368854 camel 2014-09
33 Jeddah/O47b/2014 KT368852 camel 2014-10
34 Jeddah/O23b/2014 KT368849 camel 2014-10
35 Jeddah/O24/2014 KT368850 camel 2014-10
36 Jeddah/O30/2014 KT368851 camel 2014-10
37 Jeddah/N51/2014 KT368846 camel 2014-11
38 Jeddah/N68b/2014 KT368848 camel 2014-11
39 Jeddah/N62b/2014 KT368847 camel 2014-11
40 Jeddah/D40/2014 KT368834 camel 2014-12
41 Jeddah/D90/2014 KT368844 camel 2014-12
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Table S1 – continued from previous page

strain accession host collection date

42 Jeddah/D88/2014 KT368843 camel 2014-12
43 Jeddah/D36/2014 KT368832 camel 2014-12
44 Jeddah/D35/2014 KT368831 camel 2014-12
45 Jeddah/D92/2014 KT368845 camel 2014-12
46 Jeddah/D49/2014 KT368841 camel 2014-12
47 Jeddah/D34/2014 KT368830 camel 2014-12
48 Jeddah/D33b/2014 KT368829 camel 2014-12
49 Jeddah/D42/2014 KT368835 camel 2014-12
50 Jeddah/D50b/2014 KT368842 camel 2014-12
51 Jeddah/D45/2014 KT368837 camel 2014-12
52 Jeddah/D46b/2014 KT368838 camel 2014-12
53 Jeddah/D43b/2014 KT368836 camel 2014-12
54 Jeddah/D100/2014 KT368828 camel 2014-12
55 Jeddah/D47/2014 KT368839 camel 2014-12
56 Jeddah/D38b/2014 KT368833 camel 2014-12
57 Jeddah/D48/2014 KT368840 camel 2014-12
58 D2597.2/14 KX108938 camel 2014-12-13
59 Egypt NRCE-NC163/2014 KU740200 camel 2014-12-17
60 Jeddah/Jd7/2015 KT368861 camel 2015-01
61 Jeddah/Jd86/2015 KT368863 camel 2015-01
62 Jeddah/Jd90/2015 KT368865 camel 2015-01
63 Jeddah/Jd1b/2015 KT368858 camel 2015-01
64 Jeddah/Jd4/2015 KT368859 camel 2015-01
65 Jeddah/Jd85/2015 KT368862 camel 2015-01
66 Jeddah/Jd6b/2015 KT368860 camel 2015-01
67 Jeddah/Jd87/2015 KT368864 camel 2015-01
68 D252/15 KX108939 camel 2015-01-30
69 Jeddah/Jd199/2015 KT368867 camel 2015-02
70 Jeddah/Jd175/2015 KT368866 camel 2015-02
71 D374/15 KX108940 camel 2015-02-12
72 D383/15 KX108941 camel 2015-02-14
73 D389/15 KX108942 camel 2015-02-15
74 Riyadh/Ry63/2015 KT368876 camel 2015-03
75 Riyadh/Ry136/2015 KT368868 camel 2015-03
76 Riyadh/Ry178/2015 KT368874 camel 2015-03
77 Riyadh/Ry162/2015 KT368871 camel 2015-03
78 Riyadh/Ry86/2015 KT368879 camel 2015-03
79 Taif/T150/2015 KT368889 camel 2015-03
80 Riyadh/Ry137/2015 KT368869 camel 2015-03
81 Riyadh/Ry179/2015 KT368875 camel 2015-03
82 Riyadh/Ry177/2015 KT368873 camel 2015-03
83 Riyadh/Ry79/2015 KT368878 camel 2015-03
84 Riyadh/Ry173/2015 KT368872 camel 2015-03
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Table S1 – continued from previous page

strain accession host collection date

85 Taif/T157b/2015 KT368890 camel 2015-03
86 Riyadh/Ry159b/2015 KT368870 camel 2015-03
87 Riyadh/Ry64/2015 KT368877 camel 2015-03
88 Taif/T3/2015 KT368880 camel 2015-04
89 Taif/T16/2015 KT368882 camel 2015-04
90 Taif/T22/2015 KT368883 camel 2015-04
91 Taif/T92/2015 KT368887 camel 2015-04
92 Taif/T7/2015 KT368881 camel 2015-04
93 Taif/T91b/2015 KT368886 camel 2015-04
94 Taif/T68/2015 KT368884 camel 2015-04
95 Taif/T89/2015 KT368885 camel 2015-04
96 Taif/T98/2015 KT368888 camel 2015-04
97 D998/15 KX108943 camel 2015-04-23
98 D1157/15 KX108944 camel 2015-05-12
99 D1189.1/15 KX108946 camel 2015-05-18

100 D1271/15 KX108945 camel 2015-05-29
101 Jordan-N3/2012 KC776174 human 2012-04-15
102 EMC/2012 JX869059 human 2012-06-13
103 England/1/2012 KC164505 human 2012-09-11
104 Riyadh 1 2012 KF600612 human 2012-10-23
105 Riyadh 2 2012 KF600652 human 2012-10-30
106 Riyadh 3 2013 KF600613 human 2013-02-05
107 England/3/2013 KM210278 human 2013-02-10
108 England/2/2013 KM015348 human 2013-02-10
109 England/4/2013 KM210277 human 2013-02-13
110 Riyadh 4 2013 KJ156952 human 2013-03-01
111 Munich/AbuDhabi/2013 KF192507 human 2013-03-22
112 Al-Hasa 2 2013 KF186566 human 2013-04-21
113 Al-Hasa 3 2013 KF186565 human 2013-04-22
114 UAE-FRA1 1627-2013 BAL KJ361500 human 2013-04-26
115 Al-Hasa 4 2013 KF186564 human 2013-05-01
116 Al-Hasa 7 2013 KF600623,

KF600655
human 2013-05-01

117 Al-Hasa 8 2013 KF600618,
KF600626,
KF600635,
KF600638

human 2013-05-01

118 Al-Hasa 25 2013 KJ156866 human 2013-05-02
119 Al-Hasa 11 2013 KF600629,

KF600636,
KF600646

human 2013-05-03

120 Al-Hasa 12 2013 KF600627 human 2013-05-07
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Table S1 – continued from previous page

strain accession host collection date

121 Al-Hasa 14 2013 KF600615,
KF600643

human 2013-05-08

122 Al-Hasa 1 2013 KF186567 human 2013-05-09
123 Al-Hasa 15 2013 KF600645 human 2013-05-11
124 Al-Hasa 16 2013 KF600644 human 2013-05-12
125 Buraidah 1 2013 KF600630 human 2013-05-13
126 Al-Hasa 23 2013 KJ156860,

KJ156894,
KJ156929,
KJ156923,
KJ156862

human 2013-05-13

127 Al-Hasa 17 2013 KF600647 human 2013-05-15
128 Al-Hasa 19 2013 KF600632 human 2013-05-23
129 Al-Hasa 18 2013 KF600651 human 2013-05-23
130 Al-Hasa 21 2013 KF600634 human 2013-05-30
131 Hafr-Al-Batin 1 2013 KF600628 human 2013-06-04
132 Wadi-Ad-Dawasir 1 2013 KJ156881 human 2013-06-12
133 Taif 1 2013 KJ156949 human 2013-06-12
134 Taif 2 2013 KJ156896,

KJ156876
human 2013-06-12

135 Taif 3 2013 KJ156938,
KJ156897,
KJ156922,
KJ156868,
KJ156921,
KJ156915,
KJ156906

human 2013-06-13

136 Al-Hasa 26 2013 KJ156882,
KJ156941,
KJ156872

human 2013-06-18

137 Al-Hasa 27 2013 KJ156943,
KJ156939

human 2013-06-19

138 Al-Hasa 28 2013 KJ156887,
KJ156940,
KJ156889,
KJ156893,
KJ156884,
KJ156930,
KJ156928,
KJ156909

human 2013-06-22

Continued on next page

29

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2017. ; https://doi.org/10.1101/173211doi: bioRxiv preprint 

https://doi.org/10.1101/173211
http://creativecommons.org/licenses/by-nc/4.0/


Table S1 – continued from previous page

strain accession host collection date

139 Riyadh 6 2013 KJ156879,
KJ156947,
KJ156890,
KJ156908,
KJ156927

human 2013-07-02

140 Riyadh 5 2013 KJ156944 human 2013-07-02
141 Riyadh 7 2013 KJ156937,

KJ156905
human 2013-07-15

142 Riyadh 8 2013 KJ156880,
KJ156942

human 2013-07-17

143 Riyadh 9 2013 KJ156869 human 2013-07-17
144 Hafr-Al-Batin 2 2013 KJ156910 human 2013-08-05
145 Asir 2 2013 KJ156863,

KJ156899,
KJ156912,
KJ156900,
KJ156898,
KJ156945,
KJ156932

human 2013-08-05

146 Riyadh 11 2013 KJ156946,
KJ156911

human 2013-08-06

147 Riyadh 12 2013 KJ156926,
KJ156901

human 2013-08-08

148 Riyadh 13 2013 KJ156888,
KJ156873

human 2013-08-13

149 Riyadh 14 2013 KJ156934 human 2013-08-15
150 Hafr-Al-Batin 4 2013 KJ156931,

KJ156895,
KJ156864,
KJ156861

human 2013-08-25

151 Hafr-Al-Batin 5 2013 KJ156951,
KJ156924,
KJ156954,
KJ156913

human 2013-08-25

152 Riyadh 17 2013 KJ156918,
KJ156920,
KJ156865

human 2013-08-26

153 Hafr-Al-Batin 6 2013 KJ156874 human 2013-08-28
154 Riyadh 10 2013 KJ156891,

KJ156936,
KJ156907

human 2013-09-05

155 Madinah 3b 2013 KJ156950,
KJ156916

human 2013-09-11

Continued on next page

30

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2017. ; https://doi.org/10.1101/173211doi: bioRxiv preprint 

https://doi.org/10.1101/173211
http://creativecommons.org/licenses/by-nc/4.0/


Table S1 – continued from previous page

strain accession host collection date

156 Qatar3 KF961221 human 2013-10-13
157 Qatar4 KF961222 human 2013-10-17
158 Oman 2285 2013 KT156560 human 2013-10-28
159 Jeddah-1 KF958702 human 2013-11-05
160 AbuDhabi UAE 9 2013 KP209312 human 2013-11-15
161 Oman 2874 2013 KT156561 human 2013-12-28
162 AbuDhabi/Gayathi UAE 2 2014 KP209310 human 2014-03-07
163 Jeddah C7569/KSA KM027256 human 2014-04-03
164 Jeddah C7149/KSA KM027255 human 2014-04-05
165 Jeddah C7770/KSA KM027257 human 2014-04-07
166 AbuDhabi UAE 8 2014 KP209306 human 2014-04-07
167 AbuDhabi UAE 16 2014 KP209308 human 2014-04-10
168 AbuDhabi UAE 18 2014 KP209307 human 2014-04-10
169 Jeddah C8826/KSA KM027258 human 2014-04-12
170 AbuDhabi UAE 26 2014 KP209313 human 2014-04-13
171 Jeddah C9055/KSA KM027259 human 2014-04-14
172 Makkah C9355/KSA/Makkah KM027261 human 2014-04-15
173 AbuDhabi UAE 33 2014 KP209311 human 2014-04-17
174 AbuDhabi UAE 30 2014 KP209309 human 2014-04-19
175 Jeddah C10306/KSA KM027260 human 2014-04-21
176 Riyadh 2014KSA 683/KSA/2014 KM027262 human 2014-04-22
177 Riyadh-KKUH-90b human 2014-04-24
178 Riyadh-KKUH-105 human 2014-04-25
179 Riyadh-KKUH-104 human 2014-04-25
180 KFMC-1 KT121580 human 2014-04-28
181 KFMC-8 KT121579 human 2014-04-30
182 Indiana/USA-1 SaudiArabia 2014 KJ813439 human 2014-04-30
183 KFMC-10 KT121578 human 2014-05-01
184 KFMC-7 KT121581 human 2014-05-03
185 Riyadh-KKUH-291 human 2014-05-06
186 KFMC-9 KT121574 human 2014-05-07
187 KFMC-3 KT121573 human 2014-05-09
188 Florida/USA-2 SaudiArabia 2014 KJ829365 human 2014-05-10
189 KFMC-2 KT121577 human 2014-05-11
190 KFMC-4 KT121575 human 2014-05-12
191 KFMC-5 KT121572 human 2014-05-12
192 Riyadh-KKUH-368 human 2014-05-13
193 KFMC-6 KT121576 human 2014-05-18
194 Riyadh 2014KSA 158/KSA/2014 KM027281 human 2014-05-20
195 Jeddah-KFH-285TA human 2014-06-03
196 Jeddah-KFH-605TD human 2014-06-09
197 Jeddah-KFH-668TD human 2014-06-09
198 Jeddah-KFH-899NF human 2014-06-16
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Table S1 – continued from previous page

strain accession host collection date

199 Jeddah-KFH-949NSG1 human 2014-06-18
200 Riyadh-KKUH-643 human 2014-11-02
201 Taif/KSA-7032/2014 KU710264 human 2014-11-04
202 Riyadh-KKUH-665 human 2014-11-19
203 Riyadh-KSA-2049/2015 KR011266 human 2015-01-06
204 Riyadh-KSA-2343/2015 KR011264 human 2015-01-21
205 Riyadh-KSA-2345/2015 KR011263 human 2015-01-21
206 Riyadh-KSA-2466/2015 KR011265 human 2015-01-26
207 Kharj-KSA-2599/2015 KT806052 human 2015-02-02
208 Kharj-KSA-2598/2015 KT806053 human 2015-02-02
209 Riyadh-KSA-2716/2015 KT806051 human 2015-02-05
210 Khobar-KSA-6736/2015 KT806048 human 2015-02-07
211 Jeddah-KSA-C20843/2015 KT806044 human 2015-02-09
212 Jeddah-KSA-C20860/2015 KT806055 human 2015-02-10
213 Riyadh KSA 2959 2015 KT026453 human 2015-02-10
214 Riyadh-KSA-3065/2015 KT806050 human 2015-02-12
215 Najran-KSA-C20915/2015 KT806054 human 2015-02-13
216 Riyadh-KSA-3181/2015 KT806049 human 2015-02-15
217 Riyadh KKUH 0734 human 2015-02-18
218 Jeddah-KSA-C21271/2015 KT806045 human 2015-02-22
219 Riyadh KKUH 0755 human 2015-02-23
220 Riyadh KKUH 0756 human 2015-02-23
221 Riyadh KKUH 0780 human 2015-02-25
222 Riyadh KKUH 0801 human 2015-02-27
223 Riyadh KKUH 0826 human 2015-02-28
224 Riyadh KKUH 0818 human 2015-02-28
225 Riyadh KSA 4050 2015 KT026454 human 2015-03-01
226 Riyadh KKUH 0944 human 2015-03-02
227 Riyadh KKUH 0939 human 2015-03-02
228 Riyadh KKUH 1080 human 2015-03-03
229 Riyadh KKUH 1066 human 2015-03-03
230 Riyadh KKUH 1145 human 2015-03-04
231 Riyadh KKUH 1217 human 2015-03-04
232 Riyadh KKUH 1461 human 2015-03-08
233 Riyadh KKUH 1470 human 2015-03-08
234 Riyadh KKUH 1522 human 2015-03-09
235 Germany3/UAE-Dubai/Abu-Dhabi human 2015-03-11
236 Hufuf-KSA-9158/2015 KT806047 human 2015-03-27
237 Hufuf-KSA-11002/2015 KT806046 human 2015-05-10
238 KOR/KNIH/002 05 2015 KT029139 human 2015-05-20
239 ChinaGD01 KT036372 human 2015-05-28
240 KOR/Seoul/014-2015 KX034093 human 2015-05-30
241 KOREA/Seoul/014-1-2015 KT374052 human 2015-05-31
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Table S1 – continued from previous page

strain accession host collection date

242 KOREA/Seoul/035-1-2015 KT374054 human 2015-06-03
243 KOR/Seoul/066-2015 KX034095 human 2015-06-04
244 Korea/Seoul/SNU1-035/2015 KU308549 human 2015-06-08
245 KOR/CNUH SNU/030 06 2015 KT868868 human 2015-06-08
246 KOR/CNUH SNU/024 06 2015 KT868867 human 2015-06-08
247 KOR/CNUH SNU/054 06 2015 KT868871 human 2015-06-09
248 KOR/CNUH SNU/038 06 2015 KT868870 human 2015-06-10
249 KOR/CNUH SNU/148 06 2015 KT868876 human 2015-06-10
250 KOR/CNUH SNU/122 06 2015 KT868875 human 2015-06-10
251 KOR/CNUH SNU/082 06 2015 KT868872 human 2015-06-10
252 KOR/CNUH SNU/085 06 2015 KT868873 human 2015-06-10
253 KOR/CNUH SNU/016 06 2015 KT868865 human 2015-06-11
254 KOR/CNUH SNU/023 06 2015 KT868866 human 2015-06-11
255 KOR/CNUH SNU/031 06 2015 KT868869 human 2015-06-11
256 KOR/CNUH SNU/110 06 2015 KT868874 human 2015-06-11
257 KOR/Seoul/050-1-2015 KX034094 human 2015-06-11
258 THA/CU/17 06 2015 KT225476 human 2015-06-17
259 KOR/Seoul/077-2-2015 KX034096 human 2015-06-17
260 KOR/Seoul/080-3-2015 KX034097 human 2015-06-17
261 KOREA/Seoul/163-1-2015 KT374051 human 2015-06-19
262 KOREA/Seoul/168-1-2015 KT374056 human 2015-06-21
263 KOR/Seoul/162-1-2015 KX034098 human 2015-06-22
264 KOR/CNUH SNU/172 06 2015 KT868877 human 2015-06-22
265 KOR/Seoul/169-2015 KX034099 human 2015-06-26
266 KOR/Seoul/177-3-2015 KX034100 human 2015-07-03
267 Jeddah-KSA-3RS2702/2015 KU851859 human 2015-07-12
268 Riyadh-KSA-16120/2015 KU851861 human 2015-08-24
269 Riyadh-KSA-16117/2015 KU851862 human 2015-08-24
270 Riyadh-KSA-16121/2015 KU851860 human 2015-08-24
271 Riyadh-KSA-16098/2015 KU851864 human 2015-08-24
272 Riyadh-KSA-16077/2015 KU851863 human 2015-08-27
273 Jordan 1 2015 KU233363 human 2015-09-17
274 Jordan 10 2015 KU233362 human 2015-09-17
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Figure S1. Evolutionary history of MERS-CoV partitioned between camels and hu-
mans. This is the same tree as shown in Figure 1, but with contiguous stretches of MERS-CoV
evolutionary history split by inferred host: camels (top in orange) and humans (bottom in blue).
This visualisation highlights the ephemeral nature of MERS-CoV outbreaks in humans, compared
to continuous circulation of the virus in camels.
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Figure S2. Posterior backwards migration rate estimates for two choices of prior.
Negligible flow of MERS-CoV lineages from humans into camels is recovered regardless of prior
choice (note that rates are backwards in time). Plots show the 95% highest posterior density for
the estimated migration rate from the human deme into the camel deme looking backwards in time
(orange) and vice versa (blue). Dotted lines indicate exponential priors specified for migration rates,
with mean 1.0 (bottom) or 10.0 (top).
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Figure S3. Maximum clade credibility (MCC) tree with ancestral state reconstruction
according to a discrete trait model. MCC tree is presented the same as Figure 1 and Figure
S4, with colours indicating the most probable state reconstruction at internal nodes. Unlike the
structured coalescent summary shown in Figure 1 where camels are reconstructed as the main host
where MERS-CoV persists, the discrete trait approach identifies both camels and humans as major
hosts with humans being the source of MERS-CoV infection in camels.
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Figure S4. Maximum clade credibility (MCC) tree of structured coalescent model
with enforced equal coalescence rates. MCC tree is presented the same as Figures 1 and S3,
with colours indicating the most probable state reconstruction at internal nodes. Similar to Figure
S3 enforcing equal coalescence rates between demes in a structured coalescent model identifies
humans as a major MERS-CoV host and the source of viruses in camels.
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Figure S5. Monte Carlo simulations of human transmission clusters. From top to bottom
each row corresponds to departures from completely random sequencing efforts with respect to case
cluster size (bias parameter=1.0) to sequencing increasingly biased towards capturing large case
clusters (bias=2.0, bias=3.0). Leftmost scatter plots show the distribution of individual Monte
Carlo simulation sequence cluster size statistics (mean and skewness) coloured by the R0 value used
for the simulation. The dotted rectangle identifies the 95% highest posterior density bounds for
sequence cluster size mean and skewness observed for empirical MERS-CoV data. The distribution
of R0 values matching empirical data are shown in the middle, on the same y-axis across all levels
of the bias parameter. Under unbiased sequencing (bias=1.0) only 0.45% of simulations fit our
phylogenetic observations, while 1.79% and 1.67% of simulations fit for bias levels of 2.0 and 3.0,
respectively. Correspondingly, we estimate 11.6% support for a model with bias level 1.0, 45.7%
support for a model with bias level 2.0, and 42.7% support for a model with bias level 3.0. Bins
falling inside the 95% percentiles are coloured by R0, as in the leftmost scatter plot. While the
95% percentiles for R0 values are close to 1.0 (0.71–0.98) for the unbiased sequencing simulation
(i.e. uniform sequencing efforts, in which every case is equally likely to be sequenced), we also note
that increasing levels of bias are considerably more to likely to generate MERS-CoV-like sequence
clusters. The distribution of total number of introductions associated with simulations matching
MERS-CoV sequence clusters is shown in the plots on the right, on the same y-axis across all levels
of bias. Darker shade of grey indicates bins falling within the 95% percentiles. The median number
of cross-species introductions observed in simulations matching empirical data without bias are 346
(95% percentiles 262–439). These numbers jump up to 568 (95% percentiles 430–727) for bias =
2.0 and 656 (95% percentiles 488–853) for bias = 3.0 simulations. Model averaging would suggest
plausible numbers of introductions between 311 and 811.
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Figure S6. Monte Carlo simulation schematic. Case clusters are simulated according to
Equation 1 until an outbreak size of 2000 cases is reached. We sample 174 cases from each
simulation to represent sequencing of human MERS cases. ‘Sequencing’ is carried out by using
multivariate hypergeometric sampling, representing sampling cases without replacement to be
sequenced. Sequencing simulations take place at three levels of bias: 1.0, where every case is equally
likely to be sequenced, and 2.0 and 3.0, where cases from larger clusters are increasingly more likely
to be sequenced. The distribution of simulated sequence clusters is summarised by its mean, median
and standard deviation. A simulation is considered to match if the mean, median and standard
deviation of its sequence cluster sizes falls within the 95% highest posterior density interval of
observed MERS-CoV sequence clusters. R0 values that ultimately generate data matching empirical
observations, as well as associated numbers of ‘introductions’ are retained as estimates. These
estimates are summarised in Figure 3.
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Figure S7. Results of Monte Carlo simulations with vast underestimation of cases.
The plot is identical to Figure S5, but instead of 2000 cases, simulations were run with 4000 cases.
With more unobserved cases the R0 values matching observed MERS-CoV sequence clusters can
only be smaller, with a corresponding increase in numbers of zoonotic transmissions. However, the
numbers of simulations that match MERS-CoV data go down as well.
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Figure S8. Boxplots of matching simulated case and sequence cluster distributions.
Boxplots indicate frequency of case (blue, top) and sequence (red, bottom) cluster sizes across
simulations at different bias levels, marginalised across R0 values. Outliers are shown with
transparency, medians are indicated with thick black lines. Case clusters exhibit a strong skew with
large numbers of singleton introductions and a substantial tail at higher levels of bias.

Figure S9. Quantile-quantile (Q-Q) plot of empirical and simulated sequence cluster
sizes. Density of sequence cluster size percentiles (1st–99th, calculated across a grid of 50 values)
calculated for random states from the posterior distribution (x-axis) and matching simulations
(y-axis). Most values fall on the one-to-one line, with a heavier tail in mid-sized sequence clusters in
empirical data, manifesting as a greater density of points below the one-to-one line in the middle.
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Figure S10. Tests of recombination across MERS-CoV clades. Maximum clade credibility
tree of MERS-CoV genomes annotated with results of two recombination detection tests (PHI and
3Seq) applied to descendent sequences of each clade. Both tests identify large portions of existing
sequence data as containing signals of recombination. Note that markings do not indicate where
recombinations have occurred on the tree, merely the minimum distance in sequence/time space
between recombining lineages.

Figure S11. MERS-CoV genomes exhibit high numbers of non-clonal loci. Ancestral
state reconstruction (right) identifies a large number of sites in which mutations have occurred
more than once in the tree (homoplasies, orange) or are reversions (red) from a state arising in
an ancestor. Mutations that apparently only occur once in the tree (synapomorphies) are shown
in grey. The maximum likelihood phylogeny on the left is coloured by whether sequences were
sampled in humans (blue) or camels (orange).
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Figure S12. Human clade sharing between genomic fragments 1 and 2. Central scatter
plot shows the posterior probability of human clades shared between genomic fragments 1 and 2, in
their respective trees. Left and bottom scatter plots track the posterior probability of human clades
only observed in fragment 2 (left) or fragment 1 (bottom). The cumulative probability of human
clades present in either tree are tracked by plots on the right (fragment 2) and top (fragment 1).
Most of the probability mass is concentrated within human clades that are present in trees of both
genomic fragment 1 and 2 (0.9701 and 0.9474 of all human clades across posteriors, respectively).
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Figure S13. Skygrid comparison between whole and fragmented genomes. Inferred
median Neτ recovered using a skygrid tree prior on whole genome (bottom) and ten genomic
fragments with independent trees (left), coloured by time. Dotted line indicates the one-to-one line.

Figure S14. Maximum likelihood (ML) tree of MERS-CoV genomes coloured by
origin of sequence. Maximum likelihood tree shows genetic divergence between MERS-CoV
genomes collected from camels (orange tips) and humans (blue tips).
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Figure S15. Numbers of epidemiological simulations conforming to empirical observa-
tions. Numbers indicate the total number of epidemiological simulations under each combination
of bias and dispersion parameter ω that result in MERS-CoV-like sequence cluster sizes. More
simulations match observations with bias> 1 and ω ≈ 0.1.
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