
Page 15 

 

In both monkeys, statistically significant violations of the upper bound of the race model 301 

inequality for RTs (Inequality 11) occurred for a large range of SOAs, indicating that the observed 302 

redundancy gains were inconsistent with a race model. For Monkey 1, statistically significant 303 

violations of the RMI (at the criterion of 𝑃 < 0.05) were observed in 28 out of the 33 multisensory 304 

conditions, for Monkey 2, this was observed in all 33 conditions (Tables S5, S6 in online supplement). 305 

 306 

We first examined if the diffusion superposition model could describe the behavior of the 307 

monkeys during this task. We found that the superposition model could describe the overall pattern 308 

of the mean RTs of the monkeys (Figures 3A, B). However, the overall fit was unsatisfactory and 309 

especially poor for the lowest SNRs (Monkey 1: 𝜒262 = 49.2,𝑃 = 0.004; Monkey 2: 𝜒262 = 53.9, 𝑃 =310 

Figure 3: The diffusion superposition model provides an incomplete description of the 
detection behavior of monkeys 
Audiovisual, visual-only and auditory-only RTs for both monkeys along with the predicted RT 
shown in lines according to the diffusion superposition model as a function of SNR (squares = 
low, diamonds = medium, circles = high)and SOA. Error bars denote confidence intervals (2 × 
standard error) around predicted mean RTs. A shows the RT for monkey 1; B shows the RT for 
monkey 2. 
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0.001). The monkeys also omitted a substantial proportion of responses to weak auditory stimuli 311 

(detection accuracy rates for the lowest auditory intensity were ~55% and 60%), which is, by design, 312 

not accounted for by the superposition model described above. The integral in Equation 3 ranges 313 

from 0 to infinity, such that, absorption at the upper barrier is a certain event given enough time. This 314 

means that the superposition model always predicts ceiling level accuracies for all intensities, a 315 

prediction clearly inconsistent with the observed behavioral data. 316 

A coactivation model with a deadline 317 

An unrealistic assumption of the model described above is that accumulation will always complete, 318 

which in the single-barrier diffusion model implies that the monkeys have 100 percent detection 319 

accuracy. Given enough time, a diffusion process with drift 𝜇 > 0 will almost certainly reach the 320 

criterion. From an experimental perspective, this has several implications: the intensity of the 321 

stimulus components must be sufficiently high to ensure detection rates of 100% and the temporal 322 

window for responding is infinitely long to guarantee that all responses are collected.  323 

However, if the temporal window for stimulus detection is limited by a deadline 𝑑 (we assume that 324 

𝑑 > 𝜏) the proportion of correct responses is given by the distribution of the detection times at 𝑡 =325 

𝑑. For unimodal stimuli and synchronous audiovisual stimuli, this probability corresponds to the 326 

inverse Gaussian distribution at time 𝑑, 𝑃(𝐃𝑖 ≤ 𝑑) = 𝐺(𝑑 � 𝑐, 𝜇𝑖,𝜎𝑖2), with 𝑖 ∈ {A, V, AV}, depending 327 

on the modality. The expected detection time, conditional on stimulus detection before 𝑑, is again 328 

obtained by integration of 𝑡 ⋅ 𝑔(𝑡) from 𝑡 = 0 to 𝑑 (see Eq. 4). The solution has been originally 329 

presented in (Schwarz, 1994, Eq. 6) 330 

 331 

In bimodal stimuli with onset asynchrony 0 < 𝜏 < 𝑑 (say, without loss of generality, V(𝜏)A), it is 332 

necessary to distinguish the intervals [0 … 𝜏] and [𝜏…𝑑] during which the drift (the variance) of the 333 

diffusion process amount to 𝜇V (𝜎V2) and 𝜇AV (𝜎AV2 ), respectively. The probability for correct 334 

detections amounts to the sum of the detections within [0 … 𝜏] in which only the first stimulus 335 

contributes to the buildup of evidence; and the detections within [𝜏…𝑑] in which both stimuli are 336 

active. 337 
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 338 

𝑃�𝐃V(𝜏)A ≤ 𝑑� = 𝑃�𝐃V(𝜏)A ≤ 𝜏� +  𝑃�𝜏 < 𝐃V(𝜏)A ≤ 𝑑�  339 

= 𝑃(𝐃V ≤ 𝜏) + ∫ 𝑃[𝐗(𝜏) = 𝑥] ⋅ 𝑃(𝐃AV ≤ 𝑑 − 𝜏 | 𝐗(𝜏) = 𝑥) 𝑑𝑑𝑐
−∞   340 

= 𝐺(𝜏 | 𝑐, 𝜇V,𝜎V2) + ∫ 𝑤(𝑥, 𝜏 | 𝑐, 𝜇V,𝜎V2) ⋅ 𝐺(𝑑 − 𝜏 � 𝑐 − 𝑥, 𝜇AV,𝜎AV2 ) 𝑑𝑑𝑐
−∞  (12) 341 

 342 

with 𝑃[𝐗(𝜏) = 𝑥] = 𝑤(𝑥, 𝜏 |⋯ ) denoting the density of the activation of the processes not yet 343 

absorbed at 𝑡 = 𝜏 (Eq. 5). The integrand decomposes into a sum of four terms of the form 𝜙(𝑥) ⋅344 

Φ(𝑥 | 𝑚, 𝑠2) that can be integrated using the bivariate Normal distribution (Owen, 1980, Eq. 345 

10,010.1, see Appendix A). For the predicted amount of correct responses, a 𝜒262  statistic is obtained  346 

(e.g.,Schwarz, 2006) by the squared difference between the predicted and observed proportion of 347 

responses, divided by the variance for binomial proportions 𝜋(1 − 𝜋)/𝑁, with 𝜋 = 𝑃(𝐃 ≤ 𝑑) 348 

denoting the probabilities for correct detections. To avoid numerical problems close to zero or one, 𝜋 349 

was bounded within [0.01, 0.99]. 350 

 351 

The expected detection time, conditional on stimulus detection before the deadline, amounts to 352 

 353 

𝐸�𝐃V(𝜏)A � 𝐃V(𝜏)A ≤ 𝑑� = 1
𝑃�𝐃V(τ)A≤𝑑�

×  354 

�𝑃�𝐃V(𝜏)A ≤ 𝜏� ⋅ 𝐸�𝐃V(𝜏)A � 𝐃V(𝜏)A ≤ 𝜏� + 𝑃�𝜏 < 𝐃V(𝜏)A ≤ 𝑑� ⋅355 

𝐸�𝐃V(𝜏)A � 𝜏 < 𝐃V(𝜏)A ≤ 𝑑��          (13) 356 

 357 

The normalization factor 𝑃�𝐃V(τ)A ≤ 𝑑� is the same as in Equation 12. The first term within the 358 

square brackets is given by Equation 4, 359 

 360 

𝑃�𝐃V(𝜏)A ≤ 𝜏� ⋅ 𝐸�𝐃V(𝜏)A � 𝐃V(𝜏)A ≤ 𝜏� = 𝑃(𝐃V ≤ 𝜏) ⋅ 𝐸(𝐃V | 𝐃V ≤ 𝜏) =  361 

∫ 𝑡 ⋅ 𝑔(𝑡 | 𝑐, 𝜇V,𝜎V2)𝜏
0 𝑑𝑑.          (14) 362 

 363 

The second term is more complicated, 364 
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 365 

𝑃�𝜏 < 𝐃V(𝜏)A ≤ 𝑑� ⋅ 𝐸�𝐃V(𝜏)A � 𝜏 < 𝐃V(𝜏)A ≤ 𝑑�  366 

= ∫ 𝑃[𝐗(𝜏) = 𝑥] ⋅ 𝑃(𝐃AV ≤ 𝑑 − 𝜏 | 𝐗(𝜏) = 𝑥) ⋅ {𝜏 + 𝐸[𝐃AV | 𝐗(𝜏) = 𝑥,𝐃AV ≤ 𝑑 − 𝜏]} 𝑑𝑑𝑐
−∞   367 

= ∫ 𝑤(𝑥, 𝜏 | 𝑐, 𝜇V,𝜎V2) ⋅ 𝐺(𝑑 − 𝜏 � 𝑐 − 𝑥, 𝜇AV,𝜎AV2 ) 𝑑𝑑 ⋅ 𝜏𝑐
−∞   368 

     +∫ 𝑤(𝑥, 𝜏 | 𝑐, 𝜇V,𝜎V2) ⋅ ∫ 𝑡 ⋅ 𝑔(𝑡 � 𝑐 − 𝑥, 𝜇AV,𝜎AV2 )𝑑−𝜏
0 𝑑𝑑 𝑑𝑑𝑐

−∞ .   (15) 369 

 370 

The 𝑤 ⋅ 𝐺 term corresponds to Equation 12, multiplied by 𝜏. The double integral decomposes into 371 

four ∫ 𝜙(𝑥 | 𝑚1, 𝑠12) ⋅ Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑦
−∞  terms (Owen, 1980, Eq. 10,010.1, see Eq. 12 above) and 372 

another four terms of the form ∫ 𝑥 ⋅ 𝜙(𝑥 | 𝑚1, 𝑠12) ⋅ Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑦
−∞  that match with  (Owen, 373 

1980, eqs. 10,010.1 and 10,011.1). Details are given in Appendix B, and R code  (R Core Team, 2017) is 374 

available as online supplementary material. 375 

 376 

For the observable mean response time, we assume again an SOA invariant mean residual 𝜇M, 377 

 378 

𝐸(𝐓) = 𝐸(𝐃) + 𝜇M.           (16) 379 

 380 

For each monkey, an approximate 𝜒252  goodness-of-fit statistic can be determined by the sum of 381 

the squared standardized deviations of the predicted and the observed average response times 382 

(e.g.,Schwarz, 2006). Compared to the model without deadline, one degree of freedom is lost 383 

because the deadline is adjusted to the data. Because the 𝜒2 statistics for the mean RTs and 384 

proportions of correct responses are not independent, we did not combine them but instead 385 

transformed them into 𝑃-values and maximized the minimum of the 𝑃-values as a conservative fitting 386 

criterion. 387 

Results for the deadline model 388 

Figure 4 show the results from fitting the diffusion superposition model with the deadline to the 389 

behavioral performance of the monkeys (accuracy and mean RTs) as a function of the signal-to-noise 390 
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ratio and the SOAs. The additional deadline parameter improves the model fits and provides a very 391 

good description of both accuracy and RTs of the monkeys. For Monkey 1 the model provided an 392 

excellent fit to the data. (Accuracy: 𝜒262 = 34.15; mean RT: 𝜒252 = 32.99, 𝑃min = 0.131). In Monkey 393 

2, the model fit was less convincing (Accuracy: 𝜒262 = 64.63; mean RT: 𝜒252 = 63.08, 𝑃min < 0.001), 394 

but still acceptable given the conservative fitting procedure where we try to jointly fit both the RTs 395 

and accuracy of the monkeys. The best fit parameter estimates are shown in Table 1. 396 

 397 

Table 1. Model parameters 

Parameter Monkey 1 Monkey 2 

𝜇A (low, medium, high) 0.01, 0.25, 1.53 0.09, 0.41, 9.74 

𝜎A2 (low, medium, high) 18.5, 130.3, 74.4 11.7, 379.6, 10.7 

𝜇V (low, medium, high) 0.35, 0.37, 0.34 0.30, 0.34, 0.37 

𝜎V2 (low, medium, high) 73.2, 68.0, 92.8 67.8, 73.1, 41.9 

𝜇M (msec) 419 343 

Deadline 𝑑 (msec) 951 828 
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 398 
 399 
Figure 4: A diffusion superposition model with a time deadline predicts monkey RTs and response 400 
accuracy to audiovisual stimuli 401 
Accuracy and RT of the two monkeys along with the fits from the diffusion superposition model with a 402 
deadline. A, C Accuracy of the monkeys as a function of SNR and SOA. X-axes show SOA; Y-axes show 403 
the percent correct. B, D Response time of the monkeys as a function of SNR And SOA. X-axes show 404 
SOA; Y-axes show Response Time in ms. In both panels, the high SNRS are shown in black circles, the 405 
medium SNRs in blue diamonds and low SNRs in green squares. 406 
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Discussion 407 

The goal of our study was to test if the single-barrier diffusion superposition model (Schwarz, 1989, 408 

1994; Diederich, 1995) can describe accuracy and RTs to audiovisual vocalizations of different 409 

intensities in a detection task. In the auditory modality the intensity manipulation was effective 410 

(Figures 2 and 3). In line with this, the drift estimates 𝜇A monotonically increased with SNR (Table 1; 411 

the variance estimates showed a less regular pattern). In the visual modality, drift estimates 𝜇V and 412 

variance estimates 𝜎V2 were more or less equal for the different intensities, which is consistent with 413 

the converging pattern of the mean RTs for positive SOAs (Figure 2). The residual 𝜇M was similar in 414 

the two animals, reflecting their overall response speed and the fact that stimulus detection is 415 

probably just one of several stages of the overall response process. 416 

Consistent with many earlier results in bimodal divided attention (Diederich & Colonius, 2004a; 417 

Molholm et al., 2002; Murray et al., 2005), separate activation (a.k.a. race) models were insufficient 418 

to explain the behavioral patterns we observed (Miller, 1982, 1986). We used many SOA conditions 419 

and thus the majority of the stimuli used in the present study were audiovisual stimuli. Enrichment of 420 

audiovisual conditions rules out trial history effects and modality shift effects as the only driving force 421 

of coactivation effects  (Gondan, Lange, Rösler, & Röder, 2004; Miller, 1986; Otto, Dassy, & 422 

Mamassian, 2013; Otto & Mamassian, 2012). 423 

We have focused on describing and modeling the mean RTs and mean response accuracy for a 424 

detection task across different SNRs and SOAs (Cluff et al., 2015; Crevecoeur et al., 2016; Dixon & 425 

Spitz, 1980; Holmes, 2009; Meredith et al., 1987; Stein et al., 1989; van Wassenhove et al., 2007). 426 

Some studies have addressed the effect of sensory reliability which is related to the sensory intensity 427 

manipulation we performed here on benefits of multisensory integration but did not modulate the 428 

delay between the sensory stimuli (Drugowitsch, DeAngelis, Klier, Angelaki, & Pouget, 2014). Other 429 

studies have examined the dependence on sensory delays but not on sensory intensity (Crevecoeur et 430 

al., 2016). Experiments that simultaneously vary stimulus intensity, stimulus reliability and SOA are 431 

needed to fully understand the relative roles of these factors in multisensory discrimination(Gondan 432 

et al., 2010) .  433 
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Our study is focused on describing the behavior of monkeys performing an audiovisual 434 

detection task. Our model is likely to apply to humans performing similar tasks. We previously 435 

showed that the behavior of monkeys and humans in a simpler version of this task that only involved 436 

variation in intensity of the sensory stimuli was very similar (Chandrasekaran et al., 2011). Our 437 

analysis here expands on a classical coactivation model which has been previously used to 438 

successfully model the behavior of a human participant across a range of SOAs (Schwarz, 1994).  439 

We have shown that an accumulator, which integrates visual and auditory inputs to a bound, 440 

explained the behavioral benefits from multisensory integration. However, in our task design, no 441 

explicit trial onset information was provided to the animals. Instead, the stimulus arrived in a 442 

continuous ongoing stream. This paradigm has several advantages because it mimics a natural flow of 443 

stimuli in the real world and avoids sharp transients in visual stimuli. But, it raises the important 444 

question of how an integrator knows when to begin integrating the sensory evidence? One plausible 445 

solution is that a neural circuit resets the integrator after either the last behavioral action by the 446 

animal (false alarm/correct detection) or after some time has elapsed (Janssen & Shadlen, 2005). The 447 

fits may improve by incorporating previous ideas which propose to jointly model the inter stimulus 448 

interval as well as the responses to sensory stimuli.  449 

The superposition model with a deadline predicts RTs and accuracy of monkeys when they 450 

detect dynamic visual and auditory stimuli (vocalizations). In other contexts, generalized variants of 451 

these coactivation models have been used with dynamic stimuli (Drugowitsch et al., 2014). We 452 

believe these types of models may also be applicable to static audiovisual stimuli for two reasons. 453 

First, Diffusion models are commonly used with static visual stimuli (Ratcliff, Thapar, & McKoon, 454 

2003; Voss, Rothermund, & Brandtstädter, 2008). Second,the superposition model has been used to 455 

explain discrimination behavior for static audiovisual stimuli (Gondan et al., 2010; Schwarz, 1989, 456 

1994). Applying these models to both static and dynamic multisensory stimuli in the same study may 457 

help test proposals that there are different mechanisms for the processing of static and dynamic 458 

multisensory stimuli  (Raposo, Sheppard, Schrater, & Churchland, 2012).  459 

 460 
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The key contribution was to show that a model with additive superposition of the channel-specific 461 

evidence explains the benefits of integrating faces and voices in animal perception across a wide 462 

range of SOAs and SNRs. This class of coactivation models has previously been used to explain 463 

response times of human participants in auditory-visual detection tasks (Diederich, 1995; Schwarz, 464 

1989, 1994). The emphasis of these additive coactivation models (or more general versions, e.g., 465 

(Drugowitsch et al., 2014)) seems prima facie at odds with classical reports promoting superadditive 466 

multisensory interaction (Stein & Meredith, 1993). In these studies, superadditivity, and other 467 

nonlinear mechanisms were considered fundamental for mediating benefits from multisensory 468 

integration. However, as a series of studies have shown, the majority of neurons in classical 469 

multisensory brain regions such as the superior colliculus accumulate their synaptic input in a linear 470 

manner for a range of stimulus intensities, and nonlinearities are observed only at very low intensities 471 

(Dahl, Logothetis, & Kayser, 2010; Populin & Yin, 2002; Skaliora, Doubell, Holmes, Nodal, & King, 472 

2004; Stanford, Quessy, & Stein, 2005; Stanford & Stein, 2007; Stein & Stanford, 2008) . Stated 473 

differently, additive combination is the norm. For conflicting stimuli (e.g., in temporal order 474 

judgment, where participants are asked to report which modality came first), linear summation may 475 

occur in the other direction, with the overall evidence corresponding to the difference between the 476 

channel-specific activations (Schwarz, 2006). 477 

 478 

Besides linearity of multisensory integration in single neurons, studies increasingly demonstrate that 479 

ensembles of neurons (which might encode stimuli nonlinearly at the single neuron level) can 480 

perform linear computations (Ma, Beck, Latham, & Pouget, 2006). We believe that our abstract 481 

behavioral model might be implemented by adopting frameworks such as probabilistic population 482 

codes. For example, computationally, at the population level, linear summation of neural activation is 483 

possible and yields optimal solutions for a very general class of computational problems (Beck et al., 484 

2008; Ma et al., 2006). Extensions of this model showed that assuming Poisson-like distributions of 485 

spike counts allows biological networks to accumulate evidence while choosing the most likely action 486 

(Beck et al., 2008). We believe our description of behavioral data by this linear summation model will 487 

assist in relating neurophysiological and modeling studies of multisensory detection and broadly 488 
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integration (Chandrasekaran, 2016; Fetsch, DeAngelis, & Angelaki, 2013; Ma et al., 2006; Seilheimer 489 

et al., 2014). 490 
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Tables S1-S6 508 

 509 
Table S1. Mean accuracy and bootstrap standard error for different conditions for Monkey 1 510 

 A A240V A160V A120V A80V A40V AV V40A V80A V120A V160A V240A V 
High 98(1) 98(1) 99(1) 99(1) 99(1) 98(1) 99(1) 98(1) 98(1) 99(1) 99(1) 99(1) 94(2) 
Medium 92(2) 97(1) 97(1) 98(1) 98(1) 95(2) 96(1) 97(1) 97(1) 97(1) 98(1) 98(1) 90(2) 
Low 47(4) 95(2) 92(2) 91(2) 94(2) 93(2) 93(2) 94(2) 92(2) 91(2) 96(2) 94(2) 92(2) 
 511 
Table S2. Mean RT and Standard Error of RTs for different conditions for Monkey 1.  512 

 A A240V A160V A120V A80V A40V AV V40A V80A V120A V160A V240A V 
High 487(12) 493(14) 501(15) 482(13) 489(14) 467(9) 471(12) 507(14) 529(13) 532(10) 590(15) 601(17) 608(14) 
Medium 579(19) 605(15) 605(15) 620(18) 574(14) 557(12) 547(14) 584(18) 574(15) 598(17) 581(14) 596(14) 651(20) 
Low 802(34) 818(15) 745(20) 707(19) 686(17) 619(15) 595(15) 589(15) 617(15) 618(22) 625(18) 635(20) 649(19) 
 513 
Table S3. Mean accuracy and bootstrap standard error for different conditions for Monkey 2 514 

 A A240V A160V A120V A80V A40V AV V40A V80A V120A V160A V240A V 
High 97(1) 98(1) 98(1) 96(1) 97(1) 97(1) 97(1) 96(1) 97(1) 99(1) 99(1) 100(0) 95(1) 
Medium 88(2) 97(1) 96(1) 98(1) 94(2) 97(1) 96(1) 97(1) 96(1) 98(1) 97(1) 97(1) 92(2) 
Low 59(3) 91(2) 92(2) 95(1) 96(1) 90(2) 93(2) 90(2) 92(2) 92(2) 93(2) 94(2) 92(2) 
 515 
Table S4. Mean RT and Standard Error of RTs for different conditions for Monkey 2.  516 

 A A240V A160V A120V A80V A40V AV V40A V80A V120A V160A V240A V 
High 360(6) 363(7) 345(4) 342(6) 367(8) 358(7) 369(8) 417(10) 440(10) 467(12) 479(9) 510(10) 561(11) 
Medium 423(10) 456(13) 434(10) 434(11) 439(11) 425(11) 422(11) 449(9) 466(10) 479(9) 491(10) 532(13) 585(15) 
Low 757(36) 691(16) 661(18) 617(17) 581(16) 560(15) 517(13) 535(17) 561(16) 537(13) 545(12) 553(13) 584(16) 
 517 
Table S5. P values for race model test (Monkey 1) 518 

 A240V A160V A120V A80V A40V AV V40A V80A V120A V160A V240A 
High 0.057 0.062 0.014 0.039 0.038 0.031 0.018 0.000 0.000 0.000 0.000 
Medium 0.125 0.013 0.029 0.062 0.293 0.002 0.000 0.000 0.000 0.000 0.000 
Low 0.043 0.000 0.000 0.000 0.000 0.001 0.000 0.040 0.000 0.007 0.000 
 519 
Table S6. P values for race model test for Monkey 2 520 

 A240V A160V A120V A80V A40V AV V40A V80A V120A V160A V240A 
High 0.001 0.001 0.000 0.004 0.005 0.033 0.000 0.000 0.000 0.000 0.000 
Medium 0.008 0.003 0.011 0.041 0.000 0.000 0.004 0.000 0.000 0.000 0.000 
Low 0.019 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 
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Appendix A: Probability of absorption 521 

Here we derive the explicit expressions for the probability of absorption in bimodal stimuli with onset 522 

asynchrony 0 < 𝜏 < 𝑑 (Eq. 12). Without loss of generality, we consider the case V(𝜏)A in which the visual 523 

stimulus is presented first. Between 𝑡 = 0 and 𝑡 = 𝜏, only the visual channel contributes to the build-up of 524 

evidence, so the probability of absorption within the interval (0, 𝜏) is given by 525 

 526 

𝑃�𝐃V(𝜏)A ≤ 𝜏� = 𝐺(𝜏 | 𝑐, 𝜇V,𝜎V2)           (A.1) 527 

 528 

with 𝐺 denoting the inverse Gaussian distribution (Eq. 2). Later, within the time interval (𝜏,𝑑), the 529 

probability of absorption is the mixture of absorption probabilities of those processes still active at time 𝜏, 530 

with the barrier depending on the activation 𝐗(𝜏) < 𝑐, weighted by the density of processes at 𝐗(𝜏). Let 531 

𝑑′ = 𝑑 − 𝜏. Then, 532 

 533 

𝑃�𝜏 < 𝐃V(𝜏)A ≤ 𝑑� = ∫ 𝑤(𝑥, 𝜏 | 𝑐, 𝜇V,𝜎V2) ⋅ 𝐺(𝑑′ � 𝑐 − 𝑥, 𝜇AV,𝜎AV2 )𝑐
−∞ 𝑑𝑑,    (A.2) 534 

 535 

with 𝑤 given by Equation 5. The integrand in (A.2) can be transformed into four integrals of the form 536 

𝑞 ∫ exp(𝑟𝑟)𝜙(𝑥 | 𝑚1, 𝑠12) ⋅ Φ(𝑥 | 𝑚2, 𝑠22)𝑑𝑑𝑐
−∞ : 537 

 538 

∫ 𝑤(𝑥, 𝜏 | 𝑐, 𝜇V,𝜎V2) ⋅ 𝐺(𝑑′ � 𝑐 − 𝑥, 𝜇AV,𝜎AV2 ) 𝑑𝑑𝑐
−∞   539 

= ∫ 𝜙(𝑥 | 𝜇V𝜏,𝜎V2𝜏) Φ(𝑥 � 𝑐 − 𝜇AV𝑑′,𝜎AV2 𝑑′) 𝑑𝑑𝑐
−∞   540 

     + exp �2𝑐𝑐AV
𝜎AV
2 � ∫ exp �− 2𝜇AV

𝜎AV
2 𝑥� 𝜙(𝑥 | 𝜇V𝜏,𝜎V2𝜏)Φ(𝑥 � 𝑐 + 𝜇AV𝑑′,𝜎AV2 𝑑′) 𝑑𝑑𝑐

−∞   541 

     − exp �2𝑐𝜇V
𝜎V
2 � ∫ 𝜙(𝑥 | 2𝑐 + 𝜇V𝜏,𝜎V2𝜏) Φ(𝑥 � 𝑐 − 𝜇AV𝑑′,𝜎AV2 𝑑′) 𝑑𝑑𝑐

−∞   542 

     − exp �2𝑐𝜇V
𝜎V
2 + 2𝑐𝑐AV

𝜎AV
2 � ∫ exp �− 2𝜇AV

𝜎AV
2 𝑥�𝜙(𝑥 | 2𝑐 + 𝜇V𝜏,𝜎V2𝜏) Φ(𝑥 � 𝑐 + 𝜇AV𝑑′,𝜎AV2 𝑑′)𝑐

−∞  (A.3) 543 

By completing the square, we have exp(𝑟𝑟)𝜙(𝑥 | 𝑚1, 𝑠12) = exp �𝑟𝑚1 + 𝑟2𝑠12

2
� 𝜙(𝑥 | 𝑚1

′ , 𝑠12), with 544 

𝑚1
′ = 𝑚1 + 𝑟𝑠12. Let 𝑢 = 𝑥−𝑚1

′

𝑠1
, or 𝑥 = 𝑢𝑠1 + 𝑚1

′ . Then, the integral can be rewritten as   545 

 546 
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∫ 𝜙(𝑥 | 𝑚1
′ , 𝑠12) ⋅ Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑐

−∞ = ∫ 𝜙(𝑢) ⋅ Φ �𝑢 � 𝑚2−𝑚1
′

𝑠1
, 𝑠2

2

𝑠12
� 𝑑𝑑�𝑐−𝑚1

′ �/𝑠1
−∞   547 

= ∫ 𝜙(𝑢) ⋅ Φ �𝑠1
𝑠2
𝑢 + 𝑚1

′−𝑚2
𝑠2

� 𝑑𝑑�𝑐−𝑚1
′ �/𝑠1

−∞ .         (A.4) 548 

 549 

The form of (A.4) now matches Owen (1980, Eq. 10,010.1) which can be determined by the bivariate 550 

Normal distribution, ∫ 𝜙(𝑢) ⋅ Φ(𝑎 + 𝑏𝑏)𝑦
−∞ 𝑑𝑑 = ΦΦ� 𝑎

√1+𝑏2
,𝑦 � 𝜚 = − 𝑏

√1+𝑏2
�. An implementation in R (R 551 

Core Team, 2017) is available as online supplementary material. 552 

Appendix B: Conditional mean response time 553 

Here we derive the explicit expressions for the conditional mean response time for bimodal stimuli with 554 

onset asynchrony 𝜏, conditional on absorption before the deadline (Eqs. 13–15). We consider again the 555 

case V(𝜏)A in which the visual stimulus is presented first. Between 𝑡 = 0 and 𝑡 = 𝜏, only the visual channel 556 

contributes to the build-up of evidence, so the conditional mean RT is given by Schwarz (1994, Equation 557 

A.2). 558 

 559 

𝑃�𝐃V(𝜏)A ≤ 𝜏� ⋅ 𝐸�𝐃V(𝜏)A � 𝐃V(𝜏)A ≤ 𝜏�  560 

= ∫ 𝑡 ⋅ 𝑔(𝑡 | 𝑐, 𝜇V,𝜎V2)𝜏
0 𝑑𝑑 = 𝑐

𝜇V
�Φ(𝜇V𝜏 | 𝑐,𝜎V2𝜏) − exp �2𝑐𝜇V

𝜎V
2 �Φ(−𝜇V𝜏 | 𝑐,𝜎V2𝜏)�  (B.1) 561 

 562 

Later, within the time interval (𝜏,𝑑), the expected detection time is again a mixture of expected detection 563 

times for the processes still active at time 𝜏, weighted by the density of processes at 𝐗(𝜏). These processes 564 

now have increased drift 𝜇AV and variance 𝜎AV2 ; the work to be done (i.e., the barrier) depends on the 565 

activation 𝐗(𝜏) < 𝑐. Note that 𝜏 milliseconds have already passed since stimulus onset, hence the 566 

remaining time is 𝑑′ = 𝑑 − 𝜏. 567 

 568 

𝑃�𝜏 < 𝐃V(𝜏)A ≤ 𝑑� ⋅ 𝐸�𝐃V(𝜏)A � 𝜏 < 𝐃V(𝜏)A ≤ 𝑑�  569 

= ∫ 𝑃[𝐗(𝜏) = 𝑥] ⋅ 𝑃(𝐃AV ≤ 𝑑′ | 𝐗(𝜏) = 𝑥) ⋅ {𝜏 + 𝐸[𝐃AV | 𝐗(𝜏) = 𝑥,𝐃AV ≤ 𝑑′]} 𝑑𝑑𝑐
−∞   570 

= � 𝑤(𝑥, 𝜏 | 𝑐, 𝜇V,𝜎V2) ⋅ 𝐺(𝑑′ � 𝑐 − 𝑥, 𝜇AV,𝜎AV2 ) 𝑑𝑑 ⋅ 𝜏
𝑐

−∞
  571 

     +� 𝑤(𝑥, 𝜏 | 𝑐, 𝜇V,𝜎V2) ⋅ ∫ 𝑡 ⋅ 𝑔(𝑡 � 𝑐 − 𝑥, 𝜇AV,𝜎AV2 )𝑑′

0 𝑑𝑑 𝑑𝑑
𝑐

−∞
     (B.2) 572 
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 573 

The first term corresponds exactly to (A.2), multiplied by the onset asynchrony 𝜏. See again Schwarz (1994, 574 

Equation A.2) for ∫ 𝑡 ⋅ 𝑔(𝑡 � 𝑐 − 𝑥, 𝜇AV,𝜎AV2 ) 𝑑𝑑𝑑′

0 . The double integral in (B.2) can then be rewritten as 575 

 576 

� �𝜙(𝑥 | 𝜇V𝜏,𝜎V2𝜏) − exp �2𝑐𝜇V
𝜎V
2 � ⋅ 𝜙(𝑥 | 2𝑐 + 𝜇V𝜏,𝜎V2𝜏)�

𝑐

−∞
  577 

    × 𝑐−𝑥
𝜇AV

⋅ �Φ(𝑥 � 𝑐 − 𝜇AV𝑑′,𝜎AV2 𝑑′) − exp �2(𝑐−𝑥)𝜇AV
𝜎AV
2 �Φ(𝑥 � 𝑐 + 𝜇AV𝑑′,𝜎AV2 𝑑′)�  𝑑𝑑  578 

= 𝑐
𝜇AV

� 𝜙(𝑥 | 𝜇V𝜏,𝜎V2𝜏) Φ(𝑥 � 𝑐 − 𝜇AV𝑑′,𝜎AV2 𝑑′) 𝑑𝑑
𝑐

−∞
  579 

    − 𝑐
𝜇AV

exp �2𝑐𝜇V
𝜎V
2 � � 𝜙(𝑥 | 2𝑐 + 𝜇V𝜏,𝜎V2𝜏) Φ(𝑥 � 𝑐 − 𝜇AV𝑑′,𝜎AV2 𝑑′) 𝑑𝑑

𝑐

−∞
  580 

    − 𝑐
𝜇AV

exp �2𝑐𝜇AV
𝜎AV
2 �� exp �− 2𝜇AV𝑥

𝜎AV
2 �𝜙(𝑥 | 𝜇V𝜏,𝜎V2𝜏) Φ(𝑥 � 𝑐 + 𝜇AV𝑑′,𝜎AV2 𝑑′) 𝑑𝑑

𝑐

−∞
  581 

    + 𝑐
𝜇AV

exp �2𝑐𝜇V
𝜎V
2 + 2𝑐𝜇AV

𝜎AV
2 �� exp �− 2𝜇AV𝑥

𝜎AV
2 �𝜙(𝑥 | 2𝑐 + 𝜇V𝜏,𝜎V2𝜏) Φ(𝑥 � 𝑐 + 𝜇AV𝑑′,𝜎AV2 𝑑′) 𝑑𝑑

𝑐

−∞
  582 

    − 1
𝜇AV

� 𝑥 𝜙(𝑥 | 𝜇V𝜏,𝜎V2𝜏) Φ(𝑥 � 𝑐 − 𝜇AV𝑑′,𝜎AV2 𝑑′) 𝑑𝑑
𝑐

−∞
  583 

    + 1
𝜇AV

exp �2𝑐𝜇V
𝜎V
2 � � 𝑥 𝜙(𝑥 | 2𝑐 + 𝜇V𝜏,𝜎V2𝜏) Φ(𝑥 � 𝑐 − 𝜇AV𝑑′,𝜎AV2 𝑑′)  𝑑𝑑

𝑐

−∞
  584 

    + 1
𝜇AV

exp �2𝑐𝜇AV
𝜎AV
2 �� 𝑥 exp �− 2𝜇AV𝑥

𝜎AV
2 �𝜙(𝑥 | 𝜇V𝜏,𝜎V2𝜏) Φ(𝑥 � 𝑐 + 𝜇AV𝑑′,𝜎AV2 𝑑′) 𝑑𝑑

𝑐

−∞
  585 

    − 1
𝜇AV

exp �2𝑐𝜇V
𝜎V
2 + 2𝑐𝜇AV

𝜎AV
2 �� 𝑥 exp �− 2𝜇AV𝑥

𝜎AV
2 �𝜙(𝑥 | 2𝑐 + 𝜇V𝜏,𝜎V2𝜏) Φ(𝑥 � 𝑐 + 𝜇AV𝑑′,𝜎AV2 𝑑′) 𝑑𝑑

𝑐

−∞
 (B.3) 586 

 587 

The first four terms correspond to (A.3), multiplied by a constant (±𝑐/𝜇AV). By completing the square, we 588 

have again exp(𝑟𝑟)𝜙(𝑥 | 𝑚1, 𝑠12) = exp �𝑟𝑚1 + 𝑟2𝑠12

2
�𝜙(𝑥 | 𝑚1

′ , 𝑠12), with 𝑚1
′ = 𝑚1 + 𝑟𝑠12.  589 

Let 𝑢 = 𝑥−𝑚1
′

𝑠1
, or 𝑥 = 𝑚1

′ + 𝑢𝑠1. Then, the integral can be rewritten as 590 

 591 

∫ 𝑥 ⋅ 𝜙(𝑥 | 𝑚1
′ , 𝑠12) ⋅ Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑐

−∞   592 

= � (𝑚1
′ + 𝑢𝑠1) ⋅ 𝜙(𝑢 | 0,1) ⋅ Φ �𝑢 � 𝑚2−𝑚1

′

𝑠1
, 𝑠2

2

𝑠12
� 𝑑𝑑

�𝑐−𝑚1
′ �/𝑠1

−∞
  593 
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= 𝑚1
′ ⋅ � 𝜙(𝑢 | 0,1) ⋅ Φ �𝑠1

𝑠2
𝑢 + 𝑚1

′−𝑚2
𝑠2

 � 0,1�𝑑𝑑
�𝑐−𝑚1

′ �/𝑠1

−∞
  594 

     +𝑠1 ⋅ � 𝑢 ⋅ 𝜙(𝑢 | 0,1) ⋅ Φ �𝑠1
𝑠2
𝑢 + 𝑚1

′−𝑚2
𝑠2

 � 0,1� 𝑑𝑑
�𝑐−𝑚1

′ �/𝑠1

−∞
       (B.4) 595 

 596 

The first term of (B.4) matches again (Owen, 1980, Eq. 10,010.1). The second term matches Eq. 10,010.1 597 

from (Owen, 1980, Eq. 10,010.1) and is calculated by 598 

∫ 𝑢 ⋅ 𝜙(𝑢) ⋅ Φ(𝑎 + 𝑏𝑏) 𝑑𝑑𝑦
−∞ = 𝑏

√1+𝑏2
𝜙 � 𝑏

√1+𝑏2
�Φ�𝑦√1 + 𝑏2 + 𝑎𝑎

√1+𝑏2
� − 𝜙(𝑦)Φ(𝑎 + 𝑏𝑏). A 599 

implementation in R (R Core Team, 2017)  is available as an online supplement.600 
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Accuracy and mean response time in a diffusion 
superposition model with deadline 
 

Online supplement for “Audiovisual detection at different intensities and delays” 

This online supplement provides implementation details on the derivation of the predictions for mean 

response time and accuracy for the diffusion superposition model (Diederich, 1995; Schwarz, 1994) with a 

deadline. For simplicity, we reiterate the relevant parts of the methods section here and then add code in R 

statistical language for the different equations. The R code (R Core Team, 2017)  includes the necessary 

defaults that allow testing and deployment in other analyses. 

Libraries 

The code requires the inverse Gaussian distribution package SuppDists (Wheeler, 2013, available from CRAN). 

In addition, package mvtnorm (Genz et al., 2014) is used for the bivariate Normal distribution. 

# 
# Implementation of the inverse Gaussian distribution (Wheeler, 2016, install from CRAN first) 
# 
library(SuppDists) 
 
# 
# Multivariate Normal distribution (Genz et al., 2016) 
# 
library(mvtnorm) 

Accuracy 

For unimodal/synchronous stimuli, accuracy is given by the inverse Gaussian distribution at the deadline 𝑑. For 

example, Monkey 1’s accuracy in Condition v (low intensity) is given by  

acc_sync(d=1000, c=100, mu=0.13, sigma2=4.3^2). 

# 
# Accuracy in unimodal and synchronous stimuli 
# 
acc_sync = function(d, c, mu, sigma2) 
{ 

pinvGauss(d, nu=c/mu, lambda=c*c/sigma2) 
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} 
 

For stimuli with onset asynchrony 𝜏, accuracy is given by (12) which is the sum of the inverse Gaussian 

distribution at time 𝜏 and four integrals of the form 𝑞 ⋅ ∫ exp(𝑟𝑟) ⋅ 𝜙(𝑥 | 𝑚1, 𝑠12) ⋅ Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑐
−∞ : 

 

1. 𝑞 = 1, 𝑟 = 0, 𝑚1 = 𝜇V𝜏, 𝑠12 = 𝜎V2𝜏, 𝑚2 = 𝑐 − 𝜇AV𝑑′, 𝑠22 = 𝜎AV2 𝑑′. 

2. 𝑞 = exp �2𝑐𝑐AV
𝜎AV
2 �, 𝑟 = −2𝜇AV

𝜎AV
2 , 𝑚1 = 𝜇V𝜏, 𝑠12 = 𝜎V2𝜏, 𝑚2 = 𝑐 + 𝜇AV𝑑′, 𝑠22 = 𝜎AV2 𝑑′. 

3. 𝑞 = − exp �2𝑐𝜇V
𝜎V
2 �, 𝑟 = 0, 𝑚1 = 2𝑐 + 𝜇V𝜏, 𝑠12 = 𝜎V2𝜏, 𝑚2 = 𝑐 − 𝜇AV𝑑′, 𝑠22 = 𝜎AV2 𝑑′ 

4. 𝑞 = − exp �2𝑐𝜇V
𝜎V
2 + 2𝑐𝑐AV

𝜎AV
2 �, 𝑟 = −2𝜇AV

𝜎AV
2 , 𝑚1 = 2𝑐 + 𝜇V𝜏, 𝑠12 = 𝜎V2𝜏, 𝑚2 = 𝑐 + 𝜇AV𝑑′, 𝑠22 = 𝜎AV2 𝑑′ 

 

with 𝑑′ = 𝑑 − 𝜏. Three convenience functions evaluate these integrals using Eq. 10,010.1 in (Owen, 1980): 

 

∫ exp(𝑟𝑟)𝜙(𝑥 | 𝑚1, 𝑠12)Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑐
−∞ = exp �𝑟𝑚1 + 𝑟2𝑠12

2
� ∫ 𝜙(𝑥 | 𝑚1

′ , 𝑠12) ⋅ Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑐
−∞ , 

∫ 𝜙(𝑥 | 𝑚1
′ , 𝑠12) ⋅ Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑐

−∞ = ∫ 𝜙(𝑢) ⋅ Φ �𝑠1
𝑠2
𝑢 + 𝑚1

′−𝑚2
𝑠2

� 𝑑𝑑�𝑐−𝑚1
′ �/𝑠1

−∞ , 

∫ 𝜙(𝑢) ⋅ Φ(𝑎 + 𝑏𝑏)𝑦
−∞ 𝑑𝑑 = ΦΦ� 𝑎

√1+𝑏2
, 𝑦 � 𝜚 = − 𝑏

√1+𝑏2
�, with 𝑚1

′ = 𝑚1 + 𝑟𝑠12. 

# 
# Integrate dnorm(x) * pnorm(a + b*x) from -Inf to y (Owen, 1980, Eq. 10,010.1) 
# 
owen10_010.1 = function(y, a, b) 
{ 

rho = -b/sqrt(1 + b*b) 
pmvnorm(lower=c(-Inf, -Inf), upper=c(a/sqrt(1+b*b), y), corr=matrix(c(1, rho, rho, 1), nrow=2)) 

} 
 
# 
# Integrate dnorm(x | mu1, sigma1) * pnorm(x | mu2, sigma2) from -Inf to y 
# 
owen10_010.1b = function(y, mu1, sigma1, mu2, sigma2) 
{ 

owen10_010.1(y=(y - mu1)/sigma1, a=(mu1 - mu2)/sigma2, b=sigma1/sigma2) 
} 
 
# 
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# Integrate exp(rx) * dnorm(x | mu1, sigma1) * pnorm(x | mu2, sigma2) from -Inf to y 
# 
owen10_010.1c = function(y, r, mu1, sigma1, mu2, sigma2) 
{ 

exp(r * mu1 + r^2 * sigma1^2 / 2) * owen10_010.1b(y, mu1 + r * sigma1^2, sigma1, mu2, sigma2) 
} 
 
acc_async = function(d, c, mua, sigma2a, mub, sigma2b, tau) 
{ 

muab = mua + mub 
sigma2ab = sigma2a + sigma2b 
 
# Probability of absorption within 0…tau 
p0 = acc_sync(d=tau, c=c, mu=mua, sigma2=sigma2a) 
 
# 1st term of Equation A.3 
q = 1 
r = 0 
mu1 = mua * tau 
sigma1=sqrt(sigma2a * tau) 
mu2 = c - muab * (d - tau) 
sigma2 = sqrt(sigma2ab * (d - tau)) 
p1 = q * owen10_010.1c(c, r, mu1, sigma1, mu2, sigma2) 
 
# 2nd integral 
q = exp(2 * c * muab / sigma2ab) 
r = -2 * muab / sigma2ab 
mu1 = mua * tau 
sigma1 = sqrt(sigma2a * tau) 
mu2 = c + muab * (d - tau) 
sigma2 = sqrt(sigma2ab * (d - tau)) 
p2 = q * owen10_010.1c(c, r, mu1, sigma1, mu2, sigma2) 
 
# 3rd integral 
q = -exp(2 * c * mua / sigma2a) 
r = 0 
mu1 = 2 * c + mua * tau 
sigma1 = sqrt(sigma2a * tau) 
mu2 = c - muab * (d - tau) 
sigma2 = sqrt(sigma2ab * (d - tau)) 
p3 = q * owen10_010.1c(c, r, mu1, sigma1, mu2, sigma2) 
 
# 4th integral 
q = -exp(2 * c * mua / sigma2a + 2 * c * muab / sigma2ab) 
r = -2 * muab / sigma2ab 
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mu1 = 2 * c + mua * tau 
sigma1 = sqrt(sigma2a * tau) 
mu2 = c + muab * (d - tau) 
sigma2 = sqrt(sigma2ab * (d - tau)) 
p4 = q * owen10_010.1c(c, r, mu1, sigma1, mu2, sigma2) 
 
p0 + p1 + p2 + p3 + p4 

} 
 

For example, Monkey 1’s accuracy in Condition v100a (low intensity) is given by  

acc_async(d=1000, c=100, mua=0.13, sigma2a=4.3^2, mub=0.34, sigma2b=11.7^2, tau=67). 

Mean response time 

For unimodal/synchronous stimuli, the mean RT is given by Equation 4 which integrates the product of the 

time and the inverse Gaussian density from zero until the deadline 𝑑. For example, Monkey 1’s mean RT in 

Condition v (low intensity) is given by mrt_sync(d=1000, c=100, mu=0.13, sigma2=4.3^2). 

# 
# Mean RT in unimodal and synchronous stimuli 
# 
mrt_sync = function(d, c, mu, sigma2) 
{ 

# Integral t * density from 0 to d (Schwarz, 1994, Equation A.2) 
m = c / mu * {pnorm(mu*d, c, sqrt(sigma2*d)) -  

exp(2*c*mu / sigma2) * pnorm(pnorm(-mu*d, c, sqrt(sigma2*d))} 
 
# Normalize with detection accuracy 
m / acc_sync(d, c, mu, sigma2) 

} 
 

For stimuli with onset asynchrony 𝜏, mean RT is given by Equations 13–15 which boil down to Equations 4 and 

12, and four integrals of the form 𝑞 ⋅ ∫ exp(𝑟𝑟) ⋅ 𝜙(𝑥 | 𝑚1, 𝑠12) ⋅ Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑐
−∞ , as well as four integrals 

of the form 𝑞 ⋅ ∫ 𝑥 ⋅ exp(𝑟𝑟) ⋅ 𝜙(𝑥 | 𝑚1, 𝑠12) ⋅ Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑐
−∞   

1. 𝑞 = 𝑐
𝜇AV

, 𝑟 = 0, 𝑚1 = 𝜇V𝜏, 𝑠12 = 𝜎V2𝜏, 𝑚2 = 𝑐 − 𝜇AV𝑑′, 𝑠22 = 𝜎AV2 𝑑′. 

2. 𝑞 = − 𝑐
𝜇AV

⋅ exp �− 2𝑐𝜇AV
𝜎AV
2 �, 𝑟 = −2𝜇AV

𝜎AV
2 , 𝑚1 = 𝜇V𝜏, 𝑠12 = 𝜎V2𝜏, 𝑚2 = 𝑐 + 𝜇AV𝑑′, 𝑠22 = 𝜎AV2 𝑑′. 

3. 𝑞 = − 𝑐
𝜇AV

⋅ exp �2𝑐𝜇V
𝜎V
2 �, 𝑟 = 0, 𝑚1 = 2𝑐 + 𝜇V𝜏, 𝑠12 = 𝜎V2𝜏, 𝑚2 = 𝑐 − 𝜇AV𝑑′, 𝑠22 = 𝜎AV2 𝑑′ 
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4. 𝑞 = 𝑐
𝜇AV

⋅ exp �2𝑐𝜇V
𝜎V
2 + 2𝑐𝑐AV

𝜎AV
2 �, 𝑟 = −2𝜇AV

𝜎AV
2 , 𝑚1 = 2𝑐 + 𝜇V𝜏, 𝑠12 = 𝜎V2𝜏, 𝑚2 = 𝑐 + 𝜇AV𝑑′, 𝑠22 = 𝜎AV2 𝑑′ 

5. 𝑞 = −1
𝜇AV

, 𝑟 = 0, 𝑚1 = 𝜇V𝜏, 𝑠12 = 𝜎V2𝜏, 𝑚2 = 𝑐 − 𝜇AV𝑑′, 𝑠22 = 𝜎AV2 𝑑′. 

6. 𝑞 = 1
𝜇AV

⋅ exp �2𝑐𝜇V
𝜎V
2 �, 𝑟 = 0, 𝑚1 = 2𝑐 + 𝜇V𝜏, 𝑠12 = 𝜎V2𝜏, 𝑚2 = 𝑐 − 𝜇AV𝑑′, 𝑠22 = 𝜎AV2 𝑑′ 

7. 𝑞 = 1
𝜇AV

⋅ exp �− 2𝑐𝜇AV
𝜎AV
2 �, 𝑟 = −2𝜇AV

𝜎AV
2 , 𝑚1 = 𝜇V𝜏, 𝑠12 = 𝜎V2𝜏, 𝑚2 = 𝑐 + 𝜇AV𝑑′, 𝑠22 = 𝜎AV2 𝑑′. 

8. 𝑞 = −1
𝜇AV

⋅ exp �2𝑐𝜇V
𝜎V
2 + 2𝑐𝑐AV

𝜎AV
2 �, 𝑟 = −2𝜇AV

𝜎AV
2 , 𝑚1 = 2𝑐 + 𝜇V𝜏, 𝑠12 = 𝜎V2𝜏, 𝑚2 = 𝑐 + 𝜇AV𝑑′, 𝑠22 = 𝜎AV2 𝑑′ 

We defined again convenience functions that transform these integrals to two expressions that match 

Equations 10,010.1 and 10,011.1 in (Owen, 1980): 

 

∫ 𝑥 exp(𝑟𝑟)𝜙(𝑥 | 𝑚1, 𝑠12)Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑐
−∞   

= exp �𝑟𝑚1 + 𝑟2𝑠12

2
� ∫ 𝑥 ⋅ 𝜙(𝑥 | 𝑚1

′ , 𝑠12) ⋅ Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑐
−∞ , 

∫ 𝑥 ⋅ 𝜙(𝑥 | 𝑚1
′ , 𝑠12) ⋅ Φ(𝑥 | 𝑚2, 𝑠22) 𝑑𝑑𝑐

−∞   

= ∫ (𝑠1𝑢 + 𝑚1
′ ) ⋅ 𝜙(𝑢) ⋅ Φ �𝑠1

𝑠2
𝑢 + 𝑚1

′−𝑚2
𝑠2

� 𝑑𝑑
�𝑐−𝑚1

′ �
𝑠1

−∞   

= 𝑚1
′ ∫ 𝜙(𝑢) ⋅ Φ �𝑠1

𝑠2
𝑢 + 𝑚1

′−𝑚2
𝑠2

� 𝑑𝑑
𝑐−𝑚1

′

𝑠1
−∞   

     +𝑠1 ∫ 𝑢 ⋅ 𝜙(𝑢) ⋅ Φ �𝑠1
𝑠2
𝑢 + 𝑚1

′−𝑚2
𝑠2

� 𝑑𝑑
𝑐−𝑚1

′

𝑠1
−∞   

∫ 𝜙(𝑢) ⋅ Φ(𝑎 + 𝑏𝑏)𝑦
−∞ 𝑑𝑑 = (see above) 

∫ 𝑢 ⋅ 𝜙(𝑢) ⋅ Φ(𝑎 + 𝑏𝑏)𝑦
−∞ 𝑑𝑑 = 𝑏

√1+𝑏2
⋅ 𝜙 � 𝑎

√1+𝑏2
� ⋅ Φ �𝑢√1 + 𝑏2 + 𝑎𝑎

√1+𝑏2
� − 𝜙(𝑢) ⋅ Φ(𝑎 + 𝑏𝑏)  

 

# 
# Integrate dnorm(x) * pnorm(a + b*x) from -Inf to y (Owen, 1980, Eq. 10,011.1) 
# 
owen10_011.1 = function(y, a, b) 
{ 

bb = sqrt(1 + b*b) 
b/bb * dnorm(a/bb) * pnorm(y*bb + a*b/bb) - pnorm(a + b*y)*dnorm(y) 

} 
 
# 
# Integrate x * dnorm(x | mu1, sigma1) * pnorm(x | mu2, sigma2) from -Inf to y 
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# 
owen10_011.1b = function(y, mu1, sigma1, mu2, sigma2) 
{ 

owen10_011.1(y=(y - mu1)/sigma1, a=(mu1 - mu2)/sigma2, b=sigma1/sigma2) * sigma1 +  
    mu1 * owen10_010.1(y=(y - mu1)/sigma1, a=(mu1 - mu2)/sigma2, b=sigma1/sigma2) 

} 
 
# 
# Integrate x * exp(rx) * dnorm(x | mu1, sigma1) * pnorm(x | mu2, sigma2) from -Inf to y 
# 
owen10_010.1c = function(y, r, mu1, sigma1, mu2, sigma2) 
{ 

exp(mu1 * v + sigma1^2 * v^2 / 2) * owen10_011.1b(y, mu1 + v * sigma1^2, sigma1, mu2, sigma2) 
} 
 

For example, Monkey 1’s mean RT in Condition v100a (low intensity) is predicted to  

mrt_async(d=1000, c=100, mua=0.13, sigma2a=4.3^2, mub=0.34, sigma2b=11.7^2, tau=67). 

 

mrt_async = function(d, c, mua, sigma2a, mub=0.34, sigma2b, tau) 
{ 

muab = mua + mub 
sigma2ab = sigma2a + sigma2b 
d_ = d - tau 
 
# Integral t * density from 0 to tau (Schwarz, 1994, Equation A.2) 
m0 = c / mua * {pnorm(mua*tau, c, sqrt(sigma2a*tau)) -  

exp(2*c*mua / sigma2a) * pnorm(pnorm(-mua*tau, c, sqrt(sigma2a*tau))} 
 
# First term of Eq. 15 (tau * second term of Eq. 12) 
mtau = tau*{acc_async(d, c, mua, sigma2a, mub, sigma2b, tau) - acc_sync(d, c, mua, sigma2a)} 
 
# 1st integral in B.3 
q = c / mua 
r = 0 
mu1 = mua * tau 
sigma1=sqrt(sigma2a * tau) 
mu2 = c - muab * d_ 
sigma2 = sqrt(sigma2ab * d_) 
m1 = q * owen10_010.1c(c, r, mu1, sigma1, mu2, sigma2) 
 
# 2nd integral 
q = -c / muab * exp(2 * c * muab / sigma2ab) 
r = -2 * muab / sigma2ab 
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mu1 = mua * tau 
sigma1 = sqrt(sigma2a * tau) 
mu2 = c + muab * d_ 
sigma2 = sqrt(sigma2ab * d_) 
m2 = q * owen10_010.1c(c, r, mu1, sigma1, mu2, sigma2) 
 
# 3rd integral 
q = -c / muab * exp(2 * c * mua / sigma2a) 
r = 0 
mu1 = 2 * c + mua * tau 
sigma1 = sqrt(sigma2a * tau) 
mu2 = c - muab * d_ 
sigma2 = sqrt(sigma2ab * d_) 
m3 = q * owen10_010.1c(c, r, mu1, sigma1, mu2, sigma2) 
 
# 4th integral 
q = c / muab * exp(2 * c * mua / sigma2a + 2 * c * muab / sigma2ab) 
r = -2 * muab / sigma2ab 
mu1 = 2 * c + mua * tau 
sigma1 = sqrt(sigma2a * tau) 
mu2 = c + muab * d_ 
sigma2 = sqrt(sigma2ab * d_) 
m4 = q * owen10_010.1c(c, r, mu1, sigma1, mu2, sigma2) 
 
# 5th integral in B.3 
q = -1 / mua 
r = 0 
mu1 = mua * tau 
sigma1 = sqrt(sigma2a * tau) 
mu2 = c - muab * d_ 
sigma2 = sqrt(sigma2ab * d_) 
m5 = q * owen10_011.1c(c, r, mu1, sigma1, mu2, sigma2) 
 
# 6th integral 
q = 1 / muab * exp(2 * c * muab / sigma2ab) 
r = -2 * muab / sigma2ab 
mu1 = mua * tau 
sigma1 = sqrt(sigma2a * tau) 
mu2 = c + muab * d_ 
sigma2 = sqrt(sigma2ab * d_) 
m6 = q * owen10_011.1c(c, r, mu1, sigma1, mu2, sigma2) 
 
# 7th integral 
q = 1 / muab * exp(2 * c * mua / sigma2a) 
r = 0 
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mu1 = 2 * c + mua * tau 
sigma1 = sqrt(sigma2a * tau) 
mu2 = c - muab * d_ 
sigma2 = sqrt(sigma2ab * d_) 
m7 = q * owen10_011.1c(c, r, mu1, sigma1, mu2, sigma2) 
 
# 8th integral 
q = -1 / muab * exp(2 * c * mua / sigma2a + 2 * c * muab / sigma2ab) 
r = -2 * muab / sigma2ab 
mu1 = 2 * c + mua * tau 
sigma1 = sqrt(sigma2a * tau) 
mu2 = c + muab * d_ 
sigma2 = sqrt(sigma2ab * d_) 
m8 = q * owen10_011.1c(c, r, mu1, sigma1, mu2, sigma2) 
 
# Return value: normalized integral t * density from 0 to d (Eq. 13) 
p = acc_async(d, c, mua, sigma2a, mub, sigma2b, tau) 
(m0 + mtau + m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8) / p 

} 
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