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Abstract

A major application for genome-wide association studies (GWAS) has been the emerging field of causal
inference using Mendelian randomization (MR), where the causal effect between a pair of traits can be
estimated using only summary level data. MR depends on SNPs exhibiting vertical pleiotropy, where the SNP
influences an outcome phenotype only through an exposure phenotype. Issues arise when this assumption
is violated due to SNPs exhibiting horizontal pleiotropy. We demonstrate that across a range of pleiotropy
models, instrument selection will be increasingly liable to selecting invalid instruments as GWAS sample sizes
continue to grow. Methods have been developed in an attempt to protect MR from different patterns of
horizontal pleiotropy, and here we have designed a mixture-of-experts machine learning framework (MR-MoE
1.0) that predicts the most appropriate model to use for any specific causal analysis, improving on both
power and false discovery rates. Using the approach, we systematically estimated the causal effects amongst
2407 phenotypes. Almost 90% of causal estimates indicated some level of horizontal pleiotropy. The causal
estimates are organised into a publicly available graph database (http://eve.mrbase.org), and we use it here
to highlight the numerous challenges that remain in automated causal inference.

Introduction

Mendelian randomization (MR) (1,2) exploits vertical pleiotropy to infer the causal relationships between
phenotypes. Suppose that one trait (the exposure) causally influences another (the outcome). If a SNP
influences the outcome through the exposure then the SNP is exhibiting vertical pleiotropy (see Box 1).
Such a genetic variant is considered to be a valid instrumental variable if it only influences the outcome
through the exposure (the exclusion restriction assumption). Vertical pleiotropy can be exploited to mimic a
randomised controlled trial, enabling a causal estimate to be made by comparing the outcome phenotypes
between those individuals that have the exposure-increasing allele against those who do not, although not
without caveats (3). Multiple independent genetic variants for a particular exposure can be used jointly to
improve causal inference, because a) each variant represents an independent natural experiment, and an
overall causal estimate can be obtained by meta-analysing the single estimates from each instrument; and b)
potential bias arising from the exclusion restriction assumption can be detected or corrected by evaluating
the consistency of effects across instruments (4–9).

Genome-wide association studies (GWAS) have identified potential instrumental variables for thousands of
phenotypes (10). Recent developments in MR have enabled knowledge of instrumental variables to be applied
using either individual-level or only summary-level data (known as two-sample MR, 2SMR) (11). Here, in

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2017. ; https://doi.org/10.1101/173682doi: bioRxiv preprint 

mailto:g.hemani@bristol.ac.uk
http://eve.mrbase.org
https://doi.org/10.1101/173682
http://creativecommons.org/licenses/by/4.0/


order to infer the causal effect of an exposure on an outcome all that is required are the genetic effects of
the instrumenting SNP on the exposure and the outcome. This has three major advantages. First, GWAS
summary data are non-disclosive and often publicly available. Second, causal inference can be made between
phenotypes even if they have not been measured in the same samples, limiting possible MR analyses only by
the availability of GWAS summary data for the traits in question (12). Third, because each instrumental
variable mimics an independent randomization study, we can view the causal inference problem through the
simple and widely understood prism of a meta-analysis (6).

Problems with obtaining unbiased causal effects can arise, however, if the genetic instruments exhibit
horizontal pleiotropy, where they influence the outcome through a pathway other than the exposure (Box
1). The extent of this phenomenon is not to be understated, and many methods have been developed that
attempt to reliably obtain unbiased causal estimates under specific models of horizontal pleiotropy (4–7,9,13).
It is considered best practice to triangulate estimates from a range of MR methods (and other experimental
designs) when presenting causal estimates so as to assess the potential for different horizontal pleiotropy
models and other violations of MR assumptions (14). However there are circumstances in which it is desirable
to consolidate across many methods to obtain a single MR estimate. First, it could be of interest to screen
links between thousands of traits for being potential causal associations, in which case a critical evaluation of
each causal estimate of interest may not be possible or convenient. Second, though the simplest method, based
on inverse-variance weighted (IVW) meta analysis (11), is most statistically powerful under no horizontal
pleiotropy, it can have high false positive or low true positive rates in the presence of horizontal pleiotropy
compared to other methods. Pleiotropy has been hypothesised to be universal (15), though the degree and
nature (e.g. horizontal versus vertical, see Box 1) to which this may be the case is contested (16,17), hence
defaulting to the IVW method in the first instance and using other methods as sensitivity analyses may
not be appropriate. Third, if different methods disagree it is not possible to know which is correct because
the true nature of horizontal pleiotropy exhibited by the instruments is not known. Fourth, the available
methods do not cover all possible models of horizontal pleiotropy, and therefore an automated method for
instrument selection may be necessary.

In this paper we introduce two innovations towards improving the reliability of MR estimates. First, we
present an approach to discard genetic variants that are likely to be invalid. Second, we hypothesised that
characteristics of the summary data could indicate which method would be most reliable, and we introduce
new machine learning approaches that attempt to automate both instrument and method selection. Using
curated GWAS summary data for thousands of phenotypes (12), we use these new methods to construct a
graph of millions of causal estimates. Motivated by the recent avalanche (18) of 2SMR publications, with
similar (19,20) or contradicting (21,22) conclusions despite using the same data (18), we developed a graph
database to represent these estimates in a consistent manner. We consider this to be a ‘working draft’ of
the causal map of the human phenome, but raise caution throughout that its interpretation is far from
straightforward, and that future corrections and refinements will inevitably follow as data grows and 2SMR
methods evolve.

Box 1: Pleiotropic mechanisms

Pleiotropy is the phenomenon whereby a single genetic variant influences multiple phenotypes. The mechanisms
behind it can arise through many different mechanisms, for example a single variant influences multiple genes;
a single gene generates multiple gene products; a single gene product has multiple cellular functions; or a single
cellular function influences multiple phenotypes (23). How we classify the pleiotropic mechanism depends on
question and context, and in this paper we discuss pleiotropy in two forms - vertical and horizontal. Vertical
pleiotropy has also been known as mediated pleiotropy (24), because the genetic variant influences one trait,
which in turn influences a second trait. It has also been termed, in some contexts, Type II pleiotropy (16) and
secondary pleiotropy (25). It is this form of pleiotropy that MR assumes to make causal inference between
two traits.

By contrast, horizontal pleiotropy can manifest in a myriad of different ways, but the basic principle is that
the genetic variant influences two different phenotypes through independent pathways. Depending on context,
horizontal pleiotropy can also be termed biological pleiotropy (24), Type I pleiotropy (16), developmental
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pleiotropy or selectional pleiotropy (26). From the perspective of MR, horizontal pleiotropy arises when a
SNP influences an outcome trait through some pathway other than the exposure trait.

A genetic variant can exhibit both horizontal and vertical pleiotropy in different MR analyses. For example,
consider a scenario where a SNP influences the expression levels of two genes (X and Y), and gene X influences
trait A while gene Y influences trait B. Then:

• The genetic variant is exhibiting a vertical pleiotropic effect on trait A and the expression level of gene
X. Here, all other assumptions being met, the genetic variant would be a valid instrument if used to
estimate the causal effect of the gene expression level on trait A. However,

• the SNP is exhibiting a horizontal pleiotropic effect on trait A and trait B through the two gene
expression levels. Here the genetic variant would be invalid if used to estimate the causal effect of trait
A on trait B.

Adapted from Figure 3 in Hu et al (2016).

Methods

GWAS summary data and their use in 2SMR

The use of summary data in two-sample MR is described in detail elsewhere (12,27). A brief outline of the
procedure is as follows. First, genetic instruments for the exposure trait need to be identified - those SNPs
with p < 10−8 are retained in order to ensure that the first assumption of MR (that the instrument associates
with the exposure) is generally satisfied. We collect their effect sizes, standard errors and effect alleles for the
association with the exposure trait. These can be obtained from published GWAS summary data, either from
from curated lists of established GWAS associations (10) or study websites comprising complete summary
data (all SNP effects across the genome regardless of strength of association). Next, the effects of those SNPs
on the outcome need to be obtained, typically necessitating access to complete summary data because these
SNPs will not usually reach genome-wide significance for the outcome trait (and are therefore usually absent
in curated catalogues).

We use the term summary-set to refer to the minimum data required to perform 2SMR analysis - four
columns comprising the SNP-exposure and SNP-outcome effects and their standard errors, with each rows
corresponding to a SNP that is used as an instrument for the exposure.
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In its simplest implementation, the regression of the SNP-exposure effect sizes against the SNP-outcome
effect sizes, with greater weight afforded to those SNPs with smaller SNP-outcome standard errors, provides
the estimate of the causal effect of the exposure on the outcome. This is known as the IVW method.

Given summary data for a large number of traits, it is straightforward to exhaustively analyse the causal
relationships of every trait against every other trait for which there are sufficient summary data available.
Supplementary table 1 provides a list of all traits that have available GWAS summary data that were used in
these analyses.

MR methods and their assumptions

In this paper we consider three main classes of MR estimation. Full details for each approach have been
described previously. A summary of the methods is given in Supplementary table 2. Though other methods
also exist we have limited the analyses to the following 14 methods for simplicity.

Mean-based methods: Here we consider four nested models (6). The inverse variance weighted (IVW)
fixed effects meta-analysis approach assumes that variants exhibit no horizontal pleiotropy. IVW random
effects meta-analysis relaxes the horizontal pleiotropy assumption, allowing it to be present but balanced
- such that it only leads to increased heterogeneity around the regression line without affecting the slope
(and therefore not introducing bias). Fixed effects Egger regression (4) relaxes the horizontal pleiotropy
assumption further by allowing a non-zero intercept which essentially allows overall horizontal pleiotropy to
be directional, where its total effect influences the outcome in a specific direction. Random effects Egger
regression further allows heterogeneity around the slope having accounted for overall directional horizontal
pleiotropy (6), as long as the horizontal pleiotropy effects are not correlated with the SNP-exposure effects
(also known as the INSIDE assumption)(4).

The Rucker framework (28), adapted to MR (6) uses estimates of heterogeneity in the IVW and Egger
frameworks to navigate between these nested models. A jackknife approach (random selection with replacement
of the complete set of instruments) can be used to obtain a sampling distribution for the model estimate
amongst these four variations. Using 1000 rounds of jackknife estimates, we can obtain a final estimate using
the mean or the median of the distribution. We only use the jackknife approach for MR analyses where there
are 15 or more instruments, in order to avoid saturating the possible number of instrument combinations.

The four nested models (IVW fixed effects, IVW random effects, Egger fixed effects, Egger random effects)
plus the three Rucker estimates (point estimate, mean of the jackknife, median of the jackknife) provide
seven mean-based estimators.

Median-based methods: An alternative approach is to take the median effect of all available instruments
(5,29). This has the advantage that only half the instruments need to be valid, and the estimate will remain
unbiased. The weighted median estimate develops the approach further to allow stronger instruments to
contribute more towards the estimate can be obtained by weighting the contribution of each instrument
by the inverse of its variance. The penalised weighted median estimator introduces a further weight to the
instruments, penalising any instrument that contributes substantially towards the heterogeneity statistic.
Together, this provides three median-based estimators. Other estimation strategies not considered here, such
as LASSO regression, have also been developed for the situation where at least half of the instruments are
valid (30).

Mode-based methods: The mode-based estimator clusters the instruments into groups based on similarity
of causal effects, and returns the final causal effect estimate based on the cluster that has the largest number
of instruments (7). There are four implementations of this method: the simple and the weighted mode,
each weighted with or without the assumption of no measurement error in the exposure estimates (NOME).
The simple mode is the unweighted mode of the empirical density function of causal estimates, whereas the
weighted mode is weighted by the inverse variance of the outcome effect. The bandwidth parameter was set
to 1 by default.
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Instrument selection

Top hits

The simplest approach to selecting instruments is to take SNPs that have been declared significant in the
published GWAS for the exposure. This typically involves obtaining SNPs that surpass p < 5× 10−8, using
clumping to obtain independent SNPs, and then replicating in an independent sample. These results are often
recorded in public GWAS catalogs. Alternatively the clumping procedure can be performed using complete
summary data in MR-Base (12). Complete summary data refers to association results for all SNPs used in a
GWAS i.e. not only those passing statistical thresholds for significance. We call this the “top-hits” strategy.

Steiger filtering

With genome-wide association studies growing ever larger, the statistical power to detect significant associations
that may be influencing the trait downstream of many other pathways increases. For example, if a SNP
gA influences trait A, and trait A influences trait B, then a sufficiently powered GWAS will identify the
gA as being significant for trait B (Figure 1a). Using gA as an instrument to test the causal effect of A on
B is perfectly valid in some cases. But the (incorrectly hypothesised) MR analysis of trait B on trait A,
for example, could erroneously result in the apparent causal effect of B on A. It is to the advantage of the
researcher to exclude gA from the analysis from the analysis of B against A.

An approach to inferring the causal direction between phenotypes (8) uses the following basic premise. If
trait A causes trait B then

M∑
i=1

cor(gi, A)2 >
M∑
i=1

cor(gi, B)2

because the cor(gi, B)2 = cor(A,B)2cor(gi, A)2. This simple inequality will not hold in some cases, for
example cor(x, xo) < cor(x, y)cor(y, yo) where cor(x, xo) and cor(y, yo) are the precision of the measurements
of the x and y. Some combinations of confounding effects can also distort the cor(g, x) and cor(g, y)
parameters, as has been discussed in detail previously (8). Large differences in sample sizes between the
exposure and outcome GWASs may also have a practical impact on the efficacy of this approach. However,
we use it here as a computationally inexpensive and approximate method to identify variants that are likely
to be invalid (Figure 1a). Steiger’s Z-test of correlated correlations (31) can be used to formally test the
extent to which the two correlations are statistically different.

Other methods have been developed to identify invalid instruments for the purposes of exclusion from MR
analyses (9,13,32), based on the notion that outlying instruments are more likely to be a source of horizontal
pleiotropy. A potential drawback of this approach is that the outlier SNPs in a summary-set might be the
only reliable ones. This could arise, for example, for the CRP variant instrumenting C-reactive protein levels
(21), or the SLC2A9 variant influencing serum urate levels (33).

To avoid this, we primarily developed Steiger filtering to identify those instruments that are likely to be
arising due to reverse cause, but it also has the potential to detect SNPs that are exhibiting horizontal
pleiotropy or primarily influencing confounders. Further details are provided in the Online Methods.

Competitive mixture of experts

We consider the 14 MR methods described above, for which instruments can be supplied using two instrument
selection strategies, leading to 28 strategies in total (Supplementary table 2). Each method assumes or
performs best for a different model of pleiotropy. Our objective is to select the method most likely to be
correct for a specific MR analysis by predicting the model of pleiotropy, and relating that prediction to the
most appropriate model. To achieve this we use a “mixture of experts” machine learning approach (34),
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where each MR strategy is considered to be an ‘expert’, taking a summary-set as its input. An overview of
the approach is shown in Figure 2.

The mixture of experts method seeks to divide a parameter space into subdomains, such that a particular
expert is used primarily for problems that reside in a subdomain most suited to that expert. In this case we
first identify characteristics of the SNP-exposure and SNP-outcome associations for which one specific MR
method is most likely to yield highest statistical power for non-null associations, and lowest false discovery
rates for null associations. This involves creating a ‘gating function’, whose purpose is to decide which expert
to use for a specific MR analysis, given the parameter space that is occupied by that summary-set. The
metrics are a collection of regression diagnostics and are described in Supplementary table 3.

The gating function needs to be trained using data for which the true causal effect is known, and to this end
we generated a large number of simulated summary-sets. We trained the gating function using random forest
learning algorithms that seek to identify sectors of the parameter space that are most likely to return accurate
estimates for a particular expert. Figure 2a illustrates how the gating function is trained using simulated
data. New summary-sets can then be applied to the trained mixture of experts (MoE) model (Figure 2b).
We call this implementation MR-MoE 1.0. Full details are provided in the Online Methods. MR-MoE 1.0 is
implemented in the TwoSampleMR R package available at github.com/MRCIEU/TwoSampleMR (12).

It should be noted that in the original hierarchical mixture of experts approach of (34) the gating function
and the experts share the same input space and are trained simultaneously using expectation-maximisation.
In our approach the gating function is defined over a separate input space consisting of the parameter space
of the experts, and is trained separately in a supervised setting using simulated data. As such our MR-MoE
approach fits the framework of meta-learning (35–37) where machine learning methods are applied at the
‘meta-level’ to analyse the results of machine learning experiments at the ‘base-level’, in order to be able to
understand and model the capabilities of each expert and recommend which expert should be applied to a
given problem. From this perspective the 28 MR strategies are the base-models, the gating function is the
meta-model, and its meta-features are the parameters of the summary-sets.

Graph database of MR estimates

The set of MR estimates obtained from this analysis, and the summary-sets used to generate them, are
deposited in a Neo4j graph database. Here node representations exist for traits and SNPs; and relationship
representations exist for SNP-trait associations and trait-trait MR estimates. Because each trait-trait
association has up to 28 different MR estimates, for simplicity we also distill this down to a third relationship
type comprising a single ‘best estimate’ for each trait-trait association using the following rules:

1. If the number of variants after Steiger filtering is greater than 5 then apply the MoE to obtain the best
method. This value is chosen arbitrarily as a minimum number of variants for which the different MR
methods can model horizontal pleiotropy

2. If the number of variants after Steiger filtering is less than or equal to 5 but greater than 1 then use the
IVW random effects approach on the filtered set of variants

3. If there is 1 variant retained in the Steiger approach then use the Wald ratio on the remaining variant
4. If there are no variants remaining after Steiger filtering then declare no estimate of a causal association

possible.

The graph can be queried directly using the cypher language at http://eve-neo4j.mrbase.org or through a
basic web interface at http://eve.mrbase.org. For specific hypotheses we strongly recommend that estimates
from all sensitivity analyses are scrutinised and reported.
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Results

Steiger filtering improves reliability

As statistical power for GWAS studies improves the likelihood of a significant association being discovered
for a trait that acts primarily on one of its precursors increases (Figure 1a). This presents a problem when
GWAS significance is used as the sole criterion for instrument selection if the hypothesis being tested is
either a) the trait causing the precursor, or b) the trait causing some other trait and the precursor causally
relates to both (in which case the precursor is a confounder). We evaluated the efficacy of the Steiger filtering
approach for improving instrument selection using 100,000 simulated summary-sets comprising both null
and non-null causal models. For each summary-set, instruments were selected based on the top-hits strategy
and the Steiger filtering strategy, and MR was performed using 14 different methods based on instruments
selected from each of these strategies.

Figure 1b shows that the top-hits strategy led to over half of the instruments being primarily associated
with either confounders or the outcome phenotype, not the exposure phenotype. For brevity, we refer to the
latter type of invalid instruments as “reverse causal” instruments. The proportion of invalid instruments
due to reverse cause increased as GWAS discovery sample size increased. Applying Steiger filtering reduced
this to 25%. Consequently, the false discovery rates (FDR) for 12 of the 14 methods reduced substantially
when applied using Steiger filtered instruments (Figure 1c). The true positive rates for the methods based on
Steiger filtering did however reduce slightly for 10 of the 14 methods.

Mixture of experts method selection improves over any single method

Following evidence that the Steiger filtering approach can improve on existing methods, we next hypothesised
that a mixture of experts (MoE) model would be able to predict the most appropriate of the 14 MR
methods and two instrument selection strategies (giving a total of 28 MR strategies) to apply to a particular
summary-set based on its characteristics (Figure 2).

The ability to predict the performance for each of these methods is shown in Supplementary table 2. The
prediction R2 of whether a summary-set’s status was truly null (βxy = 0) or non-null (βxy 6= 0) against the
method’s prediction of the summary-set’s status, ranged between 0.04 and 0.24. The method performance
prediction was most effective for the Egger random effects model with Steiger filtering. The summary-set
characteristics with the most importance for each of the predictors differed substantially between each
summary-set, as well as the frequency for which each of the methods was selected in the testing summary-sets.
The FDR of each method when chosen, compared to their averages across all summary-sets, reduced; and
likewise the true positive rates of each method when chosen increased compared to their simulation-wide
averages.

We compared the MoE performance in the simulations against each of the 28 strategies, testing to see if it
outperformed all other single strategies. Figures 3a and 3b show that the MoE approach had the best general
performance. Estimating the area under the receiver operator curve gave 0.84 for the MoE approach in terms
of classifying the simulations as being null or non-null. Notably, the next best methods were median and
mode based estimators using Steiger filtering. But a crucial observation is that under the assumption of
widespread and diverse pleiotropic effects it is clear that all methods suffer from high false discovery rates
(Figure 3a), including the MoE approach.

Automated MR analysis of 2407 phenotypes reveals substantial horizontal pleiotropy

We applied our analysis using summary data for 2407 phenotypes, including 149 complex traits and diseases,
575 metabolites (38,39) and 1683 plasma protein levels (40). For the protein levels only GWAS significant
hits were available, so they could only be evaluated as exposure phenotypes. The complex traits and diseases
and metabolite levels had complete summary data available obtained via MR-Base, and thus they could be
evaluated as both exposures (if they had significant instruments) and outcomes. Together, we evaluated
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715681 relationships. The majority of these associations could only be evaluated using fewer than 5 SNPs,
and so the Wald ratio or IVW fixed effects methods were used, but for 61029 associations the MR-MoE
approach was applied.

There were 5660 associations following Bonferroni correction (p < 7.0× 10−8). Of these 2918 were obtained
from the MR-MoE analysis, while the remainder were estimated using fewer than 5 SNPs using the Wald
ratio or IVW fixed effects methods.

The frequencies of the methods chosen by the MR-MoE analysis are shown in Supplementary table 3. Amongst
those deemed ‘significant’, the IVW fixed effects analysis method combined with the top-hits instruments
selection strategy (only valid when there is no detectable evidence of horizontal pleiotropy of any sort) was
selected in only 10.4% of cases. This indicates that horizontal pleiotropy is likely to be pervasive.

Interpretation of the putative associations in a broad scan of phenotypes requires detailed
follow up

We performed a look up of associations between all traits and LDL cholesterol (as measured in the GLGC
consortium (41)), where the result had a false discovery rate of 0.05 using the MoE approach. This returned
287 putative associations, amongst which 111 involved LDL cholesterol influencing other traits and 176
involved other traits influencing LDL cholesterol. A large proportion of these traits were metabolites, which are
dominated by lipid fractions. Filtering to exclude the metabolomic studies ((38,39)) returned 27 associations
with 23 traits (Figure 4a). There was a strong association with coronary heart disease (0.41 log(OR) per
SD, 0.31-0.52, p = 2.7 × 10−12). Here the IVW random effects method was chosen after Steiger filtering,
indicating the presence of horizontal pleiotropy being present amongst the instruments.

We also performed a look up of associations that causally influence years of schooling (42), or that years of
schooling itself causally influences. Using a false-discovery rate of 0.05, 45 traits were returned as having
some direction of causality with years of schooling (Figure 4b). Several of these putative relationships appear
to be plausible, for example the influence of years of schooling on lower risk of Alzheimer’s disease, which
has recently been reported (43). There is also a protective effect of more years of schooling on lower risk of
myocardial infarction, which has been supported by detailed follow up analyses (44).

However, it is clear that there are limitations in relying on MR as a panacea for causal inference. For
example, bi-directional causal relationships with college completion exist because of the similarity in trait
definitions; and there are several traits (e.g. childhood intelligence and birth weight) which appear to be
causally downstream of years of schooling despite this being temporally impossible. Though explanations
could be conjured for this association, for example parents’ schooling influences childhood intelligence, or the
genetic instruments are shared across the two traits due to a third unmeasured trait, an intuitive interpretation
of causality cannot be applied because the genetic instruments used proxy the liability to achieve some level of
educational attainment, and not necessarily the experience of having attained a particular level of edication.

The facility to perform these look ups has been automated in the MR of ‘everything vs everything’ (MR-EvE)
web application, http://eve.mrbase.org.

Discussion

Motivated by a recent flurry of activity in MR methodology development, we have devised a machine learning
approach, MR-MoE, that seeks to predict the performance of each MR method, selecting the one which is
most likely to maximise power whilst minimising FDR for a specific summary-set. The mixture of experts
approach that we present here is trained using random forest decision trees applied to extensive and diverse
simulations, and we demonstrate that it makes substantial performance improvements over any other single
method in the presence or absence of extensive horizontal pleiotropy. As such, our method contributes to the
field of meta-learning but also to the rapidly growing field of automatic model selection and hyper-parameter
optimization in machine learning (45). We applied the method to the curated set of GWAS summary data
present in MR-Base (12), generating several million MR estimates. MR-MoE selected a method that indicated
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some pattern of horizontal pleiotropy for almost 90% of cases, reinforcing the notion that it is the rule rather
than the exception.

The trend of increasing GWAS sample sizes continues, but while the opportunity that this affords MR to
be furnished with more instruments is typically welcomed, here we have demonstrated that it is invalid
instruments, exhibiting horizontal pleiotropy or reverse causation, that may be more likely to be identified
than valid ones. Strategising how MR is to be used in practice, therefore, must consider some presence of
horizontal pleiotropy to be the rule rather than the exception. Instrumental variables in MR are typically
chosen blind, with GWAS significance being the only criterion. We illustrated how confounders and reverse
causal associations can easily lead to invalid instrument selection in MR and that most randomly generated
patterns of horizontal pleiotropy cannot be adequately accounted for by any single MR method.

Methods have been introduced recently that seek to improve MR estimates through invalid instrument
detection and removal (9,13,32). These attack the problem from the perspective that variants which have
a relatively large influence on the causal estimate, or provide substantially different estimates from the
other variants, are likely to be exhibiting horizontal pleiotropy, and their removal from the analysis may be
warranted. A potential drawback of this approach is that the outlier SNPs in a summary-set might be the
only reliable ones. This could arise, for example, for the CRP variant instrumenting C-reactive protein levels
(21), because CRP itself is downstream of many cellular functions and most GWAS signals will not be specific
for the trait. Steiger filtering has attempted to sidestep this issue in removing invalid instruments, seeking to
detect those instruments which have associations with the outcome that are too large to be consistent with
the exposure causing the outcome. We acknowledge that unmeasured confounding and measurement error
can introduce problems with Steiger filtering (8), but note that our simulations indicate that all individual
MR methods improve in performance following its application.

In addition to horizontal pleiotropy, there are many other limitations that prevent MR from being a panacea
for causal inference. Many of the associations are biologically impossible, for example where early life
phenotypes appear to be influenced by later stage phenotypes. Such associations can be explained statistically
because the instruments proxy the liability for that particular phenotype, not that phenotype’s observed
manifestation. Though these associations can be informative, their interpretations as causal relationships
are far from clear. Similarly, often disease traits appear to causally relate to other phenotypes, but GWAS
of disease is typically performed on the liability scale, hence the causal estimate reflects not the presence
or absence of disease, but the underlying risk of disease. Again, interpretation of such associations can be
problematic due to the instruments proxying disease liability and not diseae outcomes.

A large proportion of the associations were estimated using only a single instrumental variable, a circumstance
in which cause, reverse cause or horizontal pleiotropy cannot be immediately distinguished. Though methods
are emerging to attempt to delineate between models of reverse cause, pleiotropy and multiple causal variants
in the same region (46,47), separating vertical from horizontal pleiotropy with a single instrument is not yet
possible in the two-sample MR framework though the use of mediation-based approaches may be informative
in the one-sample setting (8,48).

Other problems, in addition to horizontal pleiotropy, can also manifest. Frailty effects (49) could induce
associations for late-onset traits, and often detailed modelling for how this can influence MR is warranted
(43,50). Genetic variants could strongly relate to several phenotypes, for example SNPs that influence LDL
cholesterol are also likely to influence other lipid fractions, making it difficult to ascertain which amongst
them is the true causal exposure (51). We see this issue manifesting in Figure 4, where there appear to be
causal relationships between different lipid fractions. The measured feature for which genetic associations are
known could relate in complicated ways to the biological entities that is truly causal (2), for example higher
circulating levels of the natural antioxidant extracellular superoxide dismutase (EC-SOD) appears to causally
relate to higher risk of coronary heart disease (52) because the phenotypic measure relates inversely to the
EC-SOD levels in arterial walls, hence in situ activity is lower (2). Dynastic effects can also confound MR
estimates, arising when the exposure trait in a previous generation influences the environment of the current
generation. Here, the SNPs being used as instruments for the exposure will be associated with a potential
confounder in the analysis (53). The associations depicted in Figure 4 involving educational attainment may
be susceptible to bias arising from this mechanism, and protecting against it will likely require alternative
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study designs, for example by using sibling pairs.

A new problem may arise when using machine learning approaches to infer the correct model for a particular
summary-set, namely, that the model selection is data driven. This is liable to contribute to elevated type
1 error rates, even though we have attempted to separate the information used for optimisation from the
information used to predict performance. One advantage to generating a method that consolidates across
many methods is that it can prevent cherry picking the most appealing method based on their results. The
extent to which a machine-based method selector incurs higher type 1 error rates more than a human selector
is not clear. Though MR-MoE does exhibit higher type 1 error rates than are desirable, they still remain
amongst the lowest compared to other MR methods that do not suffer from the issue of data driven model
selection.

In light of these issues, we emphasise that we do not consider the reporting of MR-MoE (or any other
single MR method) to be seen as performing a Mendelian randomization study. Rather, it can be used to
motivate further detailed follow up which should include sensitivity analyses (12), incorporating biological
knowledge regarding instruments, and triangulation with other sources of evidence or experimental designs
(14). Demanding a rigorous follow up of putative associations is also essential for avoiding issues that may
arise due to cherry picking of MR results. This is especially important when a large repository of putative
associations, such as MR-EvE, is made publicly available.

The field of MR is evolving. The advent of GWAS databases (10,54) and automated 2SMR (12) has trivialised
the analytical aspect of investigating specific causal hypotheses. Despite the limitations described above, the
construction of a causal graph of ‘everything versus everything’ does have appeal. First, though causality
is not guaranteed by MR, it can still be highly informative for supporting or negating specific hypotheses.
Indeed, a well-powered MR that negates a hypothesis is likely less fallible to the pitfalls described above
than using MR to confirm a positive association (55). Second, it paves the way for new approaches to
search for novel putative associations and improve reliability in single analyses. The potential to exploit
GWAS summary data within the properties of graph databases to aid with both of these endeavours could be
transformative in biological research.
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Figure 1: Simulations. a) Schematic of how GWAS with sufficient power can lead to the selection of
instrumental variables that are invalid. We used arbitrary numbers of SNPs and confounders to simulate
GWAS summary datasets. b) Any SNP that has a direct influence on the exposure, or an influence on a
non-confounding intermediate variable, is considered a ‘direct’ effect. The y-axis shows the proportion of
instruments selected for analysis that are either direct associations with the exposure, instruments for the
outcome (reverse), or instruments for confounding traits (confounder). The proportions are compared over a
range of different exposure discovery sample sizes (x-axis) and using either the top-hits approach (left) or the
Steiger approach (right) for instrument selection. c) Top: The false discovery rates from null simulations for
each of the 14 methods using either top-hits, Steiger filtered variants, or variants that are known to be directly
associated with the exposure (oracle, note that direct effects can still exhibit horizontal pleiotropy in these
simulations). Bottom: The statistical power to detect true causal associations in the non-null simulations.
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Figure 2: Mixture of experts. a) Training. Datasets are simulated that have either null or non-null causal
relationships, and causal estimates are obtained from each of the 28 MR strategies considered in this study.
In the toy datasets, the columns in black represent 53 metrics about each of the 67,000 training simulations.
The columns in red are specific to each strategy, they represent how well that strategy performed in obtaining
the correct answer for each of the datasets. Random forests are used to learn the parameter space of the 53
metrics in which a particular summary-set is likely to perform well. Together, this creates 28 random forest
decision trees, one for each MR strategy. b) Application. For a GWAS summary dataset, our objective is to
choose the strategy most likely to return the correct causal estimate. Metrics are generated from the dataset
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and fed into each of the 28 random forest decision trees. This provides us with 28 performance predictions.
Finally, we use the strategy for which the performance prediction is highest.
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Figure 3: Performance of MoE against all other MR strategies. a) The power for non-null datasets is plotted
against the FDR for null datasets for each of the 28 strategies, plus MoE. No single MR strategy achieved
nominal FDR for these simulations. b) Calculating the area under the ROC curve from the values in (a)
we plotted the performance in order from lowest to highest. Under the assumption of pervasive horizontal
pleiotropy, the MoE approach is likely most effective than any other single MR strategy.
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Figure 4: Lookup of causal associations involving a) LDL cholesterol and b) Years of Schooling. In a) the
nodes are filtered to not include those obtained from the metabolomic studies (38,39). The arrows denote
causal direction and the values on the arrows denote the causal effect estimate. Only those relationships are
shown for which the FDR < 0.05.
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Online methods

Steiger filtering

An approach to inferring the causal direction between phenotypes recently developed (8) uses the fol-
lowing basic premise. If trait A causes trait B then cor(gi, A)2 > cor(gi, B)2 because the cor(gi, B)2 =
cor(A,B)2cor(gi, A)2. This will be true under most circumstances, but some parameters of measurement error
or unmeasured confounding can lead to the inequality reversing direction, as has been explored previously (8).

The Steiger test is applied to each variant in turn and we exclude any gA for which cor(gi, A)2 > cor(gi, B)2,
indicating that it is unlikely to primarily associate with B relative to A. Similarly, for SNPs that influence
confounders of A and B or exhibit horizontal pleiotropy, the difference in cor(gi, A)2 and cor(gi, B)2 will be
reduced, increasing the likelihood of the SNP being excluded because the Steiger Z-test is less likely to be
significant. Hence we also exclude any gA for which the cor(g, x) and cor(g, y) are not significantly different
at an arbitrary threshold of p > 0.05.

To estimate cor(g, x)2, if x is continuous we obtain the F-statistic from the reported p-value and sample
size and then cor(g, x)2 = F

N−2−F . If x is binary then we estimate the variance of the underlying liability
explained by the SNP, cor(g, x)2 = Va

Va+Ve
. Here, Ve = π2/3, and Va = 2β2f(1− f), where β is the log odds

ratio and f is the allele frequency of the SNP in the population (56). f can be estimated using the allele
frequency of the SNP in an ascertained sample by deriving the 2× 2 contingency table from the odds ratio
eβ , allele frequency in the ascertained sample fcc, and number of cases N1 and controls N0. A Z-score to test
the hypothesis that cor(g, x) and cor(g, y) are significantly different can be generated using the Steiger test
for correlated correlations.

Mixture of experts implementation for MR

The mixture of experts approach seeks to use simulations to learn the circumstances in which each of
the 28 MR strategies is likely to perform most accurately. Having trained the model on simulations, new
summary-sets can be applied to obtain causal estimates from the strategy that is predicted to be the most
reliable for that summary-set.

Training and testing simulations

The MoE is trained using summary-sets generated from simulations (Figure 2a). Each summary-set can be fed
into any of the 28 experts to obtain MR causal effects. The simulations used to generate these summary-sets
seek to cover a range of pleiotropic scenarios, including where some proportion of SNPs exhibit directional or
balanced horizontal pleiotropy, or where SNPs influence confounding variables.

We simulate two individual level datasets for which there are Nx and Ny samples, and M SNPs, where each
SNP has effect allele frequency of fm ∼ U(0.05, 0.95). These datasets are used to obtain the SNP effects
for the exposure trait x and the outcome trait y, respectively, to create summary-sets, using the following
sampling criteria:

Nx = {20000, ..., 500000}
Ny = {20000, ..., 500000}
K = {0, ..., 10}
Mx = {1, ..., 200}
My = {1, ..., 200}
Muk

= {5, ..., 30}

The M = Mx +My +
∑
Muk

SNPs can influence x directly, y directly, or some number of confounders uk
directly. Phenotypes for x and y are constructed using
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x =
Mx∑
i

βgx,x,igx,i +
My∑
j

βgy,x,jgy,j +
K∑
k

βux,kuk + ex

where βgx,x is the vector of effects of each of the Mx SNPs that influence x primarily, βgy,x is the vector of
effects for the My SNPs on x, where the My SNPs influence y primarily but exhibit horizontal pleiotropic
effects on x. We allow some proportion of these effects to be 0. βux is the vector of effects of each of the K
confounders on x. Each uk variable is constructed using

u =
Mu∑
l

βgu,lgl + el

and finally y is constructed using

y = βx,yx+
My∑
i

βgy,y,jgy,j +
Mx∑
j

βgx,y,igx,i +
K∑
k

βuy,kuk + ey

where βx,y is the causal effect of x on y. We sample the distribution of direct SNP effects using

βgx,x,i ∼ N(0, σ2
gx,x)

σ2
gx,x,i ∼ U(0.01, 0.1)

βgy,y,j N(0, σ2
gy,y)

σ2
gy,y,j ∼ U(0.01, 0.1)

Some proportion floor(MSx/M) of gx SNPs and floor(MSy/M) of gy SNPs, where sx and sy ∼ U(0, 1),
exhibit horizontal pleiotropy with effects sampled using

βgx,y,i∗ ∼ N(µgx,y, σ2
gx,y)

µgx,y,i∗ ∼ U(−0.005, 0.005)
σ2
gx,y,i∗ ∼ U(0.001, 0.01)

βgy,x,j∗ ∼ N(µgy,x, σ2
gy,x)

µgy,x,j∗ ∼ U(−0.005, 0.005)
σ2
gy,x,j∗ ∼ U(0.001, 0.01)

The genetic influences on each of the confounders are sampled using

βgu,u,l ∼ N(0, σ2
gu,u)

σ2
gu,u,l ∼ U(0.01, 0.1)

The influence of each confounder on x and y is obtained using

βu,x ∼ N(0, σ2
u,x)

βu,y ∼ N(0, σ2
u,y)

Finally, 20% of the simulations have a null effect of βx,y = 0, while the other remaining 80% have a true
effect sampled from
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.βx,y ∼ N(0, σ2
x,y)

σ2
x,y ∼ U(0.001, 0.1)

For each simulation we used linear regression to estimate the genetic effect of each SNP M on x in sample 1,
and each SNP M on y in sample 2. We then perform MR analysis in both directions, mimicking GWAS
by retaining SNPs that have p < 5e− 8 in sample 1 to perform MR of x on y (the true causal direction for
non-null simulations), and retaining SNPs that have p < 5e− 8 in sample 2 to perform MR of y on x (the
reverse causal direction for non-null simulations). We treat the summary data (effect sizes and standard
errors) used for estimating x→ y the summary data used for estimating y → x as two separate summary-sets.
Hence, for each simulation two summary-sets are generated which are analysed to produce 28 MR estimates
each. We performed 100,000 simulations using these parameters, resulting in 200,000 summary-sets.

Optimisation function

We aim to maximise statistical power for summary-sets where βx,y 6= 0 and minimise false discovery rates for
summary-sets where βx,y = 0. To train random forest decision trees to predict performance for a particular
method h(Ow,d, zd) is generated where the training set of input metrics for summary-set d is zd and the
response (optimisation function) is

Ow,d =


1, if βx,y 6= 0 and pm,d < 0.01
1, if βx,y = 0 and pm,d > 0.1
0, otherwise

where pm,d is the p-value for method m on summary-set d.

Strategy

For each training summary-set we record a set of 53 metrics zd (Supplementary table 3), and an outcome
Ow,d, which is a measure of how well that method performed for each particular simulated summary-set. For
each of our 28 MR strategies, we need to create a model that predicts the performance of the strategy based
on metrics generated from a summary-set. To do this, for each strategy we train a random decision forest to
predict that strategy’s performance using the summary-set’s metrics. The random forest approach is well
suited to this problem because there are likely to be non-continuous combinations of different metrics that
improve on prediction over, for example, a simple linear model that does not learn about interactions.

As a simple hypothetical example - if a summary-set exhibits a single outlier but is otherwise exhibiting no
heterogeneity then the following methods could arguably perform well:

• an IVW fixed effects analysis with Steiger filtering, should the Steiger test be able to detect the outlier
• a median based approach without Steiger filtering
• a mode based approach without Steiger filtering

deciding between these strategies requires finding, in general, which will minimise false discovery rates and
maximise true positive rates for that particular scenario. In this example the IVW with Steiger filtering
would likely be the clear winner because of its superior statistical power. Countless other scenarios could
arise. For example if 100% of instruments are invalid but the InSIDE assumptio is met then the MR-Egger is
likely to be most effective; if 40% of instruments are invalid then a median-based approach is likely most
effective; and if 80% of instruments are invalid then a mode-based approach is likely most effective.

Having generated random forest decision trees for each of the 28 strategies using 133,000 of the simulations,
we then applied them to the remaining 67,000 summary-sets to predict which method would have the highest
performance for each of the remaining summary-sets. Finally we compare the performance of the method
selected by the MoE against all remaining strategies. The default settings for the randomForest package
in R (57) were used to train the models. MR-MoE 1.0 is implemented in the TwoSampleMR R package
available at github.com/MRCIEU/TwoSampleMR (12).
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