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Abstract24

Recent interest has focused on a class of decision problems in which subjects encounter options serially and25

must decide when to leave an option in search of a better one, rather than directly comparing simultaneously26

presented options. Although such problems have a rich history in animal foraging and economics, relatively27

little is known about their neural substrates. Suggestively, however, a separate literature has argued that28

the key decision variable in these tasks – the opportunity cost of time, given by the average reward rate –29

may also govern behavioral vigor and may be reported by tonic dopamine (DA).30

In this study, we test whether this putative dopaminergic opportunity cost signal plays an analogous role31

in serial decisions by examining the behavior of patients with Parkinson’s disease (PD), on and off their32

DA replacement medication, in a patch-foraging task. In these tasks, subjects’ decisions about when to33

leave a depleting resource implicitly reflect their beliefs about the opportunity cost of time spent harvest-34

ing that resource. Consistent with the opportunity cost hypothesis, umedicated patients harvested longer35

than matched controls, and medication remediated this deficit. These effects were not explained by motor36

perseveration. Our results suggest a functional role for DA, and an associated cognitive deficit in PD, in a37

type of decision process that may be distinct from (but related to) the neuromodulator’s well studied roles38

in behavioral invigoration and learning from rewards.39

Significance Statement40

This study addresses two important questions whose answers are, unexpectedly, linked. First, what is the41

scope of cognitive functions of the neuromodulator dopamine, whose contributions – for instance, as assessed42

by both the motoric and more subtle cognitive deficits of patients with PD, which depletes dopamine – range43

from movement to reward and decision-making? Second, what are the neural mechanisms supporting an44

important but understudied class of problems, in which, rather than choose among a set of alternatives (like45

apples and oranges), one makes serial decisions about whether to stick with an option (like a job, or a mate)46

or seek another? We demonstrate a novel cognitive deficit in PD that integrates this function into the web47

of DA’s contributions.48

Introduction49

Decision neuroscience research has focused on the choice between simultaneously presented alternatives (Ito50

and Doya, 2009; Barraclough et al., 2004; Tom et al., 2007; Krajbich et al., 2010). However, there has been51

recent interest in decisions where options are encountered serially and the choice is whether to engage with52

the current prospect or seek a new one. Such decisions arise in search problems (for jobs, mates, or internet53

results) and feature in the classic animal foraging literature (Pyke, 1980; Kacelnik, 1984; Stephens and Krebs,54

1986). The central idea in foraging is that serial decisions are about time allocation: Engaging with an option55

is worthwhile only as long as received rewards exceed what you would otherwise expect to earn during that56

time. In this class of problems, this expectation — the opportunity cost of time — optimally equals the57
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long-run average reward rate in the environment (Charnov, 1976; Stephens and Krebs, 1986).58

Relatively little is known about the neural basis of serial stay-switch decisions, although researchers have59

recently argued that they engage distinct cortical mechanisms from extensively studied simultaneous choice60

(Hayden et al., 2011; Kolling et al., 2012). A separate, related literature has centered on decisions about61

effort: How vigorously to work (Robbins, 1976; Niv et al., 2007; Guitart-Masip et al., 2011; Niyogi et al.,62

2014). Such decisions should in theory be governed by parallel opportunity cost considerations, since sloth63

becomes more costly as earnings potential increases. Niv et al. (2007) suggested that tonic DA might signal64

the average reward rate and directly modulate vigor. This idea accords with (and reconciles) the involvement65

of DA in signaling rewards and invigorating movement; It extends the prominent hypothesis that phasic DA66

signals reward prediction errors for learning (Schultz et al., 1997) by noting that the average of the prediction67

errors, possibly reflected in accumulated tonic extracellular DA, is equal to the average reward. The proposal68

that DA mediates the coupling between experienced reward rate and behavioral vigor has been supported69

by pharmacological studies investigating reaction times (Beierholm et al., 2013) and reach speeds (Mazzoni70

et al., 2007).71

Since foraging and vigor share their central decision variable, we hypothesized that this putative dopamin-72

ergic opportunity cost signal might play an analogous role in foraging decisions — in this case, governing73

the reward level at which people leave a prospect in search of another. To test this, we studied the forag-74

ing decisions of healthy volunteers and patients with PD (Dauer and Przedborski, 2003), both on and off75

dopaminergic medication. Several studies have shown reinforcement learning deficits in PD during simulta-76

neous choice (Frank et al., 2004; Shohamy et al., 2004; Frank, 2005; Cools et al., 2007), and have interpreted77

them in terms of phasic reward prediction errors, but none has examined the hypothesized role of tonic DA78

in serial switching.79

In this study, subjects repeatedly harvested apples from trees with diminishing returns and had to decide80

when to leave a tree for a replenished one. In such tasks, animals and people reliably adjust the level81

at which they leave an option according to the average reward rate, which is consistent with the optimal82

model (Cowie, 1977; Pyke, 1980; Kacelnik, 1984; Smith and Winterhalder, 1992; Jacobs and Hackenberg,83

1996; Thompson and Fedak, 2001; Hutchinson et al., 2008; McNickle and Cahill, 2009; Constantino and84

Daw, 2015; Wolfe, 2012). We predicted that if the average reward rate is signaled by tonic DA, then PD85

patients (off dopaminergic medication) would stay with trees longer than controls, reflecting a lower implicit86

opportunity cost of time, and that medication would ameliorate this deficit.87

Our findings suggest a role for DA in controlling behavioral switching, contributing to the emerging88

literature on the neural mechanisms of foraging and serial decision-making, and reveal an associated cognitive89

deficit in PD. Moreover, via the notion of opportunity cost, they highlight the conceptual relationship between90

this cognitive effect on decisions and DA’s classic involvement in movement invigoration, a primary symptom91

of PD.92
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Materials and Methods93

Subjects94

23 PD patients [mean age 67.3 years; 12 female] and 21 matched, neurologically intact controls [mean age95

61.2 years; 11 female] participated in this study. Subjects were paid according to performance on a 24-minute96

virtual patch-foraging, in addition to a guaranteed $10 for participation in the experiment. All subjects gave97

informed consent in accordance with the Institutional Review Board of the New York University School of98

Medicine. Patients diagnosed with idiopathic PD were referred to this study by neurologists at the New York99

University Parkinson’s and Movement Disorders Center (NYUPMDC). In order to be eligible for the study,100

patients were: determined by their neurologist to have a modified Hoehn and Yahr (HY; Hoehn and Yahr,101

1967; Goetz et al., 2004) scale of motor function rating no greater than three (mild to moderate stages of102

disease severity); native English speakers; and on L-Dopa or DA agonists for at least three months. Patients103

were excluded based on a pre-test screening if they had: any history of comorbid psychiatric or neurological104

disturbance; any history of severe drug or alcohol abuse; a diagnosis of depression or anxiety disorder; or105

were taking any medication that could affect cognition other than dopaminergic medication prescribed to106

treat PD (Rutledge et al., 2009).107

All subjects participated in two morning test sessions, approximately one week apart. The patient visits108

were comprised of one session on dopaminergic medication and one off. In the on session, patients were tested109

at least 1.5 hours after taking their medication. For the off session, they abstained from all dopaminergic110

medication for a minimum of 8 hours before testing. The order of on and off visits was randomized across111

patients.112

A small number of subjects were very noisy in their responses on the task and were excluded from the113

subsequent analyses (Constantino and Daw, 2015). Response variance was computed within-block (over our114

primary dependent measure, the tree-by-tree exit thresholds, defined below) and then averaged across blocks115

for each visit to obtain a mean within-block variance per subject. This measure represents variation from116

the subject’s mean strategy and is indicative of very noisy or close to random behavior in the task. We117

excluded three patients and one control with response variances that fell more than 2 standard deviations118

above the group mean. Thus, all results reported here concern 20 patients and 20 controls (see Table 1). Of119

these subjects, one patient ended the task two blocks early in the off-medication condition due to physical120

discomfort and one control ended the second visit early due to an unexpected time constraint. Thus, these121

subjects are necessarily omitted from tests that turn on the last block of the affected visit but data from the122

unaffected visit are included where possible.123

PD patients and matched controls did not differ significantly on the Montreal Cognitive Assesment124

(MoCA, a measure of mild cognitive impairment; Nasreddine et al., 2005), years of education, or age. (All125

p’s > 0.05; see Table 1 for details and notes on incomplete measures.) Patients were at the mild to moderate126

stages of disease severity, with a mean HY rating of 21 (±0.8 sd) and a mean score of 19.9 (±10.7 sd)127

on the motor exam (section III) of the Unified Parkinson’s Disease Rating Scale (UPDRS-III; Lang and128

Fahn, 1989), a measure of symptom severity administered near the time of testing. The mean number of129

1A fraction of patients were referred by external neurologists in accordance with our criteria. For two of these individuals we
only know that the HY rating was within the 0 to 3 range; For four of these individuals we were unable to obtain the UPDRS
scores.
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years since disease onset was 7.3 (range: 1 to 28 years). On average, patients scored 121.2 (±9.5 sd) on130

the Weschler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999), indicating higher than population131

average intelligence. Disease severity outcomes are listed in Table 1.132

Table 1: Descriptive statistics for patients and controls

Age MoCA Yrs Edu Male (N) HY: 0-1 1-2 2-3 UPDRS WASI Yrs Onset

control 60.5 27.5 17.1 9 - - - - - -
(11.6) (2.4) (2.5) -

PD 66.2 27.4 17.6 10 4 8 6 19.9 121.2 7.3
(7.1) (2.1) (1.8) - - - - (10.7) (9.5) (6.3)

HY - Hoehn and Yahr scale, counts (N); UPDRS - Unified Parkinson’s Disease Rating Scale; WASI - Weschler Abbreviated
Scale of Intelligence; MoCA - Montreal Cognitive Assesment. Statistics are based on N = 20 healthy controls and N = 20
patients, except for: MoCA (N = 16 controls); Education (N = 15 controls); HY (N = 18 patients); UPDRS (N = 16
patients).

Patients were prescribed various combinations and dosages of dopaminergic medications. Almost all133

subjects were receiving treatment with L-Dopa (n = 17), a DA precursor, and a subset of these were also134

taking D2 receptor agonists (n = 5). In addition to L-Dopa and D2 agonists, which specifically target the DA135

system, some patients were also taking monoamine oxidase inhibitors (n = 10; MAOI) and NMDA receptor136

antagonists (n = 5).137

Experiment Design and Task138

Figure 1: Foraging task. Subjects foraged for apples in four 6-minute virtual patch-foraging environments. They were
presented with a tree and had to decide whether to harvest it for apples and incur a short harvest delay or move to a new tree
and incur a longer travel delay. Harvests at a tree earned apples, albeit at an exponentially decelerating rate. New trees were
drawn from a Gaussian distribution. Environmental richness (opportunity cost of time) was varied across blocks by changing
the travel time. The quality of the tree, depletion rate and richness of the environment were a priori unknown to the subject
(see Methods for a detailed explanation).

Subjects made serial stay/switch decisions in a virtual patch-foraging task (Constantino and Daw, 2015):139

A discrete-trial adaptation of a class of tasks from the ecology literature (Charnov, 1976; Stephens and Krebs,140
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1986; Agetsuma, 1998; Hayden et al., 2011; Wikenheiser et al., 2013). On each trial, they were presented141

with a tree and had to decide whether to harvest it for apples or go to a new tree. Subjects indicated their142

choice by one of two key presses when prompted by a response cue. If they decided to harvest the tree, they143

incurred a short harvest time delay. During this time, the tree shook and the number of apples harvested144

was displayed, followed by a response cue prompting the next decision. As subjects continued to harvest at145

the same tree, the apples returned were depleted according to a randomly drawn multiplicative factor, such146

that on average the obtained rewards decayed exponentially.147

If the subject chose to go to a new, replenished tree, they incurred a travel time delay. During this148

time, the old tree faded and moved off the screen and was replaced by a new tree, followed by a response149

cue. Each new tree had never been harvested and its initial payoff (as the starting point for the exponential150

decay) revealed the tree’s quality. The total time in the game was fixed. The reaction time of each choice151

was counted toward the ensuing harvest or travel delay so that the total interval between response cues (and152

thus the average reward rate) was unaffected by the response speed. Subjects who responded too slowly were153

penalized by a timeout lasting the length of a single harvest trial. Thus, subjects visited a different number154

of trees depending on their harvest decisions but were able to influence the reward rate only through their155

harvest or leave choices, not their reaction times.156

Subjects experienced two distinct foraging environments in an ABAB counterbalanced block design.157

The decision-relevant parameters that define an environment are the harvest time, the travel time, the158

rate at which apples are depleted, and the tree quality distribution. By varying travel time across blocks,159

we produced two environments that differed in terms of richness or achievable average reward rate. The160

environment changed every 6 minutes, and this was signaled by a change in background color and a short161

message; the changes in the environment characteristics were not explicitly cued. Subjects were instructed162

that the experiment would last approximately 30 minutes, including a practice session, that trees could never163

be revisited, that new trees had never been harvested and were a priori identical, and that harvesting a tree164

would tend to return fewer apples over time. They were told that they would be paid approximately 1 cent165

per apple collected and should try to collect as many apples as possible.166

The fixed time per block and the different time costs associated with the two actions meant that subjects167

had to consider both the expected rewards and the real time costs of each choice. Since our hypotheses con-168

cern subjects’ asymptotic choice preferences in each environment, and because examination of the response169

variance indicated that behavioral preferences continued to adjust through the first environment transition170

(and that learning about the mechanics of the experiment continued after the practice trials), we analyze171

only the second, more stable, occurrence of each environment type.172

All results are qualitatively and directionally robust to our exclusions of both subjects and blocks. In173

particular, the effect of disease remains significant with all subjects and blocks included, and the medica-174

tion effects are estimated in the same direction, although the standard errors increase and the effect loses175

significance as the high-variance initial blocks are reintroduced.176

Experiment Parameters177

Each foraging environment is defined by the average initial tree richness S0, the average depletion rate per178

harvest , the travel time d and the harvest time h. We denote the state (current expected harvest) of a179
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tree at trial i as si. Each travel decision led to a newly drawn tree of variable quality: si ⇠ N (S0,�s) after180

delay d. Each harvest decision depleted the apples by a stochastically drawn, multiplicative decay i, such181

that si+1 = isi, where i is drawn from a Beta distribution with mean  and standard deviation �. This182

resulted in an effective distribution of trees of varying quality with different possible reward paths. The183

reward earned from each harvest was a noiseless reflection of the state of the tree, ri = si. We varied travel184

time d across blocks to create high and low average reward rate foraging environments.185

Environment type
block Long travel delay Short travel delay

h (sec) 4 4
d (sec) 12 4
,� .899, 0.09 .899, 0.09
S0,�s 10, 1 10, 1

Table 2: Parameter values defining the two environment types.

Behavioral Task Training186

After reading the instructions, subjects were prompted to ask questions before beginning a 2-minute training187

session, in which they experienced two environments of different qualities (selected to also differ from the188

experimental environments). Subjects were asked to identify the shorter travel delay (richer) environment.189

The training task was not long enough for the patients to fully acclimate to the timing contingencies of190

the task prior to beginning the experiment, which, in addition to variability due to learning about the191

environments, likely contributed to the high response variance in the initial two experimental blocks.192

The Marginal Value Theorem and Optimal Behavior193

Charnov (1976) showed that the long run reward-rate optimizing policy for this class of tasks is given by a194

simple threshold rule. In the context of our discrete-trial version of the task, the optimal policy is to exit195

a tree when the expected reward from one more harvest, si, drops below the opportunity cost of the time196

spent harvesting it. The opportunity cost of harvesting is the time spent harvesting, h, times the long-run197

average reward rate, ⇢. The state si of a tree is observable and equal to the received reward (ri = si). Thus198

the optimal leaving rule is to search for a new tree whenever Esi+1 [ri+1] = si < ⇢h.199

Threshold Estimates200

Our primary dependent variable of interest was the threshold at which subjects left each tree. We estimated201

the thresholds as the average of the last two rewards (ri and ri�1) received before an exit decision. These202

rewards represent, respectively, a lower and upper bound on the (continuously valued) threshold since exiting203

at i implies that ri was lower than the subject’s threshold and not exiting in the preceding decision implies204
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that ri�1 was greater. Tree-by-tree leaving thresholds are shown for two example subjects, one control and205

one PD patient, in Figure 2. In order to see if subjects were sensitive to manipulations of the opportunity206

cost of time, we compared the estimated exit threshold across the two block types, using paired t-tests on207

the mean (across trees, within block) per-subject leaving thresholds.208

Effect of Disease and Medication on Leaving Thresholds209

We also examined how thresholds varied with disease and medication status. In order to test this across210

subjects, while controlling for both between- and within-subject variation and the repeated measures struc-211

ture of the task, we used a linear mixed effects model, estimated using the lme4 package in the R statistical212

language (Bates et al., 2011). We computed p-values for coefficient estimates using the lmertest package,213

which uses the Satterthwaite approximation to estimate the degrees of freedom (Kuznetsova et al., 2014).214

For this analysis, the dependent variable was the tree-by-tree exit thresholds and the explanatory variables215

were binary indicators for visit (to control for test-retest effects), environment type (long or short), disease,216

medication status, and the interactions of the disease and medication effects with block. The within-subject217

factors — intercept, visit, environment-type, medication, and the interaction of environment with medication218

— were included as random effects (i.e. allowed to vary across subjects). Disease (0: patient; 1: control) and219

medication (0: patient off and controls; 1: patient on) were coded such that the baseline captures patients220

off medication and the disease and medication coefficients capture the two main comparisons of interest,221

that between controls and unmedicated patients (the between-subject effect of disease, off medication) and222

that within patients on vs. off medication (the within-subject medication effect in patients), respectively.223

As a robustness check, we ran variants of this regression that included nuisance variables, such as age,224

education and MoCA.225

Control Task for Motor Perseveration226

In order to test for potential motor perseveration, on each visit we included a control task after the foraging227

task that lasted the length of one foraging block (Figure 4a). 19 subjects completed this task: 9 controls228

[mean age 61.22 years; 4 females] and 10 patients [mean age 66.2 years; 3 females]. Due to late introduction229

of the perseveration control, this sample only partially overlapped the participants in the foraging task;230

specifically, 6 controls and 5 patients were tested alongside the foraging task in the same visits, whereas the231

remaining subjects were newly recruited (from the same referral population) as part of a different study.232

This sample of patients had a mean HY rating of 2.11 (±0.65), a mean UPDRS-III of 24.11 (±9.9), and a233

mean WASI of 117.1 (±10.61).234

The perseveration task had the same timing and response latencies as the harvest decisions in the foraging235

task but there were no rewards and no manipulation of the opportunity cost of time. On each trial, subjects236

saw a randomly drawn shape (diamond or star; drawn with equal probability) displayed in the center of237

the screen and were prompted to indicate the shape by a shape-specific key press (see Figure 4a). The238

shape was displayed for the same amount of time as the apples in the foraging task. A failure to respond239

resulted in a timeout, and all responses were followed by feedback (“correct”, “incorrect”, or “too slow”).240
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Perseveration in motor responses would appear here as a tendency to press the same key as in the preceeding241

trial, independently of the presented shape in the current trial.242

We investigated whether response accuracy was affected by motor perseveration using a mixed effects243

logistic regression. The dependent variable was a per-trial indicator of whether the response was correct,244

and the explanatory variables were indicators for whether the shape had changed (relative to the previous245

trial) and for visit. All variables, including the intercept, were taken as random effects across subjects. We246

repeated the regression, this time replacing the dependent variable with an indicator for trials in which the247

subject timed out. Finally, we also tested for an overall effect of disease and medication on correct responses248

by including those indicators, as well as one for visit, as dependent variables.249

Results250

PD patients and healthy controls completed a computerized decision task in which they repeatedly chose251

whether to harvest apples from a tree whose return gradually depleted, or seek a new, replenished tree. On252

each visit, subjects faced two types of foraging environments, differing in richness, in alternating order across253

four blocks. Environmental richness was decreased by increasing the travel delay between trees, which, all254

else held equal, reduced the rate at which apples could be earned. This reduction in potential earnings255

decreased the opportunity cost of time spent harvesting. An ideal forager should harvest each tree more256

extensively as the opportunity cost of time decreases, even if it means harvesting for smaller rewards (down257

to a lower earned apple threshold), because time is relatively cheap and rewards are relatively scarce.258

The literature linking the average reward rate, a measure of the opportunity cost of time in our task, to259

the DA system, suggests that lower tonic DA levels would result in a lower estimate of environment quality,260

all else held equal. In our study, this hypothesis would imply that PD patients off medication should harvest261

trees down to lower leaving thresholds, whereas medication should increase thresholds.262

Individual leaving thresholds over the course of the experiment are shown for two example subjects, one263

control and one PD patient, split by visit and medication status (on/off), respectively (Figure 2). Subjects264

successfully entered an average of 341 harvest-or-exit decisions at an average of 50 trees per session, and265

failed to indicate a decision within the allotted time on an average of 5 trials (1.5% of trials). The frequency266

of a timeout did not differ significantly between control and patient groups (t38 = �1.12, p = 0.269), even267

though reaction times were significantly slower in the patient group (t38 = �2.688, p = .011). Reaction268

times within the patient sample did not differ with medication status. Importantly, events in the task were269

scheduled such that faster or slower reaction times would not affect the timing of any subsequent task events270

and rewards (and therefore could not affect earnings or the optimal choice policy), so long as responses271

occurred within the allotted time window.272

PD patients earned similar amounts on ($17.7) and off ($17.0) dopaminergic medication but on average273

earned significantly less than matched controls ($18.7; t38 = 2.614, p = 0.013). Finally, controls did not differ274

significantly on any measure across the two visits, other than in the mean number of late-response warnings275

and mean reaction time, which were both significantly lower in the second visit (warnings: t19 = 2.21, p =276

.04; rt: t19 = 3.11, p = .006).277
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(a) PD patient, split by medication status.

optimal threshold 
(long delay)

optimal threshold 
(short delay)

control, visit 1 (or) 
PD, “off” meds
control, visit 2 (or) 
PD, “on” meds

(b) Matched control, split by visit.

Figure 2: Foraging behavior – individual subject data. Example subject tree-by-tree exit points over time in the
experiment (in black). Exit thresholds are in units of apples and computed as the mean number of apples eraned in the last
two harvests before an exit decision (see Methods). The dotted line indicates the on medication thresholds for the patient (a)
and the second visit thresholds for the control (b). Colored lines are the optimal exit threshold in the short (orange) and long
(red) travel delay environments.

Foraging Behavior: Compliance With the MVT278

The initial quality of each new tree and the depletion rate following a harvest decision were randomly drawn.279

These features require the ideal agent to monitor the number of apples obtained at each step, which serves280

as a noiseless measure of the current state of the tree, in order to decide whether the current tree is worth281

harvesting. The optimal policy for deciding whether to leave a tree requires comparing the expected reward282

from the next harvest to a threshold, which is controlled by the overall average reward per timestep, i.e.283

the opportunity cost of time in the environment. Subjects should harvest trees more thoroughly (down to284

lower returns) when the overall reward environment is poorer; in this sense the observed level of harvesting285

reflects an evaluation about the quality of the environment.286

Thus, we examined subjects’ exit thresholds — estimated from the number of apples received on the last287

harvests before leaving a tree — as our primary dependent measure. The threshold data of an example control288

and patient (Figure 2) show gross threshold adjustments across environments in the direction predicted by289

the optimal analysis: They decrease their leaving thresholds in the lower quality environment, reflecting290

the lower opportunity cost of time. This pattern is consistent with the average behavior within each group291

(Figure 3). Paired t-tests find that the leaving threshold adjustments were significant and in the predicted292

direction for the control group (visit 1: t19 = �7.72, p < .001; visit 2: t18 = �6.4, p < .001) and patient293

group, both on medication (t19 = �4.88, p < .001) and off (t18 = �3.01, p = .008)2.294

Comparing the numerical thresholds (averaged across visits) to the specific values predicted under optimal295

switching, we found that both groups had a tendency to harvest longer (i.e. exhibit a lower exit threshold)296

than optimal in all environment types (control, long: t19 = �2.134, p = .046; control, short: t19 = �2.23, p =297

.038; disease, long: t19 = �2.55, p = .019; disease, short: t19 = �5.66, p < .001), which resonates with the298

2The missing degree of freedom for visit 2 and the off medication condition is due to early termination of the experiment in
one of the visits by one control and one patient. See methods for details.
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Figure 3: Foraging behavior – group data. Group exit thresholds by environment type, visit and medication status.
The grey bars indicate mean leaving thresholds per environment type (long or short), with 95% confidence intervals, displayed
in the following order (left to right): controls, visit 1; controls, visit 2; PD patients, on medication; PD patients, off medication.
Filled diamonds represent the ideal forager thresholds for short (orange) and long (red) travel delays.

findings of a previous study examining the behavior of healthy subjects in this task (Constantino and Daw,299

2015). Altogether, these results suggest that subjects adust their behavior to changes in the opportunity300

cost of time in the direction predicted by theory, though with a bias to over-stay relative to the optimal301

policy.302

Foraging Behavior: Effects of Disease and Medication303

All subject groups, irrespective of disease, visit or medication condition, adjusted their leaving thresholds304

to changes in the opportunity cost of time occasioned by manipulations of environmental quality. In order305

to examine any between-group differences in these adjustments, while accounting for within and between306

subject variance, we analyzed subjects’ tree-by-tree leaving thresholds using a linear mixed-effects regression.307

This analysis indicated that PD patients, when off medication, harvested significantly longer (i.e., displayed308

lower exit thresholds) than controls (t36 = 2.5, p = .017). Medication significantly ameliorated the deficit:309

Patients had higher exit thresholds on medication as compared to off (t16 = 3.09, p = .007) (see Table 3).310
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Mixed-effects model, beta estimtates

intercept 4.19⇤⇤⇤

(0.38)

short-delay 0.64⇤

(0.25)

on medication 0.70⇤⇤

(0.23)

visit 0.23
(0.18)

control 0.95⇤

(0.38)

short-delay: on medication 0.23
(0.21)

short-delay: control 1.24⇤⇤⇤

(0.34)

num. obs. 12253

num. subj. 40

⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05

Table 3: Effects of disease and medication on foraging behavior

Consistent with the hypothesis that DA tracks the opportunity cost of time, these results suggest that311

lower DA levels in the unmedicated patients resulted in longer harvesting — as though the estimated op-312

portunity cost of harvesting was biased downward — and that DA replacement therapy remediated this313

effect. Note that although the pharmacokinetics are clearly complex, if we envision disease and medication314

as each exerting something like a multiplicative gain on the tonic DA level (e.g., changing the constant of315

proportionality by which, hypothetically, it reflects the average reward rate), then we would expect these316

manipulations to exert both the overall effects discussed thus far and also an interaction with block type317

(a proportionally more prounounced decrease in richer environments) (Beierholm et al., 2013). Indeed, the318

effects of both drug and disease were most apparent in the richer (short travel-delay) environment, as shown319

in Figure 3, though this interaction was only significant for the effect of disease (t34 = 3.67.p < .001).320

Motor Perseveration and Other Controls321

Our hypothesis – that biased signaling of the opportunity cost of time in Parkinsonism leads to a failure to322

disengage from low-paying options – amounts to the prediction that subjects suffer a form of cognitive per-323

severation on harvesting. This is different from, but might be confounded with, simpler reward-independent324

perseveration that could arise from gross motor difficulties – a characteristic symptom of PD – when moving325

between the response keys. (The association of keys with harvest or exit was, for simplicity, not random-326

ized across trials.) We designed the task with relatively slow timing requirements in order to mitigate any327

movement difficulties that could otherwise trivially favor perseverative responding. To investigate whether328

motor perseveration contributed to foraging behavior, we examined an additional forced-choice control task329

with the same timing and key press requirements as in the foraging task but without the opportunity cost330

and reward components.331
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In the task, subjects responded to two randomly drawn shapes with shape-specific key presses (see332

Figure 4a). On each trial, a random shape was drawn from two possible alternatives, resulting in unexpected333

sequences of the same shape followed by a change in shape. Reward-independent motor perseveration would334

appear as a heightened tendency to press the key associated with the previously presented shape (a motor-335

response stickiness), and thus a higher error rate on trials that require a switch in the motor response (change336

in shape).337

We did not find a significant effect of shape change on the probability of being correct in any of the groups338

(patients on medication, patients off medication, and controls; see Figure 4b and Table 4). Correct responses339

overall were lower for patients on medication but this main effect was independent of the shape sequence,340

indicating it did not arise from perseveration. Furthermore, as this deficit increased with medication, it ran341

in the opposite direction of the increased tendency for harvesting by patients off medication in our foraging342

task. We repeated the same logistic regression analysis, this time replacing the correct response dependent343

variable with an indicator identifying missed trials, and again found no effect of a change in shape for any344

of the groups (results not shown). Together, these negative results suggest that motor perseveration did not345

contribute appreciably to the effects of disease and medication on the foraging task.346

(a) Perseveration task display

Control
visit 1

Control
visit 2

PD
“on”

PD
“off”

(b) Conditional probabilities by group

Figure 4: Motor perseveration task. (a) The perseveration task lasted the length of one foraging environment (6 minutes).
During this time, one of two shapes (diamond or star) was randomly drawn (with equal probability) and displayed center screen
on each trial, resulting in unexpected sequences of the same shape followed by a change in shape. The shape remained on screen
for the same amount of time as the apples in the foraging task and was followed by a response cue and feedback (“correct”,
“incorrect”, or “too slow”). The timing and keypress contingencies were the same as in the foraging task but now one of the
shapes was randomly assigned to the “harvest” key and the other to the “exit” key. (b) Probability of a correct response following
the consecutive presentation of the same shape and following a switch in shape, shown by group in the following order (left to
right): controls, visit 1; controls, visit 2; patients, on medication; patients, off medication. Individual points connected by grey
lines are individual subject probabilities. Error bars show the 95% confidence intervals around the group mean probability.
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PD, off meds PD, on meds Controls

intercept 2.95⇤⇤⇤ 1.57⇤⇤⇤ 2.68⇤⇤⇤

(0.86) (0.34) (0.45)

change 0.24 0.00 0.34
(0.25) (0.19) (0.23)

visit �0.07 0.83 0.55⇤

(1.11) (0.53) (0.27)

num. obs. 874 882 1482

num. subj. 10 10 9

⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05, PD: Parkinson’s disease

Table 4: Motor perseveration fits

Discussion347

PD patients and matched controls performed a virtual patch-foraging task that measured how long they348

stayed with a depleting resource. We hypothesized that choices would be modulated by tonic DA, which349

has been suggested to carry the key decision variable for this class of tasks: The average reward rate or350

opportunity cost of time (Niv et al., 2007; Cools et al., 2011). Consistent with DA deficiency reducing the351

subjective opportunity cost of time, PD patients off medication harvested down to a lower reward threshold352

than controls, and DA replacement medication alleviated this deficit. These results suggest a neural substrate353

for stay/switch decisions or stopping problems (like foraging), where options are encountered serially rather354

than simultaneously, and propose a novel mechanistic link between choices in this class of tasks and the355

continuous modulation of behavioral vigor, which has also been linked to a putative dopaminergic opportunity356

cost signal (Niv et al., 2005, 2007; Guitart-Masip et al., 2011; Salamone and Correa, 2012; Beierholm et al.,357

2013).358

Drawing on parallel opportunity cost considerations, previous research has suggested that tonic DA359

might control behavioral vigor (Niv et al., 2005, 2007). This hypothesis helps to unify research on DA’s role360

mediating prediction errors and learning about choices from rewards with the neuromodulator’s more direct361

effects on activation and movement. Although outcomes in the present task are, by design, unaffected by362

vigor (reaction times), the choices themselves turn on the opportunity cost of the time intervals associated363

with the different actions. This design allows us to investigate the role of opportunity costs directly without364

relying on reaction times or assumptions about unobserved energetic costs of vigorous action (Niv et al.,365

2005; Guitart-Masip et al., 2011). Neurally, it has been proposed that tonic DA governs the vigor of actions366

directly, perhaps by modulating the direct and indirect pathways out of striatum (DeLong, 1990). The367

present results suggest that a common mechanism controls the more discrete decision of whether (or when)368

to leave an option in search of something better. This effect could be subserved by analogous dopaminergic369

modulation of the pathways in a different striatal subregion.370

An alternative target for DA’s effects is the anterior cingulate cortex, which other studies have shown to371

play a key role in foraging decisions (Hayden et al., 2011; Kolling et al., 2012; Rushworth et al., 2012; Mobbs372

et al., 2013; Blanchard and Hayden, 2014) (but see Shenhav et al., 2014). Suggestively, the cingulate has373
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also been associated with cognitive control, and recent research has proposed that this seemingly disjoint374

function is itself governed by opportunity cost considerations about how to allocate limited neural resources375

(Keramati et al., 2011; Kurzban et al., 2013; Shenhav et al., 2013; Boureau et al., 2015).376

One important question concerns how our result relates to previously observed reinforcemement learning377

deficits in PD. Many earlier studies have demonstrated deficits using choice tasks that require learning about378

the values of different competing actions (Cools et al., 2001; Frank et al., 2004; Shohamy et al., 2004; Bódi et379

al., 2009). In order to minimize the role of learning, we focused on asymptotic behavior in the second block380

of a stable task. That said, although our hypothesis focuses on tonic DA, neither PD nor its medications381

specifically target tonic rather than phasic DA (but may plausibly affect both), and indeed many previous382

results have been interpreted in terms of phasic DA’s widely hypothesized role in signaling prediction errors383

for action value learning (Frank et al., 2004; Rutledge et al., 2009). In particular, it has been suggested that384

deficits in phasic DA signaling emphasize avoidance learning or learning from negative prediction errors, with385

medication, conversely, favoring rewards (Frank et al., 2004; Rutledge et al., 2009). However, the application386

of these principles to the sequential foraging problem does not offer a straightforward prediction.387

A key qualitative difference is that our task does not directly pose an action-value learning problem, since388

options are encountered one at a time and the decision is when to reject an option in favor of searching for a389

better one. Our task can be reframed in the simultaneous choice terms of those other accounts by focusing390

on the learning of the long-run expected values for the two competing responses (harvesting vs. searching for391

a new tree), though we have previously shown that this framework does a worse job of explaining behavior392

than choices based on tracking only the opportunity cost of time (Constantino and Daw, 2015). In any case,393

framed this way, a bias toward learning from negative prediction errors should depress both options and394

would not appear to predict the observed asymmetric behavioral bias toward harvesting longer.395

Alternatively, our hypothesis, informed by related work on action vigor (Niv et al., 2005) and foraging396

(Kolling et al., 2012), is that choices in this class of problems are categorically different from simultaneous397

choice in that they are governed by a single global decision variable: The overall average reward rate, which398

is the opportunity cost of engaging the current option. This opens up the possibility that performance is399

mediated by a more global neural variable, such as tonic extracellular DA (Niv et al., 2005; Beierholm et al.,400

2013). Here and in the vigor research, (tonic) DA is hypothesized to be involved directly in the expression401

of the behavior, rather than only indirectly, via controlling plasticity. Although our data do not directly402

speak to this point, results from a study manipulating drug status independently during both training and403

test in a reward learning task suggest that apparent PD learning deficits are actually driven by expression404

rather than learning, which supports the present framework and is hard to understand given the standard405

interpretation involving deficits in phasic prediction error signaling (Shiner et al., 2012).406

As in any PD study, our patient and control populations were somewhat heterogeneous and within407

the patient population there was a range in the combinations and dosages of dopaminergic medication.408

These differences are unlikely to confound our results since demographic characteristics were not significantly409

different between patient and control groups, and the on/off medication comparison was within-subject.410

Furthermore, as a robustness check, we repeated the key regression but included different additional factors411

as nuisance variables (e.g. age, education, MoCA; data not shown) and found that the results were unaffected.412

In addition to the average reward, there are several other possible mechanisms that might in principle413

mediate the effects we observed. In particular, DA-dependent effects on time discounting or risk preferences414
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might also affect willingness to incur a delay in seeking a new tree of unknown value. However, the relationship415

between DA and those preferences is not especially consistent (see Cools et al. (2011) for review). Moreover,416

since the average reward can affect preferences in both intertemporal choice (via the opportunity cost of time)417

and risky choice (via reference points and framing effects), as well as vigor and perseveration, the opportunity418

cost hypothesis may provide a more general account of DA function (Cools et al., 2011). However, it remains419

for future work to independently assess risk sensitivity, time preferences, and foraging behavior, in order to420

understand how they relate to one another and to DA dysfunction.421

Similar points apply to interpreting our results in terms of perseveration. Although we took steps in both422

task design and a control experiment to rule out an explanation in terms of pure motor perseveration, the423

observed tendency of patients to stay rather than switch trees is reminiscent of cognitive perseveration and424

switching deficits that have been well documented in PD patients (e.g. in task set or rule switching) (Cools et425

al., 2003). The average reward mechanism suggested here proposes a quantitative, underlying explanation for426

such dopaminergic related changes in switching behaviors, both in our serial decision task and more generally:427

As DA levels are depleted, they signal impoverished environments, which in turn make any status quo option428

appear relatively better (Cools et al., 2011). While it is difficult to map serial foraging decisions directly429

onto explicit tests of cognitive control and switching, there is a parallel between the cognitive perseveration430

(decreased flexibility or a tendency to stick to the same strategy; for example, as measured by the Wisconsin431

Card Sorting Task; Heaton et al., 1993) observed in PD and the increased tendency to harvest (or decreased432

propensity to switch) observed in our foraging task.433

Indeed, the present results may ultimately point toward a similar account of internal, cognitive switching434

decisions of this sort and of cognitive control phenomena more generally. This would add to, and hint at435

a potential neural mechanism for, an emerging understanding that decisions about the allocation of one’s436

cognitive resources involve rational cost/benefit tradeoffs that are in many ways analogous to evaluating437

foraging opportunities (Keramati et al., 2011; Kurzban et al., 2013; Shenhav et al., 2013; Boureau et al.,438

2015).439
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