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Selection alters human genetic variation, but the evolutionary mechanisms shap-
ing complex traits and the extent of selection’s impact on polygenic trait evo-
lution remain largely unknown. Here, we develop a novel polygenic selection
inference method (Polygenic Ancestral Selection Test Encompassing Linkage,
or PASTEL) relying on GWAS summary data from a single population. We use
model-based simulations of complex traits that incorporate human demography,
stabilizing selection, and polygenic adaptation to show how shifts in the fitness
landscape generate distinct signals in GWAS summary data. Our test retains
power for relatively ancient selection events and controls for potential confound-
ing from linkage disequilibrium. We apply PASTEL to nine complex traits, and
find evidence for selection acting on five of them (height, BMI, schizophrenia,
Crohn’s disease, and educational attainment). This study provides evidence
that selection modulates the relationship between frequency and effect size of
trait-altering alleles for a wide range of traits, and provides a flexible framework
for future investigations of selection on complex traits using GWAS data.

Introduction

Natural selection shapes patterns of genetic variation within and between human populations, but the

phenotypic targets of selection and the evolutionary mechanisms shaping causal variation for selected

traits remain largely unknown. Most studies of selection in humans have focused on classic selective

sweeps [1–5], but other selection mechanisms such as stabilizing selection [6], polygenic adaptation [7,8],

and soft sweeps [9] may also play an important role in shaping human diversity. Methods to detect
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selection under these more complex models are needed if we are to fulfill the promise of genomics to

explain the evolutionary mechanisms driving the distribution of heritable traits in human populations [10].

With the recent proliferation of paired genotype and phenotype data from large human cohorts, it

is now feasible to develop and implement statistical tests for polygenic selection in humans. Recently,

studies have proposed methods to detect polygenic selection that capitalize on these rich datasets, and

have begun to uncover evidence that selection acts on complex traits. Two studies proposed empirical

methods that test for an excess of allele frequency differentiation at trait-associated loci [7,11], and showed

that selection may have driven increases in the height of northern Europeans. This approach was later

extended to a model-based framework that also incorporated environmental variables and was applied to

several phenotypes in diverse human populations, providing additional evidence for selection on height

and identifying a strong selection signal for skin pigmentation [8]. Recently, a novel haplotype-length-

based statistic was introduced [12], and used to provide evidence that selection has acted on several

complex traits on very recent timescales, and another study measured the correlation between effect sizes

and allele frequencies to provide evidence for selection acting on height and body mass index (BMI) [13].

While these studies provide strong evidence that polygenic selection is an important determinant of

human genetic and phenotypic variation for some traits, important questions remain about the evolu-

tionary mechanisms that drive complex trait variation. In particular, most previous studies of selection

on human complex traits have focused either on polygenic adaptation [7, 8, 12, 14, 15] or stabilizing se-

lection [13, 16, 17], and have ignored the interplay between the two. In stabilizing selection models, all

trait-altering alleles are deleterious [6,18], regardless of their direction of effect, while a common assump-

tion of polygenic adaptation models is that a selection pressure towards increased trait values will induce

all trait-increasing alleles to be advantageous [7, 8]. A more natural way to model polygenic adapta-

tion is to view stabilizing selection as a null process, with punctuated changes in the fittest trait value

(herein called the “optimal trait value” or “trait optimum”) driving brief periods of adaptation [19].

This modeling framework leads to different predictions about the dynamics of polygenic selection after

a subtle change in the trait value, because trait-increasing are not generically fitness-increasing after a

shift to a higher optimal phenotype value. While models that jointly consider stabilizing and adaptive

evolution have received theoretical attention [19,20], there have been few attempts to use the predictions

of these models in empirical research. Hence, we posited that improved integration of our understanding

of stabilizing selection and polygenic adaptation may provide new insights into the action of selection on

complex traits, and perhaps generate evidence for more subtle evolutionary shifts in the fitness landscapes

of complex traits.

In addition to these potential avenues for new conceptual insights, existing methods for polygenic
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selection detection have some technical limitations. Methods that use the correlation between effect

sizes and allele frequencies achieve their greatest power to detect selection when including rare alleles,

but accounting for cryptic confounders is often most difficult for low frequency variants [21]. Moreover,

a fundamental assumption of fitting a linear model that relates frequencies to effect sizes is that each

observed effect size is independent. Since linkage disequilibrium (LD) drives correlations in effect size

between alleles of varying frequencies, this assumption is violated in human genetic data, which is likely

to elevate the false positive rate for this test. Methods relying on a signal of differentiation between

populations [7, 8, 11] can only be applied when multiple populations are available and are useful for

detecting recent selection that has occurred post-divergence. When the populations of interest are very

recently diverged or data from only a few populations are available, methods of this style may suffer from

decreases in statistical power [22]. A state-of-the-art haplotype-based method [12] can be applied within

a single population, but requires whole-genome sequencing data and is tuned to detect even more recent

selection events. The constraints of these methods may have restricted our understanding of selection

on complex traits to very recent time-scales, and perhaps limited our ability to detect subtle selection

signals.

Here, we develop a novel and efficient statistical test for the action of selection on complex traits that

uses only GWAS summary data and LD information as input. Our method requires estimated effect sizes

from only a single population, maintains power when considering only common alleles, and relies on effect

size differentiation at derived as compared to ancestral alleles. We use model-based simulations that

account for human demography, stabilizing selection, polygenic adaptation, and asymmetric mutation

rates for trait-increasing and -decreasing alleles to motivate our method and show that signals of weak

polygenic adaptation can persist over relatively long evolutionary times. We then develop empirical

tools to control for possible confounding by LD. We apply our method to GWAS summary data for

nine phenotypes, and find strong evidence for selection acting on five of them (height, BMI, Crohn’s

disease, schizophrenia, and educational attainment), and show that four of these signals are suggestive

of evolutionary shifts in the fitness landscapes of the traits. We discuss the implications of our findings

for human evolutionary history and GWAS of biomedically relevant traits.
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Results

Quantitative trait model

We develop a polygenic selection quantitative trait model that maps selection coefficients s to effect sizes

β. We suppose that stabilizing selection acts on a trait, and that the fittest value of the trait is φo (also

referred to as the “trait optimum”), such that the fitness f of an individual with trait value φ is given by

f(φ) =
1√

2πw2
e

−(φ−φo)2

w2 , (1)

where w is the standard deviation of the fitness function. We additionally suppose that the trait φ has

a normal distribution such that

P (φ) =
1√

2πσ2
e

−(φ−φ̄)2

σ2 , (2)

where σ is the breadth of the fitness distribution and φ̄ is the mean trait value in the population. Under

these conditions, it is possible to solve for the per-generation, per-individual selection coefficient s as a

function of the above model parameters for causal alleles of effect size β. We calculate s by marginalizing

the fitness effect of a new mutation of effect size β across all fitness backgrounds. While the full expression

for s is provided in the Supplementary Materials, we note that when the trait is at equilibrium such that

φo = φ̄,

s ≈ − β2

2

√
2π (σ2 + w2)

3
, (3)

which implies that β ∝ |s|1/2. Hence, our model can be directly related to the widely used model of Eyre-

Walker [6], which maps selection coefficients to effect sizes β as β ∝ |s|τ . Our model is approximately

equivalent when τ = 1/2. In both models, when the trait distribution is at equilibrium, the magnitude

of effect sizes is a monotonic increasing function of selection coefficient. However, unlike Eyre-Walker’s

model, our model naturally accommodates shifts the trait optimum because the full expression for s

is written as a function of the current optimal value of the trait and the current distribution of the

phenotype in the population, which makes it straightforward to link the action of stabilizing selection

(which dominates the selection process when the trait distribution is centered at the optimum φo) to that

of transient polygenic adaptation (which dominates when the trait distribution is not centered at φo).

Moreover, our model provides a mechanistic link between β and s by explicitly stating the shape of the

fitness function that acts on φ, given by f(φ).
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In addition to our selection model, we impose a mutation model in which the rates of trait-increasing

and -decreasing alleles are not necessarily equal. This aspect of our model captures the biological reality

that there may not be exactly equal proportions of fixed sites in the human genome that can either

increase or decrease a phenotype. For example, if selection has persistently driven a particular phenotype

to larger values, we might expect that fixed sites tend to confer larger phenotype values, and recurrent

mutations at these sites will then tend to be trait-decreasing.

Under our model, immediately after a shift in optimum, a portion of the causal sites will increase

fitness (specifically, the sites that are on average fitness-increasing when marginalizing across all phenotype

backgrounds), while the remainder of causal alleles will be fitness-decreasing. The population mean will

evolve to move closer to the optimum and eventually equilibrate to the new optimal phenotype value,

at which point all trait-altering variable sites will again be fitness-decreasing. Fig. 1A&B provide an

illustration of effect of a causal allele on fitness and the impact of a shift in the fitness optimum on

the distribution of fitness effects, while a mathematical description of the model is provided in the

Supplementary Materials.

A novel polygenic selection statistic

Stabilizing selection on a quantitative trait constrains large effect alleles to low frequencies [6, 23, 24].

Polygenic adaptation, which drives shifts in causal allele frequency depending on both frequency and effect

size [8], will also induce mean effect size to vary as a function of allele frequency. Here, we propose a test

statistic that captures signals of both relatively ancient polygenic adaptation and long-term stabilizing

selection. Our statistic, Sβ , detects mismatches in mean effect size (denoted β) between ancestral (i.e.,

the allele that was present in the ancestral population) and derived alleles (i.e., the mutant allele) of equal

minor allele frequency (MAF). Ancestral and derived alleles of the same MAF have dramatically different

mean ages [25, 26] – since selection purges large effect alleles rapidly, it will drive the mean effect size of

ancestral and derived alleles of equal MAF to be different. Under a neutral model of trait evolution, we

expect no such relationship between effect size and frequency. Sβ also lends itself to a natural permutation

test for significance, and can differentiate between stabilizing selection and polygenic adaptation.

Sβ is defined as the sum of the mean difference in effect size between derived and ancestral alleles of

equal frequency.

Sβ(xi, xf ) =

x=xf∑
x=xi

βD(x)− βA(x), (4)

where βD(x) is the mean effect size of derived alleles with minor allele frequency x and βA(x) is the mean

effect size for ancestral alleles. We group alleles into 1% frequency bins such that xi and xf are elements
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of (0, 0.01, 0.02, ..., 1.0). Selection drives βD(x) − βA(x) to differ from 0, and the sum Sβ(xi, xf ) then

captures the cumulative deviation from 0. Herein, we refer to this statistic as Sβ unless we are specifically

indicating the frequency cutoff for a particular calculation. In the next section, we use simulations to

show that stabilizing selection and polygenic adaptation can be captured with Sβ , and subsequently we

develop a permutation-based method that accounts for LD to calculate the significance of the deviation

of Sβ from 0.

Sβ is sensitive to recent and ancient selection

We performed forward simulations of genotypes and phenotypes under a model of European demographic

history [27] while incorporating selection on complex traits [6]. We used a weak selection coefficient distri-

bution that was inferred for human conserved noncoding sequences [28], such that the selection coefficients

are consistent with patterns of diversity observed in human functional regions. The demographic model is

shown in gray in Fig. 1C. We set σ = .02 (the standard deviation of the trait) and w = 0.06 (the breadth

of the fitness function), such that the fitness function is much broader than the trait (i.e., fitness declines

only gradually in distance from the trait optimum φo). In addition to population genetic parameters,

our simulations include ancestral misassignment. We supposed that 10% of sites were assigned incor-

rect ancestral/derived status for these simulations, and include a thorough investigation of the impact

of ancestral state uncertainty and a more detailed description of our simulations in the Supplementary

Materials.

We considered four models of selection, first a stabilizing selection model in which the optimal value

of the phenotype is unchanged throughout human evolutionary history predating the out-of-Africa event

(black line, Fig. 1C), second a polygenic adaptation model in which the optimal trait value φo increases

by 20% relative to the standard deviation of the trait (σ) in the African ancestral population (magenta

line, Fig. 1C), third a polygenic adaptation model in which the optimal value increases by 20% at the

out-of-Africa event (green line, Fig. 1C), and lastly a model in which a 20% increase in the optimal value

occurs at the time of the second bottleneck in the European population (blue line, Fig. 1C). Throughout

this section, simulation results represent the mean across 3,000 independent simulations of selection on a

polygenic trait. The dashed lines show the optimal value as a function of time, while the solid lines show

the mean observed phenotype value in the population. For this set of simulations, we choose the mutation

rate of trait-decreasing alleles to be greater than that of trait-increasing alleles (51.5% of mutations are

trait-decreasing) because this set of parameters produces patterns that are qualitatively similar to human

height data, but note that the value of Sβ depends on the full suite of population genetic parameters
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(including mutation rate bias, selection strength, and polygenicity) and can be positive or negative. In the

Supplementary Materials, we additionally consider a model with equal trait-increasing and -decreasing

mutation rates and show that the results are similar. After a change in the optimal value, the population

rapidly adapts to the new environmental conditions (magenta, blue, and green curves, Fig. 1C), similar

to the predictions made by other models of quantitative trait evolution [19].

In Fig. 1D, we plot the mean value of the effect size β as a function of derived allele frequency at

the end of the simulation time-course (i.e., t = 0) for each of the selection models. When the trait

evolves neutrally, or there is long-term stabilizing selection but no difference in the mutation rates of

trait-increasing and trait-decreasing alleles, β is expected to be 0 in all allele frequency bins (dashed

black line). Note that differences in the mutation rate of trait-increasing and -decreasing alleles in the

absence of selection will translate the null either upwards (if trait-increasing alleles are more common)

or downwards (if trait-decreasing alleles are more common), but will not induce effect size to vary with

frequency.

If stabilizing selection acts on the trait and mutation rate differs between trait-decreasing and trait-

increasing alleles, β is negative or very near 0, and increases towards 0 with increasing allele frequency

(black lines and points). Shifts in the phenotype optimum to a larger value drive β to be positive for all

but the rarest alleles (magenta, green, and blue lines and points). A recent shift in optimum (in blue)

drives a sharp departure from the no-shift model (in black), while a more ancient shift will slowly relax

back to the no-shift model (green, magenta) and hence is less differentiated from the no-shift case. Still,

with this human-relevant distribution of selection coefficients, even a relatively ancient and modest 20%

shift in the optimal phenotype value induces a departure from the stabilizing selection model.

In Fig. 1E, we calculate the value of Sβ(0, x), i.e. the cumulative value of the test statistic as a

function of allele frequency x. When no shift in phenotype optimum occurs, mutation rate is biased

towards trait-decreasing alleles, and stabilizing selection acts on the trait, Sβ(0, x) is always negative and

departs from the null (i.e., 0 – note that if the mutation rates are not biased then stabilizing selection

does not depart from the null as in Fig. S4). When there is an ancient change in phenotype optimum

to a larger value, the value of Sβ(0, x) is strongly positive for all but the lowest allele frequencies. Note

that the direction of the departure of Sβ(0, x) from 0 under models of selection depends on both the

mutation and phenotype optimum parameters – if selection is stabilizing and there is a bias in mutation

rate towards trait-decreasing alleles, mean Sβ(0, x) will be negative or very close to 0 at all frequencies,

whereas the opposite is true for a bias towards trait-increasing alleles. A shift towards a larger optimum

value of the trait will cause trait-increasing alleles of weak effect to transiently increase in frequency and

hence will generally increase the value of Sβ , whereas a shift towards a lower optimum will decrease the
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value of Sβ .

We further investigated Sβ by comparing it to the correlation coefficient ρ between MAF and β, which

was previously used to infer the action of selection [13], and is among the very few published methods used

to infer selection on complex traits using only GWAS summary data from a single population (Fig. 2).

For this set of simulations, in which we supposed no mutational bias and a 50% shift in φo relative to

σ, ρ is centered near zero and broadly distributed for all but the most recent selection events, and hence

has little power to capture relatively ancient polygenic adaptation, while Sβ is strongly differentiated

from the null even when polygenic adaptation is relatively ancient and relatively modest in magnitude.

In Fig. S4, we show that these results hold qualitatively for a more modest 20% shift in φo.

PASTEL: A permutation-based test for selection

Under the neutral null model, Sβ is expected to be 0. If every site in the genome were independent,

then we could additionally model the variance of Sβ by supposing that causal alleles are drawn from

some distribution of known form and summing across the variance induced by each individual marker.

Unfortunately, the variance is not straightforward to calculate because it depends on both the distribution

of frequencies of putatively causal GWAS alleles (which depends on SNP ascertainment and evolutionary

forces such as selection and demography), as well as LD between sites. To test for a significant departure

of Sβ from 0, we therefore develop a permutation-based method that accounts for LD and uneven sampling

of allele frequencies. Since causal alleles are linked to non-causal alleles in the human genome, a test

that does not account for LD will under-estimate the variance in Sβ under the neutral null, and will be

anti-conservative.

To account for LD, we divide the genome into 1,703 LD blocks, which were previously identified as

being approximately independent [29]. For each LD block, we then select a random sign (positive or

negative with equal probability), and multiply all the effect sizes in the LD block by this sign. We then

recompute Sβ on the randomized data. By repeating this procedure, we generate a null distribution for

our test statistic Sβ . This method maintains the correlations between effect sizes generated by LD, the

site frequency spectrum of the sampled alleles, and the joint distribution of the absolute value of effect

size and allele frequency, while breaking any relationship between β and allele frequency. Note that this is

a conservative permutation, because many of the alleles within an LD block are not linked or only weakly

linked. We further consider the robustness of our method to population stratification in a subsequent

section, which is a persistent potential source of false positives for studies of selection.

To assess significance, we perform a two-tailed test comparing the observed value of Sβ to the
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permutation-based null distribution. We name this test PASTEL, or the Polygenic Ancestral Selection

Test Encompassing Linkage.

Signals of selection on human height

Human height has been the focus of numerous selection studies from both anthropological [30–33] and

genetic [7,8,34] perspectives, and evidence from both of these fields strongly supports the hypothesis that

height is a selected trait. Hence, we begin our data analysis by applying our method to human height

GWAS summary data from the GIANT consortium [35], which we take as a positive control to validate

our method.

In Fig. 3A, we plot the mean value of β as a function of allele count x in the GIANT data. Note

that we have binned alleles by frequency into 100 distinct bins, and the GWAS sample size is much larger

than 100. β is strongly negative for low frequency alleles and increases steadily to a positive value for

moderate and high frequency alleles. In the Supplementary Materials, we show that the sharp upward

trend in β at very high derived allele counts is likely to be driven by ancestral state uncertainty, and

show that this decreases our power but otherwise does not affect our test.

In Fig. 3B, we plot Sβ(0, x) for all alleles with effect size estimates in the study [35]. We observe

that Sβ(0, x) is an increasing function of x, in qualitative agreement with the simulation data in Fig. 1D.

Lastly, in Fig. 3C, we present the results of LD-preserving permutations of derived and ancestral states

with PASTEL. For each of our 2×103 permutations of derived/ancestral states, we calculated Sβ(0, 1) to

generate a null distribution for our test statistic. We plot a histogram of this null distribution, while the

dashed vertical line represents the observed value of Sβ(0, 1) in the height summary data. This observed

value falls outside the histogram, indicating that the p-value for the test is < 0.0005.

Evidence for selection on human complex traits

We selected 8 additional phenotypes with GWAS summary data available on which to perform our

statistical test for selection on complex traits. We prioritized phenotypes with large sample sizes and

a large number of GWAS hits, while additionally selecting a wide variety of traits that include body

size [35–37], psychiatric conditions [38], immune-related traits [39], reproductive traits [40], cardiovascular

traits [41], and correlates of intelligence [42].

Tab. 1 lists the test statistic value and PASTEL-based p-value for each of the phenotypes. We

calculated Sβ both for all variants and for common variants only (MAF > 1% and MAF > 5%). We

include the common variant test because ancestral mispolarization has a stronger effect on rare alleles
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(Fig. S6), and as we show in the Supplementary Materials, incorrect ancestral assignment can decrease

the power of our test. Moreover, population structure could potentially confound selection signals at

very low frequency (see next section). The full data that correspond to the summary statistics and

permutations are plotted in Figs. S7-S15.

After correcting for multiple testing for nine tests (one for each phenotype), we reject the neutral

null for Crohn’s disease, educational attainment, BMI, height, and schizophrenia, but not BMI-adjusted

waist-hip-ratio, global lipid levels, depression, or menopause onset. Three of the statistically significant

test statistics are negative (BMI, Crohn’s disease, and schizophrenia), which is consistent with models

of stabilizing selection where the mutation rate of trait-decreasing alleles exceeds that of trait-increasing

alleles, but is also consistent with models in which the trait optimum has moved to a lower value in the

species’ evolutionary past. However, for both Crohn’s disease (Fig. S10) and BMI (Fig. S8), β is positive

at low frequency and negative at high frequency, a pattern which we only observed in simulations that

included a decrease in the optimal phenotype value. Similarly, height (Fig. S7) and educational attainment

(Fig. S9) have positive values of Sβ , and negative β at low frequency and positive β at high frequency, a

pattern that we only observed in simulations including an evolutionary shift to higher optimal phenotype

values.

Potential confounding by population structure

As with nearly all tests for polygenic selection (e.g., [7, 8]), population structure could confound our

results. In particular, if a GWAS sample is composed of individuals from two or more populations, and

derived alleles have systematically higher frequencies in some populations than others, we might expect

that β is systematically biased and correlated with allele frequency.

While it is very challenging to control for population structure at low frequencies [21], population

structure in high frequency alleles has been studied very widely and is very well-controlled with PCA-

based methods, which use the PCs as covariates. Each of the GWAS for which we obtained summary

data included such a control, and we therefore expect that population structure is very well-controlled

for high frequency alleles in each of these studies. We therefore ran our test excluding rare alleles with

MAF under 1%, and we additionally perform a very conservative test excluding all alleles below 5% (see

Tab. 1). We find that the selection signals are very robust when including only common alleles for three

of the phenotypes (height, BMI, and educational attainment). The signal for schizophrenia is slightly

stronger when excluding rare alleles (MAF < 1%), but is somewhat diminished when considering only

alleles above 5%. The signal for Crohn’s disease becomes somewhat weaker as we increase the allele
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frequency threshold, indicating that rare alleles at least partially drive the signal for Crohn’s – however,

all p-values for Crohn’s were nominally significant at the p < 0.05 level. We conclude that our test retains

power even when excluding rare alleles for sufficiently strongly selected phenotypes, and that the putative

selection signals discovered herein are unlikely to be driven by population structure.

Discussion

Many studies have suggested that selection shapes human genetic variation [5], and it has long been

theorized that it drives the variance in a broad range of human complex phenotypes [4]. Here, we

developed a novel test (PASTEL) for polygenic selection that can be applied to GWAS summary data

for a single population, can capture relatively ancient selection events, and retains power when applied

only to common alleles, for which it is more straightforward to correct for population stratification. We

applied our test to GWAS summary data for nine phenotypes, and showed that five of them (educational

attainment, height, Crohn’s disease, BMI, and schizophrenia) strongly suggest a role for selection in

shaping trait variation. It has been previously suggested that height [7, 8, 11, 13] and BMI are under

selection [13], but studies have reported both polygenic adaptation and widespread negative selection

as possible selection mechanisms. Our results are consistent with a shift towards higher optimal fitness

values of educational attainment and height, but lower optimal fitness values for BMI and Crohn’s disease

risk, suggesting that long-term stabilizing selection on these traits has been punctuated with periods of

polygenic adaptation.

If selection acts on biomedically relevant complex traits in humans such as Crohn’s disease and

schizophrenia, there are strong implications for the future of both medical and evolutionary genomics.

In medical genomics, an ongoing debate about the genomic architecture of complex diseases is at the

forefront of the field [43]. When strong selection acts on complex traits, it can elevate the role of rare

alleles in driving trait variance [44]. If rare alleles contribute a larger fraction of the genetic variance than is

expected under neutral models, then very large GWAS that use only array-based genotyping information

are very unlikely to be able to capture these signals, and sequence-based studies and powerful rare variant

approaches that are robust to evolutionary forces (including those not investigated here, such as partial

recessivity) will be needed [23, 24]. Moreover, recent work has suggested that the over-representation

of Europeans in GWAS has limited the effectiveness of estimating polygenic risk scores in other human

populations [45]. This is a serious problem for the transfer of genomic research into the clinic, where

precision medicine initiatives relying on personal genetic information will only be successful if genetic

risk can be accurately inferred in diverse populations. While this effect has been attributed to neutral

11

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2017. ; https://doi.org/10.1101/173815doi: bioRxiv preprint 

https://doi.org/10.1101/173815
http://creativecommons.org/licenses/by-nc/4.0/


demographic forces, if selection has driven numerous phenotypes to acclimate to local environmental

conditions in ancestral human populations worldwide it could exacerbate this problem dramatically.

In the field of evolutionary genomics, most studies have agreed that the impact of selection is

widespread on the human genome, but the evolutionary mechanisms that drive genetic and phenotypic

diversity have been widely debated [4, 5]. In our study, we showed that the selection signals for BMI

and Crohn’s disease are consistent with a bias in mutation rate towards trait-increasing alleles, and a

shift to a lower optimal value of the trait, while height and educational attainment are consistent with

a mutational bias towards trait-increasing alleles and a shift towards higher values of the trait optimum.

The signal for schizophrenia is consistent with both models of an ancestral shift towards a lower opti-

mum and a stabilizing selection only model in which there is a mutational bias towards trait-decreasing

alleles. In general, we propose that it is likely for most selected traits that there are unequal numbers

of trait-increasing and trait-decreasing sites that can be mutated genome-wide. If past selection events

have pushed a selected trait (e.g., height) to ever higher values, then we expect a majority of fixed

height-altering sites to be height-increasing. Recurrent mutations at these sites would then tend to be

height-decreasing. Incorporating mutational bias into our model allowed us to then distinguish between

signals of stabilizing selection alone, or evolutionary shifts in trait optima. However, we note that other

models, for example those with no mutational bias and multiple evolutionary shifts in the trait optimum,

could also generate qualitatively similar signals.

Among the nine traits that we tested, we found that five had strong signals of polygenic selection.

However, this does not imply that the other four are not under selection. The power of our test depends on

the strength of selection, the polygenicity of the trait, the heritability of the trait, and the mutational bias.

If a trait is under strong stabilizing selection, but the mutation rate of trait-increasing and -decreasing

alleles is exactly equal, then our test has no power. Moreover, if selection is weak, a small number of

causal alleles drive variance in the trait, or the trait is only weakly heritable, power is greatly diminished.

However, increased sample sizes in GWAS will always increase our power, because the variance on effect

size estimates for even weak effect causal alleles decreases dramatically with sample size. When the

standard error on β decreases, the power of our test will increase. Although we showed that population

structure is unlikely to bias our results, uncorrected population structure is always a concern for tests of

polygenic selection, and cannot be completely ruled out. An uncorrected bias in the inferred β values

due to population structure will make our test anti-conservative. LD score regression on some of our

phenotypes is consistent with a small amount of residual uncorrected population structure [46]. However,

LD score regression assumes a specific relationship between allele frequencies and effect sizes, and inflation

in the relevant test statistic can be driven by either selection or population structure [46].
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One strength of our permutation-based approach is that other summary statistics, such as the absolute

value of the deviation between ancestral and derived effect sizes, could also easily be applied. Since

stabilizing selection strongly increases E[β2] at low frequency [23], it may prove fruitful to investigate

this statistic. In future studies, it will be advantageous to apply other types of summary statistics

and compare their relative power, and to use the information in such summary statistics to infer the

evolutionary parameters of complex trait selection models such as the timing of shifts in the trait optima

and the strength of selection.
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Figure 1: Panels A-B are schematics of our trait model, while C-E show simulation
results. A: fitness impact of a β = 1 mutation. At equilibrium, the trait distribution
P (φ) is symmetric about the optimal value of the phenotype, φ = 0. Individuals with
φ < − 1/2 would increase in fitness (f(φ+ 1) > f(φ), shaded dark gray) given a mutation
with β = 1, while all others decrease in fitness. B: schematic of the relationship between
effect size and selection coefficient. At time t = ts the optimal trait value φo increases, and
trait-decreasing alleles have decreased fitness while trait-increasing alleles have increased
fitness. Still, only trait-increasing alleles of small effect are on average fitness-increasing
(inset). C: φo is plotted as a dashed line in black, magenta, blue, and green. φo changes
by 20% relative to the standard deviation (σ) of φ coincident with out-of-Africa (green,
ts = −97000) and founding of Europe (blue, ts = −22000), in the ancestral African
population (magenta, ts = −322000), or remains unchanged (black, ts = −∞). The
demographic model is in gray (not to scale). The solid black, magenta, green, and blue
curves correspond to the observed mean of φ, which rapidly approaches φo. D: β̄ as a
function of derived allele frequency (DAF). E: Sβ(0, x) as a function of DAF. D and E are
on a log scale on the x-axis.
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Figure 2: A comparison between the correlation coefficient (ρ) and our selection summary
statistic (Sβ), computed on all variants (A & C) or only common variants with frequencies
greater than 5% (B & D). The points represent the mean over 1,000 simulations, while
the bars represent the standard deviation. For each data point, a shift of 50% in the
optimal phenotype value occurs at the corresponding time on the x-axis. The neutral null
is plotted as a horizontal dashed line.
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Phenotype Sβ(0, 1) p-value Sβ(0.01, 0.99) p-value Sβ(0.05, 0.95) p-value
Height 0.0354 < 0.0005 0.03339 < 0.0005 0.0305 < 0.0005
BMI -0.0113 0.0015 -0.0117 < 0.0005 -0.00981 < 0.0005
WHR-BMI 0.00272 0.61 -0.00105 0.835 0.00248 0.5205
Education 0.00863 < 0.0005 0.00863 < 0.0005 0.00662 < 0.0005
GLL 0.00309 0.519 -0.00317 0.0185 -0.00211 0.0055
Crohn’s disease -0.0487 0.0025 -0.0361 0.014 -0.0291 0.028
Menopause onset -0.0121 0.3555 -0.0106 0.3715 -0.0228 0.054
Depression -0.0187 0.356 -0.0177 0.008 -0.0111 0.036
Schizophrenia -0.0622 0.0075 -0.0488 0.0045 -0.026 0.0815

Table 1: Test-statistics and p-values corresponding to GWAS for nine phenotypes that
we hypothesized may be under selection. The first and second columns include all alleles,
while the third and fourth columns include only alleles that have MAF > 1%, and the
final two columns include only alleles with MAF > 5%. Tests that pass a multiple testing
correction are bolded. BMI: body mass index, WHR-BMI: waist-hip ration adjusted for
body mass index, GLL: global lipid levels
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Supplementary Materials

A model of quantitative traits under selection

Biological motivation

We develop a quantitative trait model that is qualitatively similar to that of Eyre-Walker at equilib-
rium [6], but additionally accommodates other realistic features of complex traits, including asymmetric
mutation rates for trait-increasing and trait-decreasing alleles and changes in the optimal trait value over
time.

Biologically, it is likely that there are an unequal number of fixed bi-allelic sites genome-wide that
can increase or decrease a phenotype relative to its current value. For example, if past selection events
have driven the phenotype to ever larger values, we might expect that the majority of trait-increasing
sites have already been fixed by positive selection in the evolutionary past, and that further recurrent
mutations at these fixed sites would therefore decrease the phenotype.

Temporal variation in the optimal value of selected traits may also be important to consider in
evolutionary models of complex traits, as such changes may be an evolutionary mechanism for polygenic
adaptation [19]. When a population’s environment is altered, perhaps by migration, a change in climate,
or the elimination/introduction of competing species, it is likely that selection pressures on phenotypes
will also change. If the population persists long enough in this new environment (say on the order of 2N
generations for a population of size N), it is expected that the phenotype mean will approach the new
phenotype optimum, and the population will again be at equilibrium. In the intervening time, while the
population is out of equilibrium, allele frequencies will shift as a function of their effect on the phenotype.
Our goal is to capture selection’s impact on the causal variation during this out-of-equilibrium time
period.

Mathematical motivation

In the original Eyre-Walker model, the effect size β of a causal allele is determined by its selection
coefficient s according to the equation β = δ|s|τ , where τ is an exponent that controls the shape of the
fitness-phenotype relationship and δ is a random sign.

Asymmetries in mutation rate are therefore easily accommodated by biasing the probability that
the random sign δ is positive or negative. In our simulations, we suppose that 48.5% of sites are trait-
increasing while the remainder are trait-decreasing (because this choice generates patterns that are qual-
itatively similar to the human height data), but the model accommodates any level of asymmetry by
simply modifying this parameter.

Accommodating changes in the optimal value of the phenotype is more challenging, and requires
adopting some weak assumptions. First, we assume that the phenotype is normally distributed. This
is a weak assumption because many phenotypes, such as height, have an empirical distribution that is
well-approximated by a normal distribution, and because Fisher showed that polygenic traits under very
general assumptions are expected to achieve a normal distribution [47]. Our simulation model could
accommodate any phenotype distribution, but some a priori assumption about the distribution must be
made in our framework. Next, we suppose that the fitness function f is symmetric with respect to the
optimal phenotype value φo, such that f(φo + β) = f(φo − β), and that fitness decreases monotonically
with distance from φo. While many functions have this property, we additionally suppose that the fitness

function f is Gaussian such that f(φ) = 1√
2πw2

e
−(φ−φo)2

w2 .
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Recasting the selection coefficient in terms of the trait distribution

To calculate the time dependent selection coefficient s(t) of a site with effect size β, we first develop some
results that allow us to recast the selection coefficient s at equilibrium as a function of the proportion of the
population in which an allele of effect size β is fitness-increasing. Since the trait is normally distributed,

the probability that an individual has phenotype value φ, P (φ), is given by P (φ) = 1√
2πσ2

e
−(φ−φ̄)2

σ2 . To

calculate the selection coefficient for an allele with effect size β, we then marginalize across all trait
backgrounds in the population to obtain the mean fitness effect, since the fitness effect varies across trait
backgrounds according to f(φ).

s =

∫ ∞
−∞

(f(φ+ β)− f(φ))P (φ)dφ. (5)

substituting in P (φ) and f(φ), this integral can be solved in Mathematica [48], and we obtain

s =

(
1√

2π (σ2 + w2)

)
e
−
β2(σ2+w2)+w2(φ̄−φo)2+2β(φoσ2+φ̄w2)

2w2(w2+σ2)

e β( βσ2

σ2+w2 +2φo

)
2w2 − e

β(β(σ2+w2)+2(σ2φo+w2φ̄))
2w2(σ2+w2)

 .

(6)
When φo is a time-varying function, s is also a time-varying function s(t). When the trait is at equilibrium,
φo ≈ φ̄. Taking this condition and solving for β, we find

β =

√
−2 (σ2 + w2) log

(
1 + s

√
2π (σ2 + w2)

)
(7)

This expression allows us to directly translate any distribution of fitness effects to the distribution of
effect sizes at equilibrium, and eqn. 6 then allows us to convert these effect sizes to time-variable selection
coefficients (see next section for more discussion).

Validation of simulations

We developed a custom simulator of our model in Python. Our simulator accommodates changes in
population size, including explosive growth and bottlenecks, as well as any arbitrary distribution of
selection coefficients. We calculate the distribution of effect sizes β given a distribution on s using eqn. 7.
We perform a burn-in period of 5N generations for a simulated population of size N , during which we
suppose that the population is close to equilibrium and hence s does not vary each generation. After the
first burn-in, we perform an additional 5N generations of burn-in during which we recalculate the fitness
effects s as a function of β, φ̄, and φo in each generation with eqn. 6. To calculate the current value of
φ̄, we sum over all j causal alleles, such that φ̄ =

∑
j qjβj , where qj is the frequency of a site with effect

size βj .
For simulations of polygenic adaptation, at some time ts during the simulations, we reset φo to a new

value, which induces the trait distribution to be out-of-equilibrium with respect to the fitness function.
During the out-of-equilibrium period, a portion of the causal sites will achieve positive selection coefficients
(specifically those that are fitness increasing when marginalizing across all trait backgrounds, as described
in the main text), while the remaining sites will be fitness decreasing. Each generation, we recalculate s
based on the current configuration of φ̄ and φo.

We choose the number of causal alleles in our simulations such that the genetic variance induced by
the causal alleles is always less than σ, the variance of the phenotype. If we did not impose this constraint,
we would implicitly be simulating traits with narrow sense heritability h2 greater than 1. Although h2

varies across simulation replicates depending on the (stochastic) distribution of frequencies and effects of
causal sites, simulations herein have h2 ≈ 0.7.

22

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2017. ; https://doi.org/10.1101/173815doi: bioRxiv preprint 

https://doi.org/10.1101/173815
http://creativecommons.org/licenses/by-nc/4.0/


To validate our simulator, we simulated a complex selection and demographic model using previously
published models of European demographic history [27] and selection on human conserved elements [28]
in SFS CODE [49] and compared the simulated frequency spectrum to the frequency spectrum in our
simulations. When no shift in the trait optimum occurs, selection coefficients in our model have the same
expected value as in the standard Wright-Fisher model, so the frequency spectra should be similar. Results
of these simulations are plotted in Fig. S2. We observe good agreement between the two spectra overall,
although our model results in a slight over-representation of rare alleles and a slight under-representation
of common alleles relative to SFS CODE. Note that there is weak LD in the SFS CODE simulations and
that our selection model differs slightly, so we do not expect perfect agreement. For the SFS CODE sim-
ulations, we used the following command line: sfs code 1 500 -N 1000 -n 100 -A -t 0.001 -r 0.0

-TE 0.405479 -Td 0 P 0 1.982738 -Td 0.265753 P 0 0.128575 -Td 0.342466 P 0 0.554541 -Tg

0.342466 P 0 55.48 -L 100 150 -l g 0.5 R -a N R -W 2 0 1 1 0.0415 0.00515625 -s <random seed>

-o <out>

For all of the simulations presented in the manuscript, the curves represent the mean over 1,000
independent simulations unless otherwise stated. We used N = 1, 000 (where N is the ancestral popu-
lation size) and rescaled the mutation and selection coefficient parameters to accommodate this smaller
population size. The simulation code was implemented in Python and numpy, and will be freely available
and posted on Github. For all of our simulations, we used the selection coefficient distribution from [28]
which has E[2Ns] = −8, and the following parameters unless otherwise stated: θ = 4Nµ = 0.001,
θ− = 4Nµ− = 0.001 ∗ 0.515 (i.e., the mutation rate for alleles that are trait-decreasing – trait-increasing
alleles make up the remainder of the mutations), 2.5× 106 causal target causal sites (i.e., the number of
causal alleles that can affect the phenotype – note that not all sites are mutated at any given time in a
particular simulation), w = 0.06, σ = 0.02.

The behavior of Sβ in simulation

We performed simulations under a suite of models, including those with equal mutation rates for trait-
increasing and trait-decreasing alleles, unequal mutation rates, stabilizing selection, and polygenic adap-
tation. In the main text we focused on the models with unequal mutation rates for trait-increasing and
-decreasing alleles because these models result in patterns similar to those observed in the empirical height
data. Here, we consider models with equal mutation rates for trait-increasing and -decreasing alleles.

In Fig. S3A, we plot the European demographic model that we simulated [27], as well as the mean
phenotype value across 1,000 independent simulations. As in the main text, the three colors correspond
to a shift of 20% in the optimal phenotype value at the out-of-Africa bottleneck (green), an ancient 20%
change in the optimal phenotype value (magenta), and long-term stabilizing selection with no change in
the optimal value of the phenotype (black). All three models result in qualitatively very similar patterns
for the mean phenotype value as those simulated in the main text (Fig. 1C).

In contrast to the mutation bias models, when mutation rates are equal for trait-increasing and -
decreasing alleles, stabilizing selection does not induce a relationship between allele frequency and effect
size (black lines/points, Fig. S3B), and Sβ has no power. However, polygenic adaptation again results in
elevating the effect sizes relative to the stabilizing selection model and the neutral null (Fig. S3B). And
in qualitative agreement with the results in Fig. 1C, Sβ is highly differentiated from the null and has a
similar form to the model with unequal mutation rates.

Comparing Sβ to ρ

We compared Sβ to ρ, the Pearson correlation coefficient between effect size and allele frequency. ρ was
previously used to infer selection acting on polygenic traits [13]. We simulated polygenic adaptation as
a 20% shift (note that the same model with a 50% shift is plotted in the main text) in the optimal value
of a quantitative trait over a range of time spans, from more than 300,000 years ago to 22,000 years ago
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(the latter date corresponding to the bottleneck at the founding of Europe). As in the main text, we
chose a demographic model that was inferred from European genomic sequences [27] and a distribution
of selection coefficients inferred from human conserved noncoding regions [28]. We calculated ρ and Sβ
at the end of each simulation (which corresponds to the present day) for 1,000 independent simulations
at each time point. In keeping with the simulations in the previous section, for this set of simulations we
set the mutation rate of trait-increasing and -decreasing alleles to be equal.

In Fig. S4, we plot the distribution of Sβ and ρ, where the points represent the mean and the bars
represent the standard deviation over the 1,000 simulations. ρ is not substantially different from 0 for
all but the most recent selection events regardless of whether it is computed on all variants (A) or only
common variants (C, > 5%), implying that it would not be able to differentiate between neutral evolution
and polygenic selection for ancient selection events. In contrast, Sβ is elevated relative to the null for all
time points. This signal is not driven by rare variants, because common variants (D) show a very similar
signal to all variants (C).

We note that in this set of simulations, we have used 2.5 × 106 causal sites per simulation, only a
portion of which are expected to be variable in any given simulation. If the number of causal sites is
much larger, then both ρ and Sβ are both likely to have increased power. Moreover, power depends on
the full suite of population genetic parameters, including selection strength and the demographic model,
because these parameters affect the distribution of effect sizes and allele frequencies. Hence, our results
in this section should be interpreted as a statement of relative power under a constrained set of model
assumptions, and not a general statement about the time-scales and absolute power of each of these styles
of statistical tests.

The relationship between MAF and β

We simulated a wide variety of parameter ranges, and reported three of the simulated models in this
study. As discussed in the main text, these models include a stabilizing selection model in which the
optimal value of the phenotype is unchanged throughout recent human evolutionary history (black line),
a polygenic adaptation model in which the optimal value increases by 20% in the African ancestral
population (magenta line), at the out-of-Africa event (green line), or at the time of the second bottleneck
in the European population (blue line). For this set of simulations, we included a bias in mutation rate
towards trait-decreasing alleles (51.5% of new mutations are trait-decreasing).

While the relationship between derived/ancestral allele frequencies and effect sizes is not commonly
explored in most complex trait studies, the relationship between minor allele frequency (MAF) and β
is somewhat more familiar [13]. We therefore explored this relationship in our simulated data as well.
In Fig. S5, we plot this relationship for the three selection models simulated in the main text, namely
stabilizing selection with a bias in mutation rate towards trait-decreasing alleles (black), the same model
plus a relatively ancient shift in the trait optimum corresponding with the out-of-Africa bottleneck (green),
a more recent shift in the trait optimum corresponding to the founding of the European population (blue),
and an ancient shift (magenta). We observe that a downwards mutation bias and stabilizing selection
results in a positive correlation between effect size and MAF, while mean effect sizes are generally negative
or near 0. Adding shifts in the trait optimum maintains this overall picture, but shifts the mean effect
sizes upwards to positive values at moderate to high allele frequencies. When the shift is very recent
(blue), a negative correlation between effect size and allele frequency is induced.

The impact of ancestral uncertainty on Sβ

Ancestral states are not directly observed in genomic data, and are typically inferred by comparing human
sequences to those of an out-group. The underlying assumption is that the allelic state in the out-group
represents the most likely ancestral state for the allele. While this approach correctly assigns the ancestral
state for the majority of alleles, it does not account for recurrent fixation events at a single site, leading
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to some rate of ancestral misassignment. Since our method to detect selection compares ancestral and
derived alleles, we sought to understand how ancestral misassignment would impact our inferences.

Ancestral misassignment will tend to decrease the absolute value of Sβ within each frequency bin,
and hence decrease our power. To see this, suppose that for a given minor allele frequency x, we misassign
ancestral state with probability 1− p, and Ψ(x) is the number of derived alleles observed at frequency x.
The expected value of the the test statistic within this bin is then

E[Sβ(x)] =
(
pΨ(x)βD + (1− p)Ψ(1− x)βA

)
−
(
pΨ(1− x)βA + (1− p)Ψ(x)βD

)
(8)

Note that if p = 0.5, we are randomly guessing at ancestral states, and E[Sβ(x)] = 0. If p < 0.5, then
the absolute value of E[Sβ(x)] is strictly less than it’s true value (i.e., the value that would be observed
with no ancestral uncertainty).

While we expect that ancestral uncertainty then only serves to make our analyses more conservative,
we also sought to understand its potential impact on the observed relationship between allele frequency
and effect size. Because Ψ(x) is generally much larger than Ψ(1 − x) for x < 0.5 (i.e., there are more
rare alleles than common alleles in genomic sequencing data), we expect that the impact of ancestral
uncertainty will be greatest at very high derived allele frequencies (e.g., x > 0.9). We fit a linear model
by regressing the mean effect size on allele frequency for the observed height data for derived alleles in the
frequency range 40-60%, and extrapolated this curve out to 100% frequency, supposing that frequencies
near 50% were only modestly impacted by ancestral uncertainty. We then simulated the impact of
ancestral uncertainty at various levels from p = 1% to p = 10%. At p = 10% uncertainty we see a
striking resemblance between our simulated data and the observed data. We conclude that moderate
levels of ancestral uncertainty are likely responsible for the “S” shaped curve that we observe for many
of our phenotypes.

Aggregating phenotype data

We obtained GWAS summary data from several published studies for nine different phenotypes as dis-
cussed in the main text [35–42]. To calculate Sβ for each study, we first needed to polarize all the alleles
by their derived/ancestral status. We obtained inferred derived/ancestral states for each allele from the
1000 Genomes project [50]. Our permutation method requires that each allele then be assigned to a LD
block within the genome [29]. To assign each of these alleles to LD blocks, we also used the 1000 Genomes
data to obtain the genomic coordinates for each allele. Alleles for which we could not assign states or LD
blocks were excluded.

Calculating Sβ and implementing PASTEL

We developed custom software in Python, which is freely available upon request and will be posted on
Github. To calculate Sβ , we group alleles into 1% frequency bins – without performing this grouping,
many high frequency bins would have very few alleles and very noisy estimates of β. We selected 1%
because it strikes a balance between obtaining low standard errors on β and finely parsing the allele
frequency space, but we note that other choices of bin size could potentially improve our power.

To calculate p-values, we perform a two-tailed test by comparing our test-statistic to the empirical
null distribution that we obtain from our permutations. We performed 2,000 permutations as described
in the main text for each phenotype.
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Figure S1: A plot of the distribution of a hypothetical trait under stabilizing selection.
Suppose that a large effect allele with β = 1 is mutated in a random individual in the
population. If this allele falls on an individual with a trait value to the right of −1/2, the
allele will be fitness-decreasing, assuming that the fitness function is symmetric, centered
at the mean trait value, and monotonically decreasing away from its optimum. If it falls
to the left of −1/2, it will be fitness-increasing.
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Figure S3: In A, we plot the demographic history of Europe as inferred from human
genomic sequences [27] in gray (not to scale). The optimal value of a selected phenotype
(φo) is plotted as a dashed line in black, blue, and green (the black dashed line overlaps
with the population mean and is not visible). In the green and blue dashed lines, the
optimal value of the phenotype changes by 20% relative to the standard deviation of the
phenotype (σ) coincident with bottleneck events corresponding to out-of-Africa (green,
t = −97000 years ago) or in the ancestral African population (magenta, t = −322000).
In the solid black, green, and magenta curves we plot the observed value of the mean
phenotype, which dynamically approaches the optimal phenotype value. In B, we plot
the mean value of the effect size at the end of the simulation (t = 0) for each of the models
presented in A. In C, we plot Sβ(0, x) for each model in A. In contrast to Fig. 1, in this
plot the mutation rates of trait-increasing and trait-decreasing alleles are equal.

28

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2017. ; https://doi.org/10.1101/173815doi: bioRxiv preprint 

https://doi.org/10.1101/173815
http://creativecommons.org/licenses/by-nc/4.0/


−0.2

0.0

0.2

−3e+05 −2e+05 −1e+05 0e+00

t s (years)

ρ
A

−0.2

0.0

0.2

−3e+05 −2e+05 −1e+05 0e+00

t s (years)

ρ

B

−0.0005

0.0000

0.0005

0.0010

0.0015

−3e+05 −2e+05 −1e+05 0e+00

t s (years)

S
β(0

, 1
)

C

−0.0005

0.0000

0.0005

0.0010

0.0015

−3e+05 −2e+05 −1e+05 0e+00

t s (years)

S
β(0

.0
5,

 0
.9

5)

D

Figure S4: A comparison between the correlation coefficient (ρ) and our selection summary
statistic (Sβ), computed on all variants (A & C) or only common variants with frequencies
greater than 5% (B & D). The points represent the mean over 1,000 simulations, while
the bars represent the standard deviation. For each data point, a shift of 20% in the
optimal phenotype value occurs at the corresponding time on the x-axis. The neutral null
is plotted as a horizontal dashed line.
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for simulations of stabilizing selection with time variable optimum phenotype value. The
black curve corresponds to no shift in the optimum, while green and blue correspond to
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(p = 0), in B p = 0.05, in C p = 0.1, and D shows the observed height data.
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Figure S7: Sβ for height. The panels in the left column show the relationship between
allele frequency and β, the middle column displays the cumulative value of Sβ(xi, xf ), and
the right columns show the null distribution of Sβ given by our permutation test, PASTEL.
Panels A-C correspond to xi = 0 and xf = 1, panels D-F correspond to xi = 0.01 and
xf = 0.99, and panels G-I correspond to xi = 0.05 and xf = 0.95
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Figure S8: Sβ for BMI. The panels in the left column show the relationship between allele
frequency and β, the middle column displays the cumulative value of Sβ(xi, xf ), and the
right columns show the null distribution of Sβ given by our permutation test, PASTEL.
Panels A-C correspond to xi = 0 and xf = 1, panels D-F correspond to xi = 0.01 and
xf = 0.99, and panels G-I correspond to xi = 0.05 and xf = 0.95
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Figure S9: Sβ for educational attainment. The panels in the left column show the re-
lationship between allele frequency and β, the middle column displays the cumulative
value of Sβ(xi, xf ), and the right columns show the null distribution of Sβ given by our
permutation test, PASTEL. Panels A-C correspond to xi = 0 and xf = 1, panels D-F
correspond to xi = 0.01 and xf = 0.99, and panels G-I correspond to xi = 0.05 and
xf = 0.95. Note that the results for A-C are the same as D-F because no alleles under
1% were included in the summary data for this study.
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Figure S10: Sβ for Crohn’s disease. The panels in the left column show the relation-
ship between allele frequency and β, the middle column displays the cumulative value of
Sβ(xi, xf ), and the right columns show the null distribution of Sβ given by our permuta-
tion test, PASTEL. Panels A-C correspond to xi = 0 and xf = 1, panels D-F correspond
to xi = 0.01 and xf = 0.99, and panels G-I correspond to xi = 0.05 and xf = 0.95

35

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2017. ; https://doi.org/10.1101/173815doi: bioRxiv preprint 

https://doi.org/10.1101/173815
http://creativecommons.org/licenses/by-nc/4.0/


●

●

●

● ●
● ● ●●●

●
●●

●●
●●●●●●●●●●●

●●●●●
●●●●

●●●●●●●
●●●●●

●●
●
●●
●
●●●●●

●
●●
●●●
●
●●
●
●
●

●●
●●●●●●

●●●●
●●

●
●
●●●

●●●
●

●
●

●●

●

●

●

0.01 0.02 0.05 0.10 0.20 0.50 1.00

−
0.

01
5

−
0.

00
5

0.
00

5

derived allele frequency (x)

β

A.
●

●

●
●

● ●
●

●
●●

●●●●
●●

●
●●●●●

●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●●●●●
●●
●●●●
●●
●
●
●●
●
●

●

●

●

0.01 0.02 0.05 0.10 0.20 0.50 1.00

−
0.

06
−

0.
04

−
0.

02

derived allele frequency (x)

S
β(

0,
 x

)

B.

Sβ(0, 1)

co
un

ts

−0.10 −0.05 0.00 0.05 0.10

0
50

10
0

15
0

20
0

25
0

30
0

C.

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●●

●●
●

●●
●
●●●

●
●

●

●

●

●

●
●
●

●●●

●
●●
●
●

●●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

0.02 0.05 0.10 0.20 0.50 1.00

−
0.

00
4

−
0.

00
2

0.
00

0

derived allele frequency (x)

β

D.
●

●
●

● ●
●

●
●

●
●

●
●●

●●
●
●●●●●

●
●
●●●●

●●●●
●●●●●●●●●

●●●●●●
●●
●
●●
●●●●●●

●●●●●●●●●
●●●●
●●●●
●
●
●●●●●
●
●●
●●●
●
●
●
●
●
●●
●
●

●

●

0.02 0.05 0.10 0.20 0.50 1.00

−
0.

05
−

0.
04

−
0.

03
−

0.
02

−
0.

01

derived allele frequency (x)

S
β(

0,
 x

)

E.

Sβ(0, 1)

co
un

ts

−0.10 −0.05 0.00 0.05

0
10

0
20

0
30

0
40

0

F.

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.5 1.0

−
0.

00
2

−
0.

00
1

0.
00

0
0.

00
1

derived allele frequency (x)

β

G.
●

●

●
●

●

● ●
●

●
●

●
●

●●●●
●
●
●
●●●●

●●●●
●●●●●

●●●
●●●

●●●●
●
●
●
●●
●●●

●●●
●
●●
●●●●●

●●●●
●●●●

●
●
●
●●●●

●
●
●
●
●
●●

●
●
●

●

●●

0.1 0.2 0.5 1.0

−
0.

02
5

−
0.

01
5

−
0.

00
5

derived allele frequency (x)

S
β(

0,
 x

)

H.

Sβ(0, 1)

co
un

ts

−0.06 −0.02 0.00 0.02 0.04 0.06

0
10

0
20

0
30

0
40

0
50

0

I.

Figure S11: Sβ for schizophrenia. The panels in the left column show the relation-
ship between allele frequency and β, the middle column displays the cumulative value of
Sβ(xi, xf ), and the right columns show the null distribution of Sβ given by our permuta-
tion test, PASTEL. Panels A-C correspond to xi = 0 and xf = 1, panels D-F correspond
to xi = 0.01 and xf = 0.99, and panels G-I correspond to xi = 0.05 and xf = 0.95
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Figure S12: Sβ for global lipid levels. The panels in the left column show the relation-
ship between allele frequency and β, the middle column displays the cumulative value of
Sβ(xi, xf ), and the right columns show the null distribution of Sβ given by our permuta-
tion test, PASTEL. Panels A-C correspond to xi = 0 and xf = 1, panels D-F correspond
to xi = 0.01 and xf = 0.99, and panels G-I correspond to xi = 0.05 and xf = 0.95
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Figure S13: Sβ for menopause onset. The panels in the left column show the relation-
ship between allele frequency and β, the middle column displays the cumulative value of
Sβ(xi, xf ), and the right columns show the null distribution of Sβ given by our permuta-
tion test, PASTEL. Panels A-C correspond to xi = 0 and xf = 1, panels D-F correspond
to xi = 0.01 and xf = 0.99, and panels G-I correspond to xi = 0.05 and xf = 0.95
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Figure S14: Sβ for major depression. The panels in the left column show the relation-
ship between allele frequency and β, the middle column displays the cumulative value of
Sβ(xi, xf ), and the right columns show the null distribution of Sβ given by our permuta-
tion test, PASTEL. Panels A-C correspond to xi = 0 and xf = 1, panels D-F correspond
to xi = 0.01 and xf = 0.99, and panels G-I correspond to xi = 0.05 and xf = 0.95
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Figure S15: Sβ for waist-hip ratio adjusted for BMI. The panels in the left column show the
relationship between allele frequency and β, the middle column displays the cumulative
value of Sβ(xi, xf ), and the right columns show the null distribution of Sβ given by our
permutation test, PASTEL. Panels A-C correspond to xi = 0 and xf = 1, panels D-F
correspond to xi = 0.01 and xf = 0.99, and panels G-I correspond to xi = 0.05 and
xf = 0.95
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