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Abstract 

Summary: The excessive amount of zeros in single-cell RNA-seq data include “real” zeros 

due to the on-off nature of gene transcription in single cells and “dropout” zeros due to 

technical reasons. Existing differential expression (DE) analysis methods cannot distinguish 

these two types of zeros. We developed an R package DEsingle which employed 

Zero-Inflated Negative Binomial model to estimate the proportion of real and dropout zeros 

and to define and detect 3 types of DE genes in single-cell RNA-seq data with higher 

accuracy. 

Availability and Implementation: The R package DEsingle is freely available at 

https://github.com/miaozhun/DEsingle and is under Bioconductor’s consideration now. 
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Supplementary information: Supplementary data are available at bioRxiv online. 

 

1 Introduction 

Single-cell RNA-seq (scRNA-seq) data have different characteristics from bulk RNA-seq 

data (Brennecke, et al., 2013). One important difference is that there are much more zero 

values in scRNA-seq data (Bacher and Kendziorski, 2016; Miao and Zhang, 2016). There are 

both biological and technical reasons. On the technical aspect, usually the amount of mRNAs 

in one cell is very tiny (~0.01-2.5pg) (Boon, et al., 2011), and most genes have only small 

mRNA copy numbers in a cell (Macaulay and Voet, 2014; Marinov, et al., 2014). Due to the 

low efficiency of the mRNA capture protocol (Islam, et al., 2014; Marinov, et al., 2014), the 

mRNAs of some genes are totally missed during the reverse transcription and cDNA 

amplification steps, and consequently missed in the sequencing (Wang and Navin, 2015). 

This phenomenon is called “dropout” events (Kharchenko, et al., 2014). We call this type of 

zero values in the data as dropout zeros as they do not reflect the true expression status. On 

the other hand, because of the stochastic nature of transcription in single cells and the 

heterogeneity between cells, there is also a high chance that the expression levels of some 

genes are really zero in some cells at the time when they are sequenced (Delmans and 

Hemberg, 2016). We call this type of zero values as “real” zeros because they reflect the true 

status of the genes’ transcription. The excessive zero values observed in scRNA-seq data are 

the mixture of these two possible types of zeros. Discriminating these two types of zeros is 
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important for downstream analyses. Existing methods for analysing differential gene 

expression in single cells did not take the different types of zeros into consideration. 

 

We developed an R package DEsingle to define and detect 3 types of DE genes between two 

groups of scRNA-seq data. It employed Zero-Inflated Negative Binomial model to estimate 

the proportion of real and dropout zeros. Simulation experiments showed that DEsingle can 

detect DE genes with better overall performance than existing methods. We applied DEsingle 

on a scRNA-seq dataset of human preimplantation embryonic cells (Petropoulos, et al., 2016) 

and found that the 3 types of DE genes imply different biological functions. DEsingle is not 

only a new tool for detecting DE genes with high accuracy, but also provides a new view of 

DE genes by discriminating 3 types of differential expression. 

 

2 Materials and methods 

2.1 The ZINB model for discriminating the proportion of real and dropout zeros 

DEsingle adopted the Zero-Inflated Negative Binomial (ZINB) model to describe the read 

counts and the excessive zeros in scRNA-seq data (Supplementary Fig. S1). The ZINB 

distribution is a mixture of constant zeros and a Negative Binomial (NB) distribution with a 

mixing parameter θ  (Garay, et al., 2011). The probability mass function (PMF) of ZINB 

distribution for read counts gN  of gene g  in a group of cells is 
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where θ  is the proportion of constant zeros of gene g  in the group of cells, ( )0I n =  is 

an indicator function which equals to 1 for 0n =  and 0 for 0n ≠ , NBf  is the PMF of the 

NB distribution, r  is the size parameter and p  is the probability parameter of the NB 

distribution. The NB part can also have zero values. The observed zero values are the mixture 

of constant zeros and zeros from the NB distribution. We proved that this model can separate 

observed zeros as two parts to reflect the proportion of real and dropout zeros (see 

Supplementary Materials). Based on this, we can distinguish 3 types of differential 

expression according to whether the difference is in the zero part or the NB part of the 

distribution, or in both. 

 

2.2 The Workflow of DEsingle 

DEsingle uses the ZINB model to detect differentially expressed genes. It includes 3 major 

steps: data normalization, detection of DE genes, and subdivision of DE genes into 3 types 

(Supplementary Fig. S1E). The input of DEsingle is the raw read-count matrix from 

scRNA-seq data. DEsingle integrates a modified median normalization method similar to the 

one used in DESeq (Anders and Huber, 2010). After normalization, maximum likelihood 

estimation (MLE) and constrained MLE of the parameters of two ZINB populations are 

calculated. Finally, DEsingle uses likelihood-ratio tests to compare two ZINB populations to 

detect DE genes and to subdivide them into the 3 types: DEs, DEa and DEg. DEs refers to 

“different expression status”. It is the type of genes that show significant difference in the 

proportion of real zeros in the two groups, but do not have significant difference in the other 

cells. DEa is for “differential expression abundance”, which refers to genes that are 
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significantly differentially expressed between the groups without significant difference in the 

proportion of real zeros. DEg or “general differential expression” refers to genes that have 

significant difference in both the proportions of real zeros and the expression abundances 

between the two groups. The detailed definition of the 3 types and description of the package 

are given in the Supplementary Materials. 

 

3 Results and discussion 

3.1 Performance evaluation on simulated data 

We compared DEsingle with 7 existing methods on 8 simulated datasets that considers both 

stochasticity and mRNA capture efficiency (see Supplementary Materials). Supplementary 

Fig. S2 shows the ROC curves and the AUCs of the different methods. DEsingle performed 

the best on 7 of the datasets and was very close to the best on the other dataset. 

 

3.2 Three types of DE genes found in real data experiments 

We applied DEsingle on a human preimplantation embryonic cell scRNA-seq dataset 

(Petropoulos, et al., 2016). Results show that DEsingle can detect genes and pathways that 

have significant changes in their expression between days of embryonic cell development, 

and the 3 types of detected DE genes are enriched in different biological processes 

(Supplementary Fig. S3, S4). Distinguishing DE genes as 3 subtypes provides the extra 

possibility of analysing the expression patterns and functions in different cell groups. Details 

of the results and functional analyses are given in the Supplementary Materials. 
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4 Conclusion 

We developed an R package DEsingle for differential expression analysis of scRNA-seq data. 

By estimating the proportion of real and dropout zeros with ZINB model, DEsingle not only 

detects DE genes with high accuracy but also distinguishes 3 types of differential expression 

patterns which can reveal different functional mechanisms. We believe that DEsingle is a 

powerful tool that brings a new angle for the analysis of scRNA-seq data. 
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