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Abstract 

Background and Purpose: To evaluate the accuracy of non-neural and neural network 

models to classify five categories (classes) of acute and communicable findings on 

unstructured head computed tomography (CT) reports. 

Materials and Methods: Three radiologists annotated 1,400 head CT reports for language 

indicating the presence or absence of acute communicable findings (hemorrhage, stroke, 

hydrocephalus, and mass effect). This set was used to train, develop, and evaluate a non-

neural classifier, support vector machine (SVM), in comparisons to two neural network models 

using convolutional neural networks (CNN) and neural attention model (NAM) Inter-rater 

agreement was computed using kappa statistics. Accuracy, receiver operated curves, and 

area under the curve were calculated and tabulated. P-values <0.05 was significant and 95% 

confidence intervals were computed.  

Results: Radiologist agreement was 86-94% and Cohen’s kappa was 0.667-0.762 (substantial 

agreement). Accuracies of the CNN and NAM (range 0.90-0.94) were higher than SVM (range 

0.88-0.92). NAM showed relatively equal accuracy with CNN for three classes, severity, mass 

effect, and hydrocephalus, higher accuracy for the acute bleed class, and lower accuracy for 

the acute stroke class. AUCs of all methods for all classes were above 0.92. 

Conclusions: 

1. Neural network models (CNN & NAM) generally had higher accuracies compared to the 

non-neural models (SVM) and have a range of accuracies that comparable to the inter-

annotator agreement of three neuroradiologists.  

2. The NAM method adds ability to hold the algorithm accountable for its classification via 

heat map generation, thereby adding an auditing feature to this neural network. 
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Abbreviations 

NLP – Natural Language Processing 

CNN – Convolutional Neural Network 

NAM – Neural Attention Model 

HER – Electronic Health Record  
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Introduction 

The radiology report offers a major source of unstructured data that can be mined using 

natural language processing (NLP) and applied towards predictive models assessing 

outcomes such as length of stay, mortality, resource utilization, and cost-analysis. NLP 

encompasses a range of powerful data science and computational linguistics methods to 

process such large text-based data sets.1 An increasing body of literature has focused on the 

uses of various NLP techniques in radiology reports. In a recent systematic review, Pons et al. 

categorized 67 studies on the use of radiology NLP into discrete groups: 1) cohort building for 

epidemiologic studies, 2) quality assessment for radiology practice, and 3) clinical support 

services.2  

Early rules-based NLP methods have been used to text mine radiology reports to 

evaluate outcomes such as head CT diagnostic yield in intensive care unit (ICU) patients,3 

tumor information extraction for liver tumors,4 or determining brain tumor status via MRI 

reports.5 These rules based methods, however, were dependent on identifying specific words 

and phrases based on human references and annotations of training set reports1, 2 and some 

were beholden to domain-specific medical lexicons and ontologies.6, 7  

Recent advances in machine learning based NLP techniques have shown promise in 

reliably classifying findings in unstructured radiology reports without the limitation of annotating 

specific words or phrases or beholden to simple rules-based NLP. Initial work in this space 

suggests that reports from specific modalities and body regions could be grouped together 

before embarking on the non-trivial task of developing machine learning-based NLP systems.8 

Moreover, the performance of both non-neural and neural network models has yet to be 

demonstrated using radiology reports containing acute and communicable findings. 
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 Therefore, this study aimed to compare the performance of both non-neural and neural 

network based NLP methods on the document-level extraction of acute and communicable 

findings in a sample of ICU head CT reports without linkage to any medical language 

ontologies. We compared the methods’ ability to classify 5 categories of findings that would be 

communicated to ordering clinical teams in routine radiology practice, per Joint Commission on 

Accreditation of Healthcare Organizations (JCAHO) guidelines.9 

  

Materials and Methods 

Study Design and Radiology Report Databases 

Our institutional review board approved this HIPAA-compliant retrospective study and 

granted waiver of consent.  

The annotated dataset used in this study was part of a larger set used in a study 

evaluating diagnostic yield of head CT in altered mental status amongst intensive care unit 

(ICU) patients.3 Briefly, we searched our institution’s clinical data warehouse for all 

consecutive, final radiology reports for non-contrast head CTs performed for altered mental 

status (International Classification of Diseases, 9th edition code 780.97) in our ICUs for the 

date range of July 2011 to June 2013. We identified 2,486 consecutive non-contrast head CT 

exams’ reports. 

Of these exams, the first 1400 consecutive head CT reports were annotated 

independently and adjudicated collectively by 3 radiologists (2 attendings and 1 neuroradiology 

fellow) and this set served as the reference database (“ground-truth”). As adapted from 

Chokshi et al,3 each radiology report was classified for 5 categories: 1) study severity, 2) acute 

intracranial bleed, 3) mass effect, 4) acute stroke and 5) hydrocephalus using a scale of 0 
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(normal) to 2 (new or worsening finding that would warrant a phone call to the ordering team). 

We then analyzed the inter-reader agreement and performed kappa statistics.  

 Additionally, to develop the neural network algorithms described below, an additional 

set of 80,000 continuous head CT reports was identified after a data warehouse search for 

emergency department (ED) head CTs performed between January 1, 2015 to December 1, 

2016. These reports were intentionally not annotated and strictly served to improve the 

semantic NLP abilities of the neural network algorithms.  

 Next, to evaluate the performance of the three machine learning algorithms for 

classification of acute, communicable findings on the reports, all findings that were scored 0 or 

1 were grouped together were grouped a negative for acute, communicable findings and those 

scored 2 as positive for acute communicable findings. This conversion to a binary outcome 

system allowed us to train the algorithms to be more accurate for clinically relevant findings.  

 

Machine Learning Algorithms 

Non-Neural Model 

We used the linear classifier, Support Vector Machines (SVM) as the strong baseline 

non-neural model to compare with the neural network models. A SVM identifies the strongest 

mathematical boundary between positive and negative examples in the training data.10 We 

used a Bag-of-Words (BOW) representation to feature engineer the SVM’s ability to find the 

maximum boundary between positive and negative data points for a given classifier.11 Since 5 

classes of report findings were annotated, 5 distinct SVMs were developed, one for each class.  
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Neural Network Methods 

Two neural network models were developed using Convolutional Neural Networks 

(CNN) and Neural Attention Model (NAM) where NAM gives another level of optimization to a 

CNN (both described below). To increase the robustness in accuracy of word semantics in the 

neural networks for radiology report text, the 80,000 un-annotated head CT reports were pre-

tokenized and processed using Word2Vec.12 Word2Vec is open-source software that converts 

raw text into word vectors represented in Cartesian space. This allows contextual relationships 

between words and phrases to be geometrically evaluated and their strength can be 

quantified. 

 

Convolutional Neural Network (CNN): 

 We used a single layer CNN model for document classification. The CNN represented 

the text input as an input matrix, then as featured vectors, followed by dense vectors, and 

finally a prediction of output (classifier result, such as acute hemorrhage or not). Since 5 

classes of report findings were annotated, 5 distinct CNNs were developed, one for each class. 

 

Neural Attention Model (NAM): 

 We selected a NAM as a comparison method because NAMs have the unique ability to 

show the attention of the input source from which they made their prediction or classification. 

13, 14 For example, on a report annotated as positive for new intracranial hemorrhage, the CNN 

may simply say the report is positive, however a NAM can produce the same prediction and a 

heat map of all the words it found important to make that decision. This latter “rationalization” 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2017. ; https://doi.org/10.1101/173310doi: bioRxiv preprint 

https://doi.org/10.1101/173310
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 8 of 18 

feature makes NAM models highly attractive for machine learning based NLP in radiology, 

when compared to conventional CNNs. See Figure 2 for an example of a heat map.  

 The NAM architecture is an elaboration of the CNN model we used and involves an 

additional Attention Matrix layer and an Attention Vector layer imbedded in the CNN model at 

large (Figure 1).13 Similar to the CNN model, since 5 classes of report findings were 

annotated, 5 distinct NAMs were developed, one for each class. 

 

Evaluation of Annotated Reports & Statistical Analysis 

 The annotated and adjudicated set of 1400 head CT reports was randomly divided into 

groups of 1000, 200, and 200, for training, validation, and testing sets, respectively. The same 

sets of 1000, 200, and 200 reports were used for the training, validation, and testing of the 

SVM, CNN, and NAM models for all 5 classes. 

 The primary metric was accuracy, which was measured by dividing agreed finding on 

annotation by the total finding on annotation. Using receiver operator curves (ROC) were 

calculated the area under the curve (AUC) for the three methods as well. Confidence intervals 

were determined at 95% and p-values <0.05 were significant.   

 

Results 

Radiologist Agreement 

The three readers agreed 86-94% of the time and unweighted kappa scores (Cohen’s kappa) 

were between 0.667 and 0.762, showing substantial agreement.15 
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Dataset Characteristics and NLP Metrics 

Table 1 shows the characteristics of the 5 classes in the annotated dataset of 1400 head CT 

reports. Table 2 shows the accuracy of the three machine learning methods. Figure 3 shows 

the ROC curves of the three methods and their associated AUC values.  

 

Discussion 

The purpose of this study was to evaluate the performance of both non-neural and 

neural network based NLP methods on the document-level extraction of acute and 

communicable findings in a sample of ICU head CT reports without linkage to any medical 

language ontologies. The results show that neural network models (CNN and NAM) tend to 

generally outperform the comparison non-neural models (SVM) for all five classes. The 

accuracies achieved by neural network models in the five classes for identification of acute and 

communicable findings range from 0.90 to 0.94. AUCs of all three methods for all classes were 

above 0.92 indicating excellent performance over multiple sensitivities.  

Previous studies have focused on rules-based NLP with variable linkage to established 

medical ontologies, with accuracies ranging from 80-90% depending on type of radiology 

report evaluated (e.g. knee MRI or chest radiographs).3-7, 16 Non-neural machine learning 

based NLP methods in radiology have adapted n-gram modeling,17 naïve Bayes 

classification,18 and, more recently, support vector machines (SVM),1, 10 and bag-of-words 

representation for classification.19  

However, because some of these published methods have been dependent on mapping 

to existing medical language ontologies6, 7 such as Systematized Nomenclature of Medicine – 

Clinical Terms (SNOMED-CT),20 RadLex for radiology specific lexicon,21 or the Unified Medical 
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Language System (UMLS) Metathesaurus,22 they have limited use on reports containing 

language or terms not recognized based on the ontology. They did not have the ability to 

iteratively “learn” new variations of terms that describe a finding, recommendation, or desired 

concept.16 For example, there are many ways to say “acute intracranial hemorrhage”; current 

basic classifier and extraction systems are limited in their ability to recognize any new many 

variations of these words apart from what is already programmed in the software by humans.  

More sophisticated methods such as neural network based deep learning techniques 

(e.g. convolutional neural networks) have been considered more powerful, able to perform 

document level classification, and can iteratively learn to improve accuracy,23, 24 yet, their 

performance have not yet been evaluated on radiology reports.  

Our results show that the methods used, especially neural network methods have the 

ability to classify important findings in the head CT report without any need for negation (e.g. 

differentiating “no stroke” vs. “there is stroke), linkage to medical ontologies, or word-by-word 

annotation. Additionally, the neural network models were initially “trained” to evaluate semantic 

and syntactic patterns on a large un-annotated set of reports (80,000 reports), which is a 

feature not possible with non-neural machine learning methods like SVMs.  

This study is an example of how radiology NLP can be applied to unstructured data (i.e. 

the radiology report) to extract meaningful information to develop discrete data groups: 1) 

cohort building for epidemiologic studies, 2) quality assessment for radiology practice, and 3) 

clinical support services2 from clinical databases.  

One large group of such clinical databases is electronic health record (EHR) systems. 

EHRs are replete with large volumes of unstructured data that can be mined for useful 

population and patient level information.25 With increased mandates by federal regulators to 
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demonstrate quality, improve outcomes, and reduce costs,26 there is an increasing need to 

develop scalable and reliable methods of unstructured data mining. Additionally, the Precision 

Medicine Initiative (PMI)27 has spearheaded the need for powerful text mining techniques to 

promote more nuanced phenotyping of patients and patient populations.28 

Our study does have some limitations. Although the accuracies and AUCs of the 

machine learning methods were relatively high, they were not perfect. We did not validate the 

algorithms on head CT reports from other institutions. We had a relatively modest sample size 

of 1400 annotated head CT reports. However, human annotation of such reports requires 

expertise in head imaging and can be laborious. Lastly, our dataset was from a large 

quaternary hospital’s ICU population. Therefore, we cannot, as yet, verify reproducibility of the 

algorithms on head CT reports form smaller, community hospitals. The advent of multi-

institutional annotated reference sets will likely obviate these limitations.  

 

Conclusion 

We have reported the excellent performance of non-neural and neural machine learning 

NLP algorithms for the classification of acute and communicable findings on head CT reports 

from an ICU population. This study’s results show that modern machine learning methods, 

especially those with neural networks, can help extract meaningful information from 

unstructured text that is contained in the data warehouses and EHRs. The information 

discovered by algorithms can be used for outcomes, quality improvement, cost analysis, and 

operations research.  
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Tables 

Table 1. Characteristics of Acute Findings by Class for the Annotated Head CT Reports. 0, 

completely normal study; 1, abnormal findings but not acute and communicable; 2, abnormal 

findings that are acute and communicable. 

  

Class Scores Total 0 1 2 
Severity of Study 58 940 402 1400 

Acute Blood 653 546 201 1400 
Mass Effect 751 443 206 1400 

Acute Stroke 1113 173 114 1400 
Hydrocephalus 1078 172 150 1400 
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Tables continued 

Table 2. Performance Accuracy for Non-Neural and Neural-Network Machine Learning 

Models. Data are Percentage (95% Confidence Intervals). SVM, Support Vector Machine; 

CNN, Convolutional Neural Network; NAM, Neural Attention Model. 

 

Class Accuracy 
SVM CNN NAM 

Severity of Study 0.88 (0.83,0.92) 0.91 (0.87,0.95) 0.91 (0.87,0.95) 
Acute Blood 0.87 (0.82,0.91) 0.93 (0.89,0.97) 0.94 (0.90,0.97) 
Mass Effect 0.92 (0.88,0.96) 0.90 (0.86,0.94) 0.92 (0.88,0.96) 

Acute Stroke 0.91 (0.87,0.95) 0.94 (0.91,0.97) 0.93 (0.90,0.97) 
Hydrocephalus 0.91 (0.87,0.95) 0.92 (0.88,0.96) 0.93 (0.89,0.96) 
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Figure Legends 

Figure 1. Neural Network Architectures. The single-layer CNN model is represented in (A) and 

is comprised of the document matrix, the attention matrix, and the attention vector. The single-

layer NAM model is represented in (B) and is comprised of document matrix and attention 

vector, which combined form the embedding attention vector. CNN, convolutional neural 

network; NAM, neural attention model.  

 

Figure 2. Heat Map of Head CT Report. Multi-color heat map generated from a single head CT 

report showing the terms used to make classification by the NAM in red. This report was 

classified as positive for mass effect. NAM, neural attention model. 

 

Figure 3. Performance of Machine Learning Algorithms. ROCs of three algorithms for 

classification of acute and communicable findings; (A) Severity of Study, (B) Acute Blood, (C) 

Mass Effect, (D) Acute Hydrocephalus, and (E) Acute Stroke. AUC values are denoted by 

“area=”. ROC, receiver operator curves; AUC, area under curve.  
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