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Abstract 15 

The gut microbiome is linked to inflammatory bowel disease (IBD) severity and altered in late stage 16 
disease. However, it is unclear how gut microbial communities change over the course of IBD 17 
development, especially in regards to function. To investigate microbiome mediated disease 18 
mechanisms and discover early biomarkers of IBD, we conducted a longitudinal metagenomic 19 
investigation in an established mouse model of IBD, where dampened TGF-β signaling in T cells leads 20 
to peripheral immune activation, weight loss, and severe colitis. IBD development is associated with 21 
abnormal gut microbiome temporal dynamics, including dampened acquisition of functional diversity 22 
and significant differences in abundance trajectories for KEGG modules such as glycosaminoglycan 23 
degradation, cellular chemotaxis, and type III and IV secretion systems. Most differences between sick 24 
and control mice emerge when mice begin to lose weight and heightened T cell activation is detected in 25 
peripheral blood. However, lipooligosaccharide transporter abundance diverges prior to immune 26 
activation, indicating that it could be a pre-disease indicator or microbiome-mediated disease 27 
mechanism. Taxonomic structure of the gut microbiome also significantly changes in association with 28 
IBD development, and the abundance of particular taxa, including several species of Bacteroides, 29 
correlate with immune activation. These discoveries were enabled by our use of generalized linear 30 
mixed effects models to test for differences in longitudinal profiles between healthy and diseased mice 31 
while accounting for the distributions of taxon and gene counts in metagenomic data. These findings 32 
demonstrate that longitudinal metagenomics is useful for discovering potential mechanisms through 33 
which the gut microbiome becomes altered in IBD.  34 
 35 
 36 
Importance 37 

IBD patients harbor distinct microbial communities with different functional capabilities compared to 38 
healthy people. But is this cause or effect? Answering this question requires data on changes in gut 39 
microbial communities leading up to disease onset. By performing weekly metagenomic sequencing 40 
and mixed effects modeling on an established mouse model of IBD, we identified several functional 41 
pathways encoded by the gut microbiome that covary with host immune status. These pathways are 42 
novel early biomarkers that may either enable microbes to live inside an inflamed gut or contribute to 43 
immune activation in IBD mice. Future work will validate the potential roles of these microbial pathways 44 
in host-microbe interactions and human disease. This study is novel in its longitudinal design and focus 45 
on microbial pathways, which provided new mechanistic insights into the role of gut microbes in IBD 46 
development. 47 
 48 
 49 
Keywords: gut microbiome, metagenome, inflammatory bowel disease, mouse model, TGF-beta (β), 50 
autoimmunity, longitudinal modeling, biomarkers, T cell activation 51 
 52 
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Background 54 

 55 

Inflammatory bowel disease (IBD) is an increasingly prevalent chronic autoimmune disease wherein the 56 

cells of the immune system attack intestinal tissue (1-3). Quality of life deteriorates, and patients die in 57 

severe cases. Unfortunately, the etiology of disease remains unclear and is likely complex (4). 58 

Discovery of the factors that contribute to IBD onset, development, and severity is needed to ensure 59 

accurate and effective health care. Epidemiological studies and animal model experiments have 60 

identified genetic (5-7) and lifestyle factors that associate with IBD, including diet (8) and exercise (9). 61 

But these factors are not precise predictors of disease risk, severity, or response to treatment, and 62 

many questions remain regarding disease mechanisms. Elucidating the cryptic etiology of IBD would 63 

enable new preventative measures, diagnostics, and therapies. 64 

 65 

Recent work has implicated the gut microbiome in the development and severity of IBD (10). Individuals 66 

afflicted with Crohn’s disease or ulcerative colitis, the two principal clinical forms of IBD, harbor distinct 67 

taxa relative to healthy controls (11-14). Shotgun metagenomics further revealed that the abundance of 68 

several microbial metabolic pathways are significantly altered in IBD guts (13, 15, 16). These 69 

associations may be causal, because gut microbes can influence the immune system and intestinal 70 

homeostasis. For example, immunosuppressive regulatory T cells (Tregs) are prevalent in the colonic 71 

lamina propria (LP) compared to other organs. But, their numbers are reduced in germ-free or 72 

antibiotic-treated mice, suggesting that microbiota affect colonic differentiation of peripheral Tregs 73 

(pTregs) (17, 18). A similar loss of Tregs occurs in people with polymorphisms in IBD-susceptibility 74 

genes that promote defects in Treg responses (19). Thus, gut microbes have the potential to interact 75 

with immune cells and this interaction can be altered due to host genetics and other risk factors in the 76 

development of IBD. 77 

 78 

We hypothesized that the changes in immune status of individuals with IBD are associated with 79 

temporal alterations in the functional capabilities of their gut microbiota. Understanding how the gut 80 
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microbiome dynamically changes during IBD and how these changes relate to host symptoms and 81 

immune activation could clarify which microbiomic alterations contribute to disease onset and 82 

progression and which alterations respond to disease. We are particularly interested in elucidating 83 

specific microbial pathways that may induce or exacerbate immune activation and distinguishing these 84 

from pathways required for survival in an inflamed intestinal environment. Addressing these questions 85 

requires a prospective, longitudinal study of the microbiome in IBD.  86 

 87 

Longitudinal investigations of the microbiome have tended to focus on taxonomic rather than functional 88 

changes (20, 21). One study used 16S sequencing in the T-bet-/- RAG2-/- Ulcerative Colitis (TRUC) 89 

mouse model of inflammatory disease to identify how gut microbiome taxonomic composition changes 90 

over the course of treatment-induced remission and then imputed how microbial pathway abundances 91 

might change over time with ancestral state reconstruction techniques (22). Shotgun metagenomic 92 

sequencing provides direct insight into the functions encoded in the microbiome, but it has not been 93 

applied to a longitudinal investigation of IBD. As a result, our insight into how the gut microbiome 94 

operates dynamically in association with disease development is limited. 95 

 96 

Mouse models of disease present an opportunity to quantify the longitudinal covariation between gut 97 

microbiome functions and IBD development while overcoming the challenges associated with a 98 

prospective human study and reducing the extensive genetic, lifestyle, and microbiome variation among 99 

humans. We implemented this approach using a well-documented IBD model (23-29), where TGF-β 100 

dominant negative receptor II is driven by the CD4 promoter (CD4-dnTβRII) (30), called DNR hereafter. 101 

TGF-β is important for inducing pTreg differentiation (31), and its signaling in naive T cells results in 102 

activation and nuclear translocation of Smad2/3 molecules and regulation of target genes, including 103 

Foxp3 (32-34). Foxp3 then provides a positive feedback loop by downregulating Smad7, thereby 104 

reducing its inhibition of TGF-β signaling (35). Absence of TGF-β signaling in T cells results in loss of 105 

Foxp3 expression and defective in vivo expansion and immunosuppressive capacity of pTregs (36, 37). 106 

However, excess inflammation can also potently inhibit Foxp3 induction by TGF-β (38, 39), and the 107 
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presence of certain inflammatory cytokines can instead divert differentiation of Tregs into pathogenic 108 

Th17 cells (40-45). Thus, due to TGF-β’s involvement in Treg cell differentiation, and the requirement 109 

for Treg produced IL-10 to maintain intestinal homeostasis, TGF-β signaling in T cells is an important 110 

component of intestinal immunity (46-54). Furthermore, mutations in both TGF-β and IL-10 signaling 111 

pathways have been implicated in human IBD (55-58). As a result of the blockage of TFGβ signaling on 112 

their T cells, and reduced number of pTregs, DNR animals develop spontaneous colonic inflammation 113 

and IBD that is akin to Crohn’s disease (30, 59). In addition to these physiological similarities, the DNR 114 

line serves as an effective model of human IBD because (i) human IBD is associated with mutations in 115 

SMAD3 (5, 60-62), a direct downstream target of TGFβ RII required for Foxp3 induction in the gut (33), 116 

and (ii) DNR mice model the documented effect of Smad7 overexpression in human IBD (63-65). 117 

 118 

To obtain insight into how the longitudinal dynamics of the microbiome associate with IBD onset and 119 

progression, we followed DNR and littermate wild-type (hereafter, WT) controls from weaning through 120 

severe disease. We used shotgun metagenomics to quantify how fecal microbiome structure and 121 

function change over the course of disease development in DNR mice and identified components of the 122 

microbiome that both associate with and predict immune status. We focus on longitudinal changes in 123 

biological pathways (i.e., groups of genes performing a coherent function), using estimated abundances 124 

of KEGG modules from DNR and WT metagenomes. Our work indicates that the microbiome may 125 

contain biomarkers of IBD development, clarifies mechanisms through which the microbiome may 126 

contribute to disease development, and reveals how gut microbes operate to succeed in an inflamed 127 

intestinal environment. 128 

 129 

Results 130 

 131 

Age-matched female WT and DNR littermates were monitored longitudinally for IBD development over 132 

a period of 9 weeks, starting at 4 weeks of age upon being weaned from their mother. As this is a T 133 

cell-mediated IBD model, we quantified peripheral CD4 and CD8 T cell activation by flow cytometry and 134 
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measured the longitudinal change in the CD44hi activated fraction, which includes both effector and 135 

memory T cells (Additional File 1: Figure S1). We also measured the weight of the animals over time 136 

(Fig. 1A). As expected, WT mice gained weight and maintained a constant fraction of activated T cells. 137 

DNR mice, conversely, stopped gaining weight and experienced a sharp increase in CD4 T cell 138 

activation followed by gradual increase in CD8 T cell activation starting at 7 weeks of age (Fig. 1). 139 

These results indicate that in our facility, the DNR mice develop signs of IBD starting around week 7 140 

and full disease by week 9. DNR mice had to be euthanized by week 15, as they had lost more than 141 

15% of their maximum body weight. Similar to the T cell activation phenotype observed in the blood 142 

after week 7 (Fig. 1B-C), the DNR animals had a larger fraction of activated T cells in the spleen and 143 

the gut-draining mesenteric lymph node (MLN) at week 15 (Additional File 2: Figure S2).   144 

 145 

We used shotgun metagenomics to assess how the functional potential of the gut microbiome 146 

diversifies over the course of disease progression. Specifically, we collected stool samples from parallel 147 

cohorts of DNR and WT mice weekly and performed shotgun metagenomic sequencing from samples 148 

obtained at 4, 5, 6, 8, 10, 12, and 13 weeks of age (Additional File 3: Table S1). We then quantified the 149 

abundance of KEGG modules encoded in each metagenome with ShotMAP (16), which revealed 373 150 

modules present in at least one sample. These module abundances were then used to quantify how the 151 

within-sample (alpha) diversity of microbiome functions varies over time in DNR and WT mice. A 152 

Kruskal-Wallis test of the change in KEGG module Shannon entropy over time (Additional File 4: Figure 153 

S3) found that the DNR mice are relatively stable in their functional alpha-diversity (p=0.47) as 154 

compared to WT mice (p=0.078). We also observed that functional alpha-diversity varies among 155 

individuals within a line over time, and that this variation differs between lines in association with 156 

disease activation (week 7). Specifically, the coefficient of variation of KEGG module Shannon entropy 157 

(CV) from a generalized linear model is higher among WT than DNR mice after disease activation (p = 158 

0.0085). We also find that the CV is higher among DNR mice prior to activation, though this difference 159 

is reduced when the disproportionately variable week 5 samples are removed from the analysis 160 
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(p=0.21). These results show that the functional diversity of the mouse gut microbiome is relatively 161 

constrained early in life but increases over the lifetimes of WT but not DNR individuals. 162 

 163 

We then investigated how the composition of gut microbiome functions varies over time and between 164 

cohorts (DNR vs. WT) by using an abundance-weighted beta-diversity metric (Bray-Curtis dissimilarity). 165 

At a global level, KEGG module abundances were similar between DNR and WT mice prior to week 6, 166 

but then diverged over time as IBD developed in the DNR mice (Fig. 2). Furthermore, the diversity of 167 

KEGG modules found in a metagenome was significantly associated with the week that the sample was 168 

collected within the cohort (PERMANOVA p=0.01, R2=0.42), as well as cohort’s weekly mean activated 169 

T cell status (pcCD4tCD44hi, PERMANOVA p=0.001, R2=0.16). Thus, there exist microbiome-encoded 170 

functional modules that differ in abundance in association with IBD progression in DNR mice.  171 

 172 

This temporal divergence in DNR versus WT microbiome functions is mirrored in the taxonomic 173 

structure of the microbiome (Fig. 2). The composition of the gut metagenomes is relatively similar 174 

between WT and DNR lines at early time points and begins to diverge at week 6. Additionally, the 175 

microbiomes of WT mice remain relatively consistent over time as compared to DNR mice, though they 176 

are not without temporal variation. Indeed, similar to the functional diversity analysis, the taxonomic 177 

beta-diversity of the microbiome significantly differs between the lines over time (PERMANOVA 178 

p=0.004, R2=0.46), though not with mean activated T cell status (PERMANOVA p=0.118, R2=0.046). 179 

Collectively, these analyses indicate that (1) the diversity and structure of the gut microbiome varies 180 

over time between 4 and 15 weeks of age in both WT and DNR mice, (2) WT and DNR microbiomes 181 

are generally consistent prior to immune activation in DNR mice, but diverge afterwards, and (3) 182 

immune activation is associated with changes in the subsequent succession of the gut microbiome. 183 

 184 

Based on these observations, we assessed how specific components of the microbiome associate with 185 

disease development. A key novelty of our approach is the use of Tweedie compound Poisson 186 

generalized linear mixed effects models (GLMMs). These models allow us to test for differences in 187 
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temporal trends in KEGG module abundance between DNR and WT mice while accounting for baseline 188 

differences between mice and genotypes, as well as DNA extraction kit effects. GLMMs enable 189 

accurate modeling of non-normally distributed abundance data and correctly account for multiple 190 

sources of variation (66), including the inter-subject variation that is present in repeated measures 191 

designs such as the longitudinal sampling of individual mice in our study. The Tweedie compound 192 

Poisson distribution, which is a weighted mixture between Poisson and Gamma distributions, has a 193 

number of other attractive features. Its exponential relationship between variance and mean captures 194 

the overdispersion that is frequently present in environmental DNA sequence data, and its point mass 195 

at zero allows for one-step fitting of zero-inflated data (versus fitting a model to determine feature 196 

presence/absence before modeling non-zero components, as in hurdle models). Additionally, the 197 

Tweedie compound Poisson is a continuous distribution, allowing us to use a normalized abundance 198 

measure as the dependent variable, instead of raw counts. We provide a more detailed description of 199 

the models used in our analysis in Additional Data File 5: Text S1. 200 

 201 

We first looked at overall trends of abundance trajectories for DNR versus WT mice as quantified by the 202 

interaction between genotype and time in the GLMM. These analyses revealed 29 KEGG modules with 203 

significant differences in abundance trends between DNR and WT mice (FDR<0.05). The interaction 204 

coefficient was positive for 26 of the significant modules (Additional File 6: Table S2), which indicates 205 

that these modules became increasingly abundant in DNR versus WT mice over time. This set includes 206 

modules associated with uridine monophosphate biosynthesis (M00051), keratin sulfate degradation 207 

(M00079), and the type III secretion system (M00332). The three modules with negative interaction 208 

coefficients, indicating decreasing abundance in DNR versus WT mice over time (Fig. 3), are lysine 209 

biosynthesis (M00031), lipooligosaccharide transport (M00252), and melatonin biosynthesis (M00037). 210 

 211 

To obtain improved temporal resolution regarding the divergence of module abundance in DNR mice, 212 

we extended our GLMMs to include a “hinge” at week 7, which is when immune activation initiates in 213 

DNR mice. This segmented regression approach has the potential to discover modules that diverge in 214 
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abundance between DNR and WT mice either between weeks 4 and 7 or between weeks 7 and 13. 215 

Only 13 of the 29 previously identified modules exhibited a significant effect when using segmented 216 

regression (Fig. 4), likely due to a loss of power from partitioning the data into two smaller sets of 217 

samples. However for these 13 modules, our results clarify when DNR and WT abundances began to 218 

diverge (Additional File 7: Table S3). The predominant pattern was similar module abundance prior to 219 

week 7, followed by divergence after immune activation (11/13 modules). This pattern suggests that 220 

these modules respond to disease or play a role in disease progression.  221 

 222 

Lipooligosaccharide transport (M00252), which is a two-component system with an unknown substrate 223 

in the mammalian gut, was the only module that stratified DNR and WT mice both before and after 224 

disease onset. To further investigate the potential taxa that may drive this particular signal, we 225 

assessed the taxonomic source of the KEGG sequences that recruited metagenomic reads into the 226 

module. We also quantified the distance covariance (67) between the longitudinal trajectories of the 227 

KEGG Orthology Groups (KOs) that comprise the module and each observed species’ trajectory. The 228 

result was mixed, with the former analysis suggesting primarily Streptococcus contributions, while the 229 

latter identified greatest similarity with Lactobacillus murinus and Candidatus Arthromitus trajectories 230 

(Additional File 8: Figure S4). The differences in the taxonomic composition of the reference data 231 

underlying these two approaches could account for these inconsistencies, as could the fact that the 232 

KEGG analysis relies on amino acid comparisons while the species trajectories are determined through 233 

nucleotide comparisons. Thus, an uncharacterized lipooligosaccharide transporter encoded in 234 

Streptococcus and other gut microbes decreases in abundance over time at a significantly faster rate in 235 

DNR compared to WT mice, starting early in life before weight loss and immune activation.  236 

 237 

Type III secretion system (M00332) differed in its temporal change between the lines uniquely before 238 

disease onset. Specifically, the module decreased in abundance in WT mice over weeks 1-7, with KO 239 

K03225 primarily driving this effect. On the other hand, this module was relatively stable in DNR mice 240 

prior to disease onset, and several of the KOs that comprise the module increased in DNR mice in the 241 
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later weeks (Fig. 4). The discovery of stable, rather than decreasing, abundance of K03225 as an early 242 

indicator of IBD in DNR mice is intriguing because Type III secretion systems are used by pathogens to 243 

invade the gut community and alter the gut environment (68, 69).  244 

 245 

We next examined baseline differences in module abundance between DNR and WT mice at weaning. 246 

Early differences could result from genotype-specific selection of the gut microbiome or cage effects. 247 

Our models revealed 17 modules with significantly different intercepts (q<0.05), which indicates 248 

differences in abundance between the two lines at week 4 (Additional File 9: Table S4). Eight of these 249 

modules, including several methanogenesis associated pathways, had positive intercept coefficients, 250 

meaning that they were more abundant in DNR compared to WT mice at week 4. Lipopolysaccharide 251 

biosynthesis and eight other modules showed the opposite effect and were higher in WT mice at 252 

weaning. This early-life variation in the microbiome supports hypotheses that pre-adolescent 253 

development of the microbiome can affect health state later in life. However, these temporal 254 

relationships are complex: later changes in abundance, as captured by the time by cohort interaction, 255 

could reverse the pattern seen at weaning.  256 

 257 

To explore temporal dynamics of specific gut taxa, we applied the same GLMM analysis to species 258 

abundances. This analysis yielded no significant results at FDR < 0.05, likely due to not having the 259 

advantage of grouping components across a higher order variable. While species could be grouped into 260 

higher taxonomic entities, the model assumption that members of the same group tend to covary 261 

across samples and over time may be violated because members of the same taxonomy may compete 262 

or ecologically exclude one another (70). We evaluated this possibility by applying a non-parametric 263 

decomposition of variance components (71) to assess whether within-module or within-genus 264 

dispersion decomposition patterns were significantly different from those obtained from random 265 

permutations of the underlying data. This auxiliary analysis finds that components of functional groups 266 

covary more than random while components of taxonomic groups do not (Additional Data File 10: 267 

Figure S5). This observation indicates that grouping taxa would violate GLMM model assumptions. 268 
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Consequently, we instead used a goodness-of-fit test based on functional principal components 269 

analysis (FPCA), which is less rigid in its assumption of linearity and capable of borrowing information 270 

across species due to the representation of abundance trajectories as combinations of eigen-functions 271 

derived from the entire dataset. This test identified seven species that significantly differ in their 272 

variation over time between the DNR and WT cohorts (Figure 5; Table 1), including greater increases in 273 

abundance over time within DNR microbiomes for E. coli and four species from the Bacteroides genus, 274 

which are associated with gut inflammation (10).  275 

 276 

Discussion 277 

 278 

This study represents the first shotgun metagenomic characterization of IBD development. By using a 279 

controlled mouse model, a longitudinal study design, and statistical modeling, we identified novel 280 

microbial biomarkers associated with IBD onset and progression. Many of the taxa and functions we 281 

implicated have known roles in immune regulation and pathogenicity, making them plausible 282 

candidates for stimulating the disease process, while others likely represent responses of the 283 

microbiota to changes in host physiology. Ordination and GLMM analyses enabled us to distinguish 284 

these scenarios by identifying significant differences between DNR and WT mice over time from 285 

weaning through severe disease. We discovered that lipooligosaccharide transport and type III 286 

secretion protein abundance trajectories between weaning and immune activation differentiate DNR 287 

mice prior to immune activation, making them promising early biomarkers and consistent with a 288 

potentially causal role in IBD. Abundances of 17 modules are altered in DNR mice at weaning and 289 

could predict IBD risk if they generalize to other mouse models and human disease (see below). Many 290 

other modules as well as a few species have altered abundances in DNR mice in later, more severe 291 

stages of disease. Functional and taxonomic diversity also show temporal differences in DNR mice that 292 

correlate with immune profiles and/or disease progression. Most of these discoveries would have been 293 

missed in a cross-sectional study because the disease association is a longitudinal trend. 294 

 295 
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By using shotgun metagenomics, we were able to investigate both taxonomic and functional 296 

characteristics of the IBD microbiome. Both types of data consistently showed differences between 297 

DNR and WT mice. For example, beta-diversity analyses revealed increasing divergence of both 298 

taxonomic and functional profiles between DNR and WT microbiomes over the last four weeks of the 299 

study. In addition, the individual taxa and modules with genotype-specific trajectories predominantly 300 

had increased abundance in DNR mice after disease onset. These similarities in the successional 301 

diversification of species and genes support the idea that taxonomic changes in IBD have functional 302 

consequences that are linked to immune activation. Despite such parallels, our taxonomic and 303 

functional results differed in several important ways. Notably, a smaller number of species stratify lines 304 

over time as compared to KEGG modules. Furthermore, most of the IBD-associated modules we 305 

discovered were not represented solely in singular species and would have been missed by 306 

considering information from taxonomic analyses only. These results could be due to disease-307 

associated functional redundancy, wherein a gene that is enriched in DNRs might derive from different 308 

species in each mouse. Other potential reasons include (1) higher power due to grouping protein 309 

families into modules, and (2) missed taxonomic associations due to the relatively small number of 310 

laboratory mouse associated microbes in the genome tree of life (72). Future work should explore how 311 

taxa missed by reference-based quantification vary in association with IBD in DNR mice. 312 

 313 

Despite finding relatively few species that distinguish DNR mice, we can gain insight into the disease 314 

process from what is known about how these taxa interact with the host. It is striking that four of the 315 

seven species that change in abundance as IBD develops belong to the genus Bacteroides, three of 316 

which are more abundant in DNR mice. Several studies have implicated Bacteroides in intestinal 317 

inflammation. For example, a subset of B. fragilis strains carry a proinflammatory metalloprotease toxin 318 

that has been identified in 19.3% of patients with active IBD (73), and the inoculation of animals with 319 

such strains is associated with severe colitis (10, 74). Subsequent research showed that multiple 320 

commensal species of Bacteroides could be incorporated into the gut microbiomes of IBD-susceptible 321 

genotypes of mice to induce IBD, including mice with TGF-β susceptibility loci (75). Supporting the idea 322 
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that Bacteroides contribute to IBD, we observe a modest increase (q=0.1898) in the 323 

hemophore/metalloprotease transport system module (M00328) in DNR mice as disease progresses. 324 

These and other mechanistic hypotheses must be tested, because the species of Bacteroides we 325 

identified are diverse and species within the same genus can exhibit discordant patterns of interaction 326 

with host physiology (76). 327 

 328 

Cross-sectional and mechanistic investigations of IBD support our finding that disease development is 329 

linked to microbiome taxonomy and function (4, 77, 78). The progressive divergence of DNR and WT 330 

microbiomes as IBD worsens is consistent with a 16S-based study using a different mouse model of 331 

IBD in which gut microbes and imputed functions changed in association with disease status and 332 

therapeutically induced remission (22). Additionally, studies in germ-free mouse models of IBD 333 

implicate the gut microbiome in disease development. For example, interleukin (IL)-10-knockout mice 334 

grown under germ-free conditions do not develop colitis, while conventionally raised mice do (79). 335 

Similar findings have been reported for the TRUC mouse model (80). Furthermore, IL-10-knockout (81) 336 

and IL-2-deficient (82) mice manifest differential severity of colitis dependent on the types of taxa that 337 

colonize their gut. Human studies of IBD have yet to investigate the disease longitudinally. However, 338 

our results are consistent with microbiome case-control studies that found significant differences in the 339 

taxonomic (11, 83-87) and functional (13, 16, 22) profiles of IBD patients compared to healthy controls, 340 

especially in Crohn’s disease. Additionally, clinical administration of antibiotics shows promise for 341 

reducing the intestinal inflammation associated with IBD (88, 89). The longitudinal biomarkers we 342 

identified are promising new candidates to investigate in the context of human disease onset and 343 

progression. 344 

 345 

Our analyses identified several modules that implicate a pathogenic effect by the DNR microbiome. For 346 

example, DNR mouse microbiomes increase in the abundance of adhesion protein transport modules 347 

(M00330) in association with disease, which may help pathobiotic members of the microbiome 348 

associate with and metabolize intestinal mucosa (90). Correspondingly, keratan (M00079) and 349 
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dermatan (M00076) sulfate degradation pathways increase in abundance as disease progresses. 350 

Keratan sulfate and dermatan sulfate are glycosaminoglycans (GAGs) that are integral to intestinal 351 

mucosa and regulate the permeability of the gut epithelium. These sulfated GAGs are depleted in IBD 352 

patients (91), and their metabolism by intestinal bacteria, including Bacteroides thetaiotaomicron, 353 

contributes to intestinal colonization (92, 93). Furthermore, Crohn’s metagenomes exhibit an increase 354 

in GAG degradation pathways (94). DNR guts also have elevated levels of Type III and Type IV 355 

secretion systems, which pathogenic organisms leverage to successfully invade the gut microbiome 356 

and induce preferable ecological conditions within the gut (68, 69). Curiously, type III secretion 357 

abundance shows the opposite effect before immune activation (weeks 4-7), perhaps because of broad 358 

shifts in community composition after week 7 or alternatively due to microbes with type III secretion 359 

systems invading the LP and becoming less abundant in stool over time. Finally, we observe an 360 

increase in modules associated with the biosynthesis of isoprenoids, which have been linked to the 361 

stimulation of the mammalian immune system (95). Together these DNR-associated pathways support 362 

a pathogenic role of gut microbes in IBD development. Future studies that seek to determine the 363 

existence of a microbiome-mediated etiology for IBD should consider these potential mechanisms of 364 

disease activation. 365 

 366 

Our identification of pathways that change in association with IBD development generates many novel 367 

hypotheses about the mechanisms through which gut microbes contribute or respond to disease 368 

development. Future studies can explicitly test these hypotheses to discern the cause and effect 369 

relationship between the gut microbiome and inflammatory bowel disease. Several KEGG modules with 370 

different abundance dynamics in DNR versus WT mice appear to be associated with the microbiome’s 371 

acclimation to the disease environment. For example, we observe increases in two-component systems 372 

(M00511, M00482) that may contribute to a cell’s ability to manage the elevated oxidative stress that 373 

exists during active IBD (96). We also observe increases in pathways associated with cellular 374 

chemotaxis (M00515, M00507). This result is consistent with observations of increased cell motility 375 

pathways in the gut microbiomes of TRUC mice suffering active colitis using imputation from 16S data 376 
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(22). This result also aligns with prior work that implicated toll-like receptor recognition of flagellar 377 

bacterial antigens in the development of intestinal inflammation (97, 98). Based on these observations, 378 

we speculate that chemotaxis pathways help microbiota scavenge the metabolic resources required to 379 

survive inside of an inflamed gut or invade the host given that intestinal permeability frequently 380 

increases during IBD flare-ups (99).  381 

 382 

We also observe several biosynthetic modules that increase in association with IBD development. For 383 

example, modules related to the biosynthesis of uridine monophosphate, leucine, proline, and ammonia 384 

change in association with disease. These results may suggest that the metabolic preferences and 385 

needs of the organisms that comprise the microbiome change as disease develops. Alternatively, it 386 

may be that more T cells are entering the gut, becoming activated, and consequently consuming the 387 

local resources, which in turn results in bacteria activating biosynthetic pathways to survive and 388 

compete. Our finding that pathways associated with ammonia production (M00531) increase in DNR 389 

mice is noteworthy because prior studies have found that IBD associates with a lower pH in the 390 

intestinal lumen (100), and the production of ammonia by bacteria may serve to buffer such pH 391 

changes. Additionally, these pathways are utilized when bacteria metabolize proteins, amino acids, and 392 

urea, and the increase in this pathway may indicate a preferential utilization of these substrates by the 393 

microbiome or, as above, immune cells, during disease.  394 

 395 

Furthermore, we observe increases in modules associated with choline metabolism, specifically betaine 396 

and phosphatidylcholine biosynthesis. Recent work has connected the gut microbiome’s production of 397 

these metabolites to increased cardiovascular disease risk (101). Our finding is important because a 398 

growing number of studies indicate that IBD patients have an increased risk of developing 399 

cardiovascular disease, especially during flare-ups (102, 103). The mechanisms underlying this 400 

increased risk are not well resolved, but may relate to a proposed explanation for the increased 401 

cardiovascular disease risk observed in HIV-infected patients (104, 105). Under this model, changes in 402 

the relative proportion of protective to pathobiotic gut microbiota, especially those capable of 403 
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translocating across the gut epithelium, activate a chronic systemic inflammation that increases 404 

cardiovascular disease risk. It is thus tempting to speculate that, based on our observations in these 405 

mouse models of disease, IBD and perhaps HIV-associated changes in microbial metabolism of choline 406 

contribute to or at least indicate this increased risk of cardiovascular disease.  407 

 408 

Another intriguing hypothesis emerges from our observation that heme transport genes are elevated in 409 

DNR mice as IBD develops. Bacteria use this module to scavenge iron from the environment. Iron is a 410 

crucial component for many cellular processes, but gut microbes seldom have access to free iron and 411 

instead sequester it from host sources, such as heme (106, 107). Heme concentrations may be 412 

increased in IBD, as a common feature of the disease is intestinal bleeding (108). Hence, we 413 

hypothesize that gut microbes that can take advantage of this heme may flourish in DNR mice. It is 414 

intriguing to further speculate that microbial sequestration of heme contributes to IBD (e.g., through 415 

signaling to the immune system) or to iron deficiency in IBD patients (109). 416 

 417 

One surprising discovery was an increase in pathways associated with the production of benzoate 418 

(M00538) in DNR mice. Benzoate is a carboxylic acid produced by microbial degradation of dietary 419 

aromatic compounds and is a precursor of hippurate biosynthesis in mammals (110). Prior work 420 

suggested that hippurate may be a useful diagnostic of Crohn’s disease given that it is found at 421 

significantly lower levels in the urine of patients (110) and that the gut microbiome’s production of 422 

benzoate is responsible for these differences in urinary hippurate (111). Our results are inconsistent 423 

with this prior work in such that they indicate that intestinal benzoate biosynthesis is higher in sick 424 

animals. This difference may be due to variation in the host species being investigated, including how 425 

benzoate is subsequently metabolized in the gut or by the host. Alternatively, the potential of the DNR 426 

microbiome to make excess hippurate may not be realized given that we performed DNA sequencing. 427 

Future mechanistic studies could measure benzoate and hippurate and quantify the benzoate proteins 428 

at the RNA or protein level in DNR versus WT mice. 429 

 430 
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Most of the taxonomic and functional IBD biomarkers we identified are increasingly abundant in DNR 431 

mice throughout the disease process. But three modules show the opposite trajectory and decrease in 432 

abundance over time in DNR relative to WT mice: melatonin biosynthesis (M00037), lysine biosynthesis 433 

(M00031), and lipooligosaccharide transport (M00252). Melatonin has a dual effect on the immune 434 

system, acting in a stimulatory manner in early infection, and in an immunomodulatory manner in cases 435 

of prolonged inflammation (112). The effects of melatonin produced by gut commensals have not been 436 

studied as extensively as those of endogenous melatonin. Traditionally, melatonin acts as a potent 437 

antioxidant, although additional quorum signaling functions in bacteria have been recently reported 438 

(113). The reduction in melatonin biosynthesis capacity observed in the DNR mice could be caused by 439 

the expansion of species that can tolerate a highly oxidative environment (114) or microbes that utilize 440 

other strategies for neutralizing reactive oxygen species. Without metabolite data, it is not possible to 441 

definitively say that the final concentrations of melatonin are reduced in the disease state, since the 442 

decrease can be offset by host production. With respect to lysine biosynthesis, this module is also 443 

depleted in human IBD microbiomes (115), indicating that there may exist similar mechanisms of 444 

interaction between disease context and the gut microbiome across species. Future work should 445 

empirically test the potential role of these microbiome functions on the development of IBD, especially 446 

in individuals that are genetically susceptible for the disease.  447 

 448 

Lipooligosaccharide transport is the only module to show significant differences in abundance 449 

trajectories both pre- and post-activation. Intriguingly, it is consistently lower in DNR versus WT mice 450 

throughout our study with the largest difference during weeks 4-7, prior to immune activation and 451 

disease symptoms. This finding initially seems surprising, because lipooligosaccharides are the major 452 

glycolipids that are produced by mucosal Gram-negative bacteria and are known to have 453 

proinflammatory effects (116). However, the two genes (NodI and NodJ) in the lipooligosaccharide 454 

transport system are present across diverse prokaryotes, and the substrates of this two-component 455 

ABC transporter are not characterized beyond lipo-chitin oligosaccharide export in rhizobial bacteria 456 

(117, 118). Determining what this system transports in the mammalian gut and how its function 457 
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changes in IBD is an exciting future direction. Regardless of mechanism, the consistent and pre-458 

symptomatic depletion of lipooligosaccharide transport genes in DNR mice make this module a 459 

promising candidate biomarker for predicting and diagnosing IBD. 460 

 461 

We relied on a mouse model to quantify the longitudinal interaction between the gut microbiome and 462 

disease because the extensive inter-individual variation in human genetics, lifestyle, microbiome 463 

composition, and disease status and severity can complicate study design, analysis, and interpretation. 464 

We used the DNR mouse model because it is relevant to our understanding of the mucosal 465 

immunological dysregulation that occurs during human IBD and, consequently, its interaction with the 466 

gut microbiome. Indeed, we observe immune activation in the blood of the DNR mice that is consistent 467 

with what has been observed in human IBD (119). The phenotype observed in DNR mice is akin to 468 

severe Crohn's disease with relatively substantial immunological activation and weight loss by week 12. 469 

Interpretations of the microbiome-disease interaction in this model should be considerate of this 470 

relatively severe disease status. Alternative mouse lines may be better models for other forms of IBD. 471 

Another consideration is that we found some baseline differences in microbiome protein abundances in 472 

DNR mice at weaning that may be specific to this genetic model of IBD. Ultimately, comparisons 473 

between our results and those obtained by the integrated Human Microbiome Project (iHMP) (120) 474 

which is longitudinally evaluating the microbiome and immune status of IBD patients, will clarify the 475 

relevance of the findings produced by the DNR model to human populations. Additionally, future 476 

research should use this model and build upon our findings to clarify how TGF-β induced differentiation 477 

and function of T cells interacts with the taxonomic structure and function of the gut microbiome. 478 

 479 

 Overall, our results indicate that the development of IBD is associated with corresponding 480 

changes in the operation of the gut microbiome. Microbial taxa and KEGG module abundances vary 481 

over time and in association with immune activation. Furthermore, our results suggest that the gut 482 

microbiome may contribute to disease by activating inflammation through metabolism of mucosa and 483 

by expressing proinflammatory and downregulating anti-inflammatory metabolites. Because our study 484 
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relied on the imputation of microbiome function from DNA sequences, we cannot definitively conclude 485 

that the observed differences in the microbiome’s functional profiles manifest as differences in the 486 

metabolites produced by the microbiome. Future research that applies direct measurements of 487 

microbiome function should be used to validate and expand the results presented here. Regardless, 488 

our results hold promise for our understanding of microbiome-mediated IBD disease mechanisms and 489 

the potential of using microbiome sequencing of patient stool to classify and potentially even predict 490 

disease. 491 

 492 

Methods 493 

Growth of mice and microbiome sampling 494 

We bred two cohorts of DNR and WT littermate control animals in the Gladstone Institutes mouse 495 

facility as follows. CD4-dnTβRII (DNR) animals were crossed to RAG1-/- background to eliminate the T 496 

cell mediated IBD, and were transferred from Yale University to Gladstone Institutes in 2010. To initiate 497 

experiments described in this study, DNR-RAG1-/- males were bred with C57BL/6N female animals, 498 

and DNR-RAG1-/+ progeny were again crossed to C57BL/6N females to generate a combination of 499 

RAG1-/+ and RAG1+/+ DNR and WT age-matched littermate controls. Animals were given regular 500 

chow consisting of irradiated PicoLab Rodent Diet 20 (LabDiet). Only female animals were used in this 501 

study. Four co-housed WT-RAG1+/+ and five co-housed DNR-RAG1+/+ littermates were followed 502 

longitudinally for 15 weeks and fresh fecal samples were collected weekly and stored at -30° C until 503 

they were subject to microbiome processing. All mice from both cohorts were weighed weekly. 504 

All animal experiments were conducted in accordance with guidelines set by the Institutional Animal 505 

Care and Use Committee of the University of California, San Francisco. 506 

 507 

Immune sampling 508 

Tail vein blood samples were collected weekly from a parallel cohort of “bleeder” mice to quantify how 509 

their immune status changes over time (n=6 WT, n=6 DNR). These are distinct individuals from the 510 

“pooper” mice subjected to stool metagenomics (same colony and time period), in order to prevent 511 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2017. ; https://doi.org/10.1101/173823doi: bioRxiv preprint 

https://doi.org/10.1101/173823
http://creativecommons.org/licenses/by/4.0/


repeated tail vein blood sampling from affecting the health or microbiota of the cohort of pooper mice. 512 

Specifically, ~100 μl (2-3 drops) of blood from tail vein was added to 30 μl of 1x heparin (500 units/ml). 513 

500 μl of 1x ACK lysis buffer (Lonza) was added directly to the cells and incubated at room temperature 514 

for 2–3 min. Cells were centrifuged at 4000 rpm for 5 min. The top layer was aspirated and another 500 515 

ml of 1x ACK lysis buffer was added followed by centrifugation. Cells were resuspended in FACS buffer 516 

(PBS + 0.5% FBS) and after blocking Fc receptors with anti-CD16/CD32, single-cell suspensions were 517 

incubated with FITC CD4 (GK1.5), PE CD62L (MEL14), PerCP-Cy5.5 CD8a (53.6.72), and APC CD44 518 

(IM7) mouse antibodies for 30 min at 4°C. Stained cells were washed and acquired on an Accuri C6 519 

cytometer (BD). Blood lymphocytes were gated on CD4+ or CD8+ fractions and percentage of 520 

activated/memory (CD44hi) among CD4+ and CD8+ T cells was determined using FlowJo software 521 

(Tree Star Inc.). This cohort was separated from those subjected to microbiome sampling to eliminate 522 

the effect that repeated bloodletting might have on the microbiome. At 15 weeks of age, two WT and 523 

three DNR from the non-bleeding animals were euthanized. Spleen and mesenteric lymph nodes were 524 

then processed into single-cell suspension and subjected to ACK lysis and cell surface staining as 525 

described for PBMCs. The status of T cell activation was quantified and found to highly correlate with 526 

the blood immune status of their “bleeder” littermates (Additional Data File 2: Figure S2 and Additional 527 

Data File 3: Table S1). 528 

Metagenome sequencing and analysis 529 

 QIAamp DNA Stool Mini Kits (QIAGEN, Valencia, CA, USA) were used to extract DNA from 530 

stool samples collected from weeks 4, 6, 8, 10, and 12. Samples were incubated in an elevated water 531 

bath temperature of 95 C to increase the lysis of bacterial cells, as per manufacturer instructions. The 532 

MoBio PowerFecal DNA isolation kit (MOBIO, Carlsbad, CA USA) was used as per manufacturer 533 

instructions to process stool samples collected at weeks 5 and 13. Kit type was adjusted for in 534 

statistical modeling to account for any potential differences in extraction bias between the two methods.  535 

 Purified DNA was prepared for shotgun metagenomic sequencing using the Nextera XT library 536 

preparation method (ILLUMINA, San Diego, CA USA). Libraries were quality assessed using qPCR and 537 

a Bioanalyzer (Agilent Technologies, Palo Alto, CA USA) and subsequently sequenced using an 538 
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Illumina HiSeq 2000. This produced an average of 74,427,303 100-bp paired-end sequences per 539 

sample. Metagenomic reads were quality controlled using the standard operating procedure defined by 540 

the Human Microbiome Project Consortium (121) as implemented in shotcleaner (122). Briefly, reads 541 

were quality trimmed using prinseq (123) and mapped against the mouse reference genome sequence 542 

(GRCm38) using bmtagger (124). Exact duplicate reads were collapsed and the subsequent high-543 

quality data was subject to taxonomic and functional annotation. Functional annotation of 544 

metagenomes was conducted using ShotMAP as described in (16) with, Prodigal (125) to call genes 545 

and RAPsearch2 (126) to identify metagenomic homologs of the KEGG database (downloaded Feb. 546 

2015). Reads mapping to mammalian sequences in the KEGG database were discarded and the 547 

subsequent data was used to quantify the abundance of each KEGG Orthology Group (KO) using the 548 

RPKG abundance statistic (127). Metagenomes were taxonomically annotated using MIDAS as 549 

described in (72). 550 

 551 

Statistical analyses and modeling 552 

The functional and taxonomic similarity between metagenomic samples was assessed using 553 

non-metric multi-dimensional scaling (NMDS) as implemented through the nmds function in the labdsv 554 

R package (128). Ordinations were visualized using the ordiplot function in the vegan R package (129). 555 

For the functional similarity analysis, the vegdist function from the vegan R package quantified the 556 

Bray-Curtis dissimilarity based on KEGG module abundances. The taxonomic analysis used the 557 

generalized Unifrac (130) distances (alpha=0.5), which were obtained by using the taxonomic tree from 558 

the Living Tree Project (131) and matching the genus and species component of tree leaf labels to the 559 

corresponding components of the MIDAS species labels in our data. Assessment of the significance of 560 

the clustering of samples in these ordination plots was conducted using PERMANOVA as implemented 561 

by the adonis function in R. 562 

 The compound Poisson generalized linear mixed effects model implemented in the cplm 563 

package in R (132) was used to find KEGG modules with a significantly different time trend between 564 

groups while controlling for static differences between the lines and DNA extraction procedure 565 
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(QIAGEN versus MOBIO). Random intercepts and slopes for both subjects and contributing KOs were 566 

used to capture variation between subjects and between genes while focusing on the large scale shifts 567 

over the whole collection of abundance profiles contributing to a module. As described more thoroughly 568 

in Supplementary Text S1, the general computational procedure consisted of subsetting the data to 569 

each module’s relevant KO abundances and fitting a full model that described the RPKG abundance as 570 

a function of time, group, time by group interaction, sequencing kit and random effects of each KO and 571 

individual. We then use two reduced models, dropping first the interaction term and then the group 572 

term, to obtain p-values via likelihood ratio tests. This is one of the recommended significance testing 573 

approaches for mixed models since it avoids using approximations for the residual degrees of freedom 574 

that would be necessary to test significance via the t-statistic (66). To limit the number of modules 575 

tested, the input data were run through the MinPath algorithm (133) to select a parsimonious set of 576 

modules based on the KOs present. The union of all samples’ individual parsimonious sets was used 577 

as the final set of tested modules. The approach of testing the dynamics of an entire module by fitting a 578 

single GLMM to a set of multiple genes’ temporal abundances is modeled on the TcGSA method of 579 

Hejblum et al. (134), with the modification of using a different response distribution (the Tweedie 580 

compound Poisson). Significant modules were selected at the 0.05 FDR threshold after controlling for 581 

multiple testing via the Benjamini-Hochberg procedure (B-H). Species time trend differences were 582 

tested with the same approach, minus the grouping of multiple trajectories. Additional details of our 583 

modeling approach can be found in Additional Data File 5: Text S1. All of the code used in this analysis 584 

is available at the following URL: 585 

 https://github.com/slyalina/Mouse_IBD_2017_paper_supporting_code. 586 

 To differentiate functional changes occurring prior to immune activation, we fit a second hinge 587 

regression to the abundances of modules that were found to have a significant time by group 588 

interaction in the main GLMM analysis. This second regression placed a break point at week 7, which 589 

represents the point at which immune activation initiated (Fig. 1). This allowed for two sets of slopes 590 

(before disease onset and after) and two sets of time by group interactions (representing deviations of 591 

DNR slopes from WT before-onset and after-onset slopes).  592 
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 Alterations in the species trajectory curves were additionally tested with an alternate method 593 

aimed at highlighting differences in shape rather than slope. This method was an implementation of the 594 

FPCA-based difference in goodness-of-fit approach described previously in (135). The permutation-595 

based p-values from this analysis were B-H corrected and species passing the 0.05 FDR threshold 596 

were retained.  597 

 To test the hypothesis that the distribution of all modules’ between-KO/within-KO dispersion 598 

decomposition statistic is significantly different from random when grouping functional trajectories (KOs 599 

into modules) but is not significantly different from random when grouping taxonomic trajectories 600 

(species into genera) we used the DISCO (71) non-parametric test to obtain the real distributions of the 601 

test statistic in the two scenarios, as well the simulated null distributions that arise when generating 602 

random groupings of KOs and species. We then performed a Kolmogorov-Smirnov test to compare the 603 

true distributions with their simulated counterparts. 604 

 605 

Accession numbers 606 

Metagenomic sequences are available through GenBank accessions SAMN06921515 - 607 

SAMN06921563.  608 
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Figure Legends 622 

 623 

Figure 1. IBD development correlates with peripheral T cell activation in DNR mice. (A) Animal 624 

weight over time. N= 7 WT and 8 DNR mice. (B) Percent of activated CD4 T cells among peripheral 625 

blood mono-nuclear cells (PBMCs). (C) Percent of activated CD8 T cells among PBMCs. (B-C) N=6 626 

WT and 6 DNR mice. 627 

 628 

Figure 2. The taxonomic and functional diversity of the gut microbiome associates with IBD 629 

development. (A) NMDS ordination plots of the functional (left) and taxonomic (right) beta-diversity of 630 

samples from each line illustrate the significant divergence in beta-diversity between lines over time. 631 

Functional beta-diversity was measured as the Bray-Curtis dissimilarity based on KEGG module 632 

abundances, while taxonomic beta-diversity is the UniFrac distance of taxa detected in metagenomes. 633 

(B) The longitudinal variation of samples along selected NMDS dimensions similarly reveals how DNR 634 

and WT lines significantly diverge over time both in terms of their functional (left) and taxonomic (right) 635 

beta-diversity. Plotted is the smoothed LOESS trajectory of samples from each line over time, where 636 

grey areas represent 95% confidence intervals.  637 

 638 

Figure 3. Summary of GLMM results of 29 modules with significant time by group interaction. 639 

(A) The quantity plotted is the predicted marginal mean (PMM) of the slope coefficients. Significance 640 

testing was done by comparing goodness of fit of full and reduced GLMM specifications, and the full 641 

model was used to produce the PMM estimates shown here. This quantity was primarily calculated to 642 

get a succinct summary of the direction of temporal change, and does not always coincide with the 643 

interaction coefficient that is the focus of the main analysis. The estimates were obtained by running the 644 

lstrends function from the lsmeans R package (136) (B) The underlying KO abundance trajectories of a 645 

significant module (M00031: Lysine biosynthesis) that decreases in DNR mice and increases in WT 646 

mice over time, as evidenced by a negative and positive model slope, respectively. (C) A similar plot as 647 

in (B), except that this significant module (M00330: Adhesin transport) significantly increases in 648 
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abundance over time in DNR mice, while it does not change in abundance in WT mice. For both (B) 649 

and (C) the shaded ribbons represent LOESS confidence bounds.  650 

 651 

Figure 4. Modules with significantly differing slopes between groups show primarily post-652 

disease-onset differences when analyzed with a segmented GLMM. For each cohort, the 653 

segmented GLMM estimates two separate WT slopes (pre-week7 and post-week7) and two deviations 654 

from those slopes, which represent the time by group interaction that measures how DNR slopes differ 655 

from WT slopes. Plotted here are the estimates of these deviations, with asterisks marking coefficients 656 

that were significantly non-zero with B-H corrected p-value of <0.2 657 

 658 

Figure 5. Species that showed significantly different trajectory shapes between DNR and WT 659 

groups. These results are based on an FPCA-based goodness-of-fit comparison test that identified 7 660 

species that were different at B-H corrected p-value < 0.05.  661 

 662 

  663 
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Table Legends 664 
 665 
Table 1 - Species with significantly different trajectory shapes in the FPCA-based goodness-of-fit 666 

comparisons. 667 
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Supplemental Files 1054 

Additional File 1: Figure S1. Longitudinal phenotypic monitoring of T cell activation in PBMC of WT 1055 

and DNR “bleeder” mice. Representative FACS plots from WT bleeder #89 and DNR bleeder #85 at 1056 

indicated time points. The gate is set on CD44hi population to show the percent of activated effector and 1057 

memory T cells over time.  1058 

 1059 

Additional File 2: Figure S2. Phenotypic monitoring of CD8 T cell activation in WT and DNR “pooper” 1060 

mice post disease onset. Representative FACS plots from spleen or mesenteric lymph node (MLN) 1061 

isolated from WT pooper #90 and DNR pooper #83 at week 15. Fraction of activated (CD44hi) and 1062 

effector (CD44hi KLRG-1hi) CD8+ T cells are shown.  1063 

 1064 

Additional File 3: Table S1. Project metadata 1065 

 1066 

Additional File 4: Figure S3. The functional alpha-diversity of the gut microbiome as measured by 1067 

Shannon entropy differentially varies over time across cohorts (left). In fact, there is significantly greater 1068 

variation in the Shannon entropy between lines before and after disease onset (right). 1069 

 1070 

Additional File 5: Text S1. Modeling methods 1071 

 1072 

Additional File 6: Table S2. KEGG modules that exhibit significant group by time interaction 1073 

coefficients, indicating that they differentially diversify over time between the two lines.  1074 

 1075 

Additional File 7: Table S3 - KEGG Modules with significant interactions in the segmented GLMM 1076 

analysis 1077 

 1078 

Additional File 8: Figure S4 - Two different analyses potentially explain the taxonomic origins of the 1079 

lipooligosaccharide transport KOs that were observed. (a) Species identities of KEGG ortholog 1080 
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sequences that recruited reads when generating the relevant KO abundances. (b) Distance covariance 1081 

values trajectories of K09694 and K09694 and all species, with asterisks marking those dCov values 1082 

that were significantly non-zero after B-H multiple testing correction. 1083 

 1084 

Additional File 9: Table S4 – KEGG modules with significant intercepts, indicating that they exhibited 1085 

significantly different abundances between lines at the initial time point. 1086 

 1087 

Additional File 10: Figure S5 - Distributions of F-statistics computed by the DISCO method for 1088 

KO and species vectors within module and genus groupings respectively, compared to values from 1089 

permuted groupings. Kolmogorov-Smirnov tests show significant difference between real and permuted 1090 

distributions in the functional groupings, but no significant difference in the taxonomic groupings. 1091 
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Species 
ID p-value q-value 

Species 
Name 

WT area 
under 
LOESS 
curve 

DNR area 
under 
LOESS 
curve 

 

54642 0 0 Bacteroides sartorii 0.01992 0.07699 

 

 

 

57185 0 0 

Bacteroides 
xylanisolvens 0.03051 0.02506 

 

 

 

57318 0 0 Bacteroides uniformis 0.02297 0.04506 

 

 

 

58110 0 0 

Escherichia coli 
O157:H43 str. T22 5.35E-04 0.007523 

 

 

 

59684 0.0001 0.0025 

Lachnospiraceae 
bacterium COE1 0.07203 0.04213 

 

 

59708 0 0 Bacteroides rodentium 0.0136 0.01986 

 

 

 

61442 0.0013 0.02786 

Lachnospiraceae 
bacterium A4 0.119 0.1348 
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