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Abstract 23 

Athletes regularly endure large increases in ventilation, and accompanying perceptions of 24 

breathlessness. While breathing perceptions often correlate poorly with objective measures of 25 

lung function in both health and clinical populations, we have previously demonstrated closer 26 

matching between subjective breathlessness and changes in ventilation in endurance athletes, 27 

suggesting that athletes may be more accurate during respiratory interoception. To better 28 

understand the link between exercise and breathlessness, we sought to identify the mechanisms 29 

by which the brain processing of respiratory perception might be optimised in athletes. 30 

Twenty endurance athletes and 20 sedentary controls underwent 7 Tesla functional 31 

magnetic resonance imaging. Inspiratory resistive loading induced conscious breathing 32 

perceptions (breathlessness), and a delay-conditioning paradigm was employed to evoke 33 

preceding periods of anticipation. Athletes demonstrated anticipatory brain activity that 34 

positively correlated with resulting breathing perceptions within key interoceptive areas, such as 35 

the thalamus, insula and primary sensorimotor cortices, which was negatively correlated in 36 

sedentary controls. Athletes also exhibited greater connectivity between interoceptive attention 37 

networks and primary sensorimotor cortex. These functional differences in athletic brains 38 

suggest that exercise may optimise processing of respiratory sensations. Future work may probe 39 

whether these brain mechanisms are harnessed when exercise is employed to treat breathlessness 40 

within chronic respiratory disease.  41 
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Introduction 42 

Athletes are able to undertake incredible feats of human achievement, with faster, higher and 43 

stronger performances recorded each year. Whilst exercise training is known to induce 44 

widespread physiological changes in the periphery, the concurrent changes in the structure and 45 

function of the athletic brain are less well investigated. For endurance athletes, exercise training 46 

is targeted to improve the ability of tissues to utilize oxygen in the combustion of fuels such as 47 

fat and carbohydrate, producing the energy required for repeated skeletal muscle contraction 48 

(Holloszy & Coyle, 1984; Jones & Carter, 2000). However, the role of the brain in perceiving 49 

and modulating changing sensations from the periphery, useful for maintenance of homeostasis 50 

during situations of perturbed physiology, is often overlooked. 51 

 Ventilation during exercise is tightly controlled, balancing neurally-modulated feed 52 

forward ventilatory commands and peripheral feedback to stimulate appropriate ventilation for 53 

exercising needs (Kaufman & Forster, 1996; Waldrop et al., 2010). Interoceptive monitoring of 54 

respiratory sensations contributes to the maintenance of homeostasis (Davenport & Vovk, 2009), 55 

and with sufficient exercise intensity, the strain of immense increases in ventilation induces 56 

perceptions of breathlessness (El-Manshawi et al., 1986; Takano et al., 1997; Lansing et al., 57 

2000; Borg et al., 2010). While endurance athletes are repeatedly exposed to these respiratory 58 

sensations and breathlessness, it is as yet unknown whether brain networks involved in these 59 

perceptions may also adapt to better cope with exercise demands. This understanding would 60 

allow us to explore how processing of ventilatory signals might be altered in different states, 61 

such as in athletes or conversely in chronic respiratory disease, where subjective reports of 62 

breathlessness are often discordant with objective measures of lung function and ventilation 63 

(Herigstad et al., 2017). 64 
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 Importantly, prior experiences of strong respiratory sensations may also alter the way 65 

someone anticipates and perceives their breathing (Faull et al., 2017; Van den Bergh et al., 2017; 66 

Herigstad et al., 2017). Expectations regarding upcoming respiratory sensations from 67 

conditioned cues (Pavlov, 1927), for example the breathlessness associated with an approaching 68 

hill whilst running, can be an important influence on both threat behaviours and preventative 69 

actions (i.e. to avoid the hill) (Lang et al., 2011), or on the perception itself (Price et al., 1999; 70 

Porro et al., 2002; Wager et al., 2004). Repeated breathlessness exposure may alter this 71 

anticipation in athletes, focusing their attention towards respiratory sensations (Merikle & 72 

Joordens, 1997; Phelps et al., 2006; Ling & Carrasco, 2006), reducing their anxiety (Spinhoven 73 

et al., 1997; Bogaerts et al., 2005; Tang & Gibson, 2005) or improving their interoceptive ability 74 

(Gray et al., 2007; Critchley et al., 2013; Mallorqui-Bague et al., 2016; Garfinkel et al., 2016b; 75 

2016a). Interestingly, exercise therapy is currently the most effective treatment for 76 

breathlessness associated with chronic obstructive pulmonary disease (COPD), improving 77 

breathlessness intensity and anxiety (Carrieri-Kohlman et al., 1996; 2001; Herigstad et al., 78 

2017), without concurrent improvements in lung function. It is possible that athletes may have 79 

different prior expectations and anticipation of breathlessness, although this has yet to be 80 

investigated. 81 

 In previous work we have observed closer matching between changes in ventilation and 82 

perceptions of breathlessness in endurance athletes compared to sedentary individuals (Faull et 83 

al., 2016a). Here, we sought to identify how the brain processing of both anticipation and 84 

perception of respiratory sensations may be altered in these athletes, to better understand 85 

potential contributors to ventilatory interoception. We investigated functional brain activity using 86 

magnetic resonance imaging (fMRI) during both conditioned anticipation and perception of a 87 
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breathlessness stimulus. We also examined potential differences in the resting temporal 88 

coherence, or ‘functional connectivity’ (Gerstein & Perkel, 1969; Van Den Heuvel & Pol, 2010) 89 

of brain networks involved in attention towards sensory information, allostasis and interoception 90 

(Kleckner et al., 2017). Differences in underlying functional connectivity may help us to 91 

understand how the athlete brain may be altered to facilitate accurate respiratory perceptions, and 92 

we hypothesized that these athletes would demonstrate both altered functional breathlessness-93 

related brain activity and connectivity compared to their sedentary counterparts. 94 

 95 

 96 

Materials and Methods 97 

Subjects 98 

The Oxfordshire Clinical Research Ethics Committee approved the study and volunteers gave 99 

written, informed consent. Forty healthy, right-handed individuals undertook this study, with no 100 

history of smoking or any respiratory disease. This cohort comprised two groups; 20 subjects 101 

who regularly participated in endurance sport, and 20 age- and sex-matched (±2 years) sedentary 102 

subjects (in each group: 10 males, 10 females; mean age ± SEM, 26 ± 1.7 years). Athletes were 103 

active participants in endurance sports (cycling, rowing and endurance running), with training 104 

sessions conducted at least 5 times per week. Sedentary subjects did not partake in any regular 105 

exercise or sport. Prior to scanning, all subjects underwent breathlessness testing during exercise 106 

and chemostimulated hyperpnea, which have been presented elsewhere (Faull et al., 2016a), and 107 

a combined whole-group analysis of fMRI data has been previously reported (Faull & Pattinson, 108 

2017). 109 

 110 
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Stimuli and tasks 111 

Subjects were trained using an aversive delay-conditioning paradigm to associate simple shapes 112 

with an upcoming breathlessness (inspiratory resistance) stimulus (Faull & Pattinson, 2017). A 113 

breathing system was used to remotely administer periods of inspiratory resistive loading to 114 

induce breathlessness (as predicted by the conditioned cues). The breathing system contained an 115 

inspiratory resistance arm (using a porous glass disk) with a non-rebreathing valve connected to 116 

a mouth piece, which could be periodically applied using the addition or removal of medical air 117 

through an alternative inspiratory non-rebreathing arm (detailed in (Faull et al., 2016b; Faull & 118 

Pattinson, 2017)). Mean peak inspiratory resistance was recorded at 14.7 (±8.3) cmH2O for the 119 

loading periods across subjects, and group values are presented in Tables 1 and 2. The subject’s 120 

nose was blocked using foam earplugs and they were asked to breathe through their mouth for 121 

the duration of the experiment. 122 

Two conditions were trained: 1) A shape that always predicted upcoming breathlessness 123 

(100% contingency pairing), and 2) A shape that always predicted unloaded breathing (0% 124 

contingency pairing with inspiratory resistance). The ‘certain upcoming breathlessness' symbol 125 

was presented on the screen for 30 s, which included a varying 5-15 s anticipation period before 126 

the loading was applied. The ‘unloaded breathing' symbol was presented for 20 s, and each 127 

condition was repeated 14 times in a randomised order. Conscious associations between cue and 128 

threat level (cue contingencies) were required and verified in all subjects by reporting (in 129 

writing) the meaning of each of the symbols both following the training session and immediately 130 

prior to the MRI scan. 131 

Rating scores of breathing intensity were recorded after every stimulus, using a visual-132 

analogue scale (VAS) with a sliding bar to answer the question ‘How difficult was the previous 133 
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stimulus?’ where the subjects moved between ‘Not at all difficult' (0%) and ‘Extremely difficult' 134 

(100%). Subjects were also asked to rate how anxious each of the symbols made them feel 135 

(‘How anxious does this symbol make you feel?’) using a VAS between ‘Not at all anxious' 136 

(0%) and ‘Extremely anxious' (100%) immediately following the functional MRI protocol. 137 

 138 

Physiological measurements 139 

We used established methods to decorrelate the effects of hypercapnia from the localised BOLD 140 

responses associated with breathing against an inspiratory resistance, using additional, matched 141 

carbon dioxide (CO2) boluses interspersed during rest periods in the fMRI protocols as 142 

previously described (Pattinson et al., 2009b; Faull et al., 2015; 2016b). In addition, a mildly 143 

hyperoxic state was achieved through a constant administration of oxygen at a rate of 0.5 L/min, 144 

to minimise fluctuations in end-tidal oxygen (PETO2) (Table 1). Physiological measures were 145 

recorded continuously using respiratory bellows surrounding the chest, and heart rate was 146 

measured using a pulse oximeter (9500 Multigas Monitor, MR Equipment Corp., NY, USA) 147 

during the training session and MRI scan, as previously described (Faull et al., 2016b). 148 

 149 

MRI scanning sequences 150 

MRI was performed with a 7 T Siemens Magnetom scanner, with 70 mT/m gradient strength and 151 

a 32 channel Rx, single channel birdcage Tx head coil (Nova Medical). 152 

BOLD scanning: A T2*-weighted, gradient echo EPI was used for functional scanning. 153 

The field of view (FOV) covered the whole brain and comprised 63 slices (sequence parameters: 154 

TE, 24 ms; TR, 3 s; flip angle, 90°; voxel size, 2 x 2 x 2 mm; field of view, 220 mm; GRAPPA 155 

factor, 3; echo spacing, 0.57 ms; slice acquisition order, descending), with 550 volumes (scan 156 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/174052doi: bioRxiv preprint 

https://doi.org/10.1101/174052
http://creativecommons.org/licenses/by/4.0/


8 

 

duration, 27 mins 30 s) for the task fMRI, and 190 volumes (scan duration, 9 mins 30 s) for a 157 

following resting-state acquisition (eyes open). 158 

Structural scanning: A T1-weighted structural scan (MPRAGE, sequence parameters: 159 

TE, 2.96 ms; TR, 2200 ms; flip angle, 7°; voxel size, 0.7 x 0.7 x 0.7 mm; field of view, 224 mm; 160 

inversion time, 1050 ms; bandwidth; 240 Hz/Px) was acquired. This scan was used for 161 

registration of functional images. 162 

Additional scanning: Fieldmap scans (sequence parameters: TE1, 4.08 ms; TE2, 5.1 ms; 163 

TR, 620 ms; flip angle, 39°; voxel size, 2 x 2 x 2 mm) of the B0 field were also acquired to assist 164 

distortion-correction. 165 

 166 

Physiological data analysis 167 

Values for end-tidal CO2 (PETCO2) were extrapolated for use as noise regressor in fMRI analysis 168 

(explained below). Respiratory waveforms, respiratory volume per unit time (RVT) and cardiac 169 

pulse oximetry triggers were included in the image denoising procedures (explained below), 170 

Values for mean and peak resistive loading, mean PETCO2 and PETO2, respiratory rate and RVT 171 

were calculated across each time block using custom written scripts in MATLAB (R2013a, The 172 

Mathworks, Natick, MA). Measures were averaged across each subject in each condition 173 

(unloaded breathing, anticipation and breathlessness). Peak mouth pressure was also calculated 174 

in each block and averaged in each subject for the resistive loading condition. Mean peak mouth 175 

pressure, breathlessness intensity and breathlessness anxiety ratings were then compared 176 

between the two groups using a student’s paired T-test. 177 

 178 

Imaging analysis 179 
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Preprocessing: Image processing was performed using the Oxford Centre for Functional 180 

Magnetic Resonance Imaging of the Brain Software Library (FMRIB, Oxford, UK; FSL version 181 

5.0.8; http://www.fmrib.ox.ac.uk/fsl/). The following preprocessing methods were used prior to 182 

statistical analysis: motion correction and motion parameter recording (MCFLIRT (Jenkinson et 183 

al., 2002)), removal of the non-brain structures (skull and surrounding tissue) (BET (Smith, 184 

2002)), spatial smoothing using a full-width half-maximum Gaussian kernel of 2 mm, and high-185 

pass temporal filtering (Gaussian-weighted least-squares straight line fitting; 120 s). B0 field 186 

unwarping was conducted with a combination of FUGUE and BBR (Boundary-Based-187 

Registration; part of FEAT: FMRI Expert Analysis Tool, version 6.0 (Greve & Fischl, 2009)). 188 

Data denoising was conducted using a combination of independent components analysis (ICA) 189 

and retrospective image correction (RETROICOR) (Harvey et al., 2008; Brooks et al., 2013) 190 

using the externally recorded physiological measures (as previously described (Faull et al., 191 

2016b)), and included simultaneous regression of motion parameters. 192 

Image registration: Following preprocessing, the functional scans were registered to the 193 

MNI152 (1x1x1 mm) standard space (average T1 brain image constructed from 152 normal 194 

subjects at the Montreal Neurological Institute (MNI), Montreal, QC, Canada) using a two-step 195 

process: 1) Registration of subjects’ whole-brain EPI to T1 structural image was conducted using 196 

BBR (6 DOF) with (nonlinear) fieldmap distortion-correction (Greve & Fischl, 2009), and 2) 197 

Registration of the subjects’ T1 structural scan to 1 mm standard space was performed using an 198 

affine transformation followed by nonlinear registration (FNIRT) (Andersson et al., 2007). 199 

Functional voxelwise and group analysis: Functional data processing was performed 200 

using FEAT (FMRI Expert Analysis Tool), part of FSL. The first-level analysis in FEAT 201 

incorporated a general linear model (Woolrich et al., 2004), with the following regressors: 202 
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Resistive loading periods (calculated from physiological pressure trace as onset to termination of 203 

each application of resistance); anticipation of breathlessness (calculated from onset of 204 

anticipation symbol to onset of resistance application); and unloaded breathing (onset and 205 

duration of ‘unloaded breathing’ symbol). Additional regressors to account for relief from 206 

breathlessness, periods of rating using the button box, demeaned ratings of intensity between 207 

trials, and a period of no loading following the final anticipation period (for decorrelation 208 

between anticipation and breathlessness) were also included in the analysis. A final PETCO2 209 

regressor was formed by linearly extrapolating between end-tidal CO2 peaks, and included in the 210 

general linear model to decorrelate any PETCO2-induced changes in BOLD signal from the 211 

respiratory tasks (McKay et al., 2008; Pattinson et al., 2009a; 2009b; Faull et al., 2015; 2016b). 212 

Contrasts for breathlessness (vs. baseline) and differential contrasts of anticipation of 213 

breathlessness > unloaded breathing (referred to as ‘anticipation’ or ‘anticipation of 214 

breathlessness’) were investigated at the group level. 215 

Functional voxelwise analysis incorporated HRF modeling using three FLOBS regressors 216 

to account for any HRF differences caused by slice-timing delays, differences across the 217 

brainstem and cortex, or between individuals (Handwerker et al., 2004; Devonshire et al., 2012). 218 

Time-series statistical analysis was performed using FILM, with local autocorrelation correction 219 

(Woolrich et al., 2001). The second and third waveforms were orthogonalised to the first to 220 

model the ‘canonical’ HRF, of which the parameter estimate was then passed up to the group 221 

analysis in a mixed-effects analysis. Group analysis was conducted using rigorous permutation 222 

testing of a General Linear Model (GLM) using FSL’s Randomize tool (Winkler et al., 2014), 223 

where the GLM consisted of group mean BOLD activity for each group, and demeaned, 224 

separated breathlessness intensity and anxiety covariates for each group. Including 225 
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breathlessness scores into the anticipation contrast allows us to identify preparatory brain activity 226 

that predicts the subsequent breathlessness perception when the stimulus is applied. Mean 227 

voxelwise differences between groups were calculated, as well as the interactions between group 228 

and breathlessness intensity / anxiety scores. A stringent initial cluster-forming threshold of t = 229 

3.1 was used, in light of recent reports of lenient thresholding previously used in fMRI (Eklund 230 

et al., 2016), and images were family-wise-error (FWE) corrected for multiple comparisons. 231 

Significance was taken at p < 0.05 (corrected). 232 

Resting functional connectivity analysis: Following preprocessing and image registration, 233 

resting state scans from all subjects were temporally concatenated and analysed using 234 

independent component analysis (ICA) using MELODIC (Beckmann & Smith, 2004), part of 235 

FSL. ICA decomposes the data into a set of spatial maps and their associated timecourses, 236 

referred to as ‘functional networks’. Model order in the group ICA was set to 25 spatially 237 

independent components. Dual regression (Beckmann et al., 2009) was then used to delineate 238 

subject-specific timecourses of these components, and their corresponding subject-specific 239 

spatial maps. Subject-specific spatial maps were again analysed non-parametrically using 240 

Randomise (part of FSL) (Winkler et al., 2014) with the same GLM and significance thresholds 241 

previously applied to the functional task group analysis. Twenty components were identified as 242 

signal, and two components of interest (‘default mode’ network and ‘task positive’ network) 243 

were considered for group differences, in accordance with recent interoceptive research 244 

(Kleckner et al., 2017). Therefore, p threshold significance was adjusted to p < 0.025 using 245 

Bonferroni correction for multiple comparisons. 246 

 247 

 248 
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Results 249 

Physiology and psychology of breathlessness 250 

Mean physiological values for each group for mouth pressure, PETCO2, PETO2, RVT, respiratory 251 

rate and RVT are presented in Table 1. Group scores for breathlessness intensity and anxiety are 252 

presented in Table 2, with no mean differences observed between groups. Previously, we have 253 

reported a difference in the accuracy between subjective breathlessness scores and changes in 254 

ventilation induced via a hypercapnic challenge (Faull et al., 2016a) in the same subjects used as 255 

the current study. For clarity, we have reproduced the results here in Figure 4. 256 

 257 

Task fMRI analysis 258 

Mean group differences: Mean activity during anticipation of breathlessness in each group is 259 

presented in Figure 1. In sedentary subjects, significantly increased BOLD activity was observed 260 

in the right anterior insula, operculum and bilateral primary motor cortex, and decreased BOLD 261 

activity in bilateral posterior cingulate cortex, precuneus, lateral occipital cortex, hippocampus, 262 

parahippocampal gyrus and amygdala. In athletes, increased BOLD activity was observed in 263 

bilateral anterior insula, operculum and primary motor cortex, and right supplementary motor 264 

cortex, and decreased BOLD activity in bilateral precuneus, hippocampus, parahippocampal 265 

gyrus and amygdala. No statistically significant voxelwise differences were observed between 266 

group mean activities during anticipation of breathlessness (differentially contrasted against 267 

unloaded breathing). 268 

Mean activity during breathlessness in each group is presented in Figure 1. In sedentary 269 

subjects, significantly increased BOLD activity was observed in the bilateral anterior and middle 270 

insula, operculum, primary sensory and motor cortices, supplementary motor cortex, 271 
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supramarginal gyrus and cerebellar VI, and decreased BOLD activity in bilateral precuneus. In 272 

athletes, significantly increased BOLD activity was observed in the right dorsolateral prefrontal 273 

cortex, bilateral anterior and middle insula, operculum, primary sensory and motor cortices, 274 

supplementary motor cortex, left visual cortex and cerebellar Crus-I, and decreased BOLD 275 

activity in right amygdala, hippocampus and superior temporal gyrus. No statistically significant 276 

voxelwise differences were observed between group mean activities during breathlessness. 277 

Subjective breathlessness scores: The brain activity that correlated with breathlessness 278 

scores of intensity and anxiety was compared between groups, to identify any interaction effects 279 

(group x subjective score). Interaction effects establish that the difference between groups varies 280 

as a function of the covariate (subjective scores). Athletes demonstrated widespread brain 281 

activity positively correlating with (predicted) intensity scores during anticipation of 282 

breathlessness (Figure 2), whilst those same areas had a negative correlation in sedentary 283 

subjects (interaction). This included activity in the bilateral ventral posterolateral nucleus of the 284 

thalamus, middle insula, and primary motor and sensory cortices, as well as left anterior insula. 285 

In contrast, a small amount of activity in the right putamen and caudate nucleus correlated with 286 

anxiety in sedentary subjects, but not in athletes during anticipation. No significant interactions 287 

between groups were present for either intensity of anxiety during breathlessness perception. 288 

 289 

Resting state network connectivity 290 

Of the 25 resting state ‘networks’ identified in the group ICA analysis, 20 components were 291 

identified to represent relevant signal (19 cortical, 1 cerebellar) while the remaining 5 were 292 

labeled as noise (see supplementary material for a summary the 20 resting networks). Two 293 

networks of interest were identified for group comparison analyses (as determined by Kleckner 294 
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et al., 2017): 1) The network most representative of the typical ‘default mode’, and 2) A network 295 

containing components of previously identified visual and dorsal attention networks (Vossel et 296 

al., 2014), which was notably most similar to the breathing task contrasts (‘task-positive’ 297 

network) (Figure 3). When network connectivity was compared between athletes and controls, 298 

athletes were found to have significantly greater (p = 0.019) connectivity of the task-positive 299 

network to an area of primary motor cortex active during resistive loading (Figure 3). 300 

 301 

 302 

Discussion 303 

Main findings 304 

We have identified a cohesive anticipatory brain network that predicts upcoming subjective 305 

ratings of breathlessness in athletes. Comparatively, this brain activity was reversed (i.e. 306 

negatively correlated with upcoming breathlessness ratings) in sedentary controls. Furthermore, 307 

at rest, athletes demonstrated greater connectivity between an area of breathing-related primary 308 

sensorimotor cortex, and a cingulo-opercular attention network that is strikingly similar to that 309 

recently identified to be involved in allostatic-interoceptive processing (Kleckner et al., 2017). 310 

This network may therefore be integral within attention and processing of sensory signals related 311 

to breathing. Increased connectivity between sensorimotor cortex and this brain network may 312 

underlie the observed differences in anticipatory processing of respiratory signals, and the 313 

improved ventilatory perceptive accuracy found in these endurance athletes. 314 

 315 

Breathlessness processing in athletes 316 
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Endurance athletes have repeated episodes of elevated ventilation and perceptions of 317 

breathlessness as part of their training. In previously published results (Faull et al., 2016a), we 318 

have demonstrated improved psychophysical matching between changes in chemostimulated 319 

hyperventilation and subjective breathlessness perceptions in these athletes compared to matched 320 

sedentary subjects (Figure 4). Therefore, whether by nature or nurture, these individuals appear 321 

to have improved ventilatory perception accuracy. The reduced correlation between changes in 322 

ventilation and perceptions of breathlessness demonstrated in sedentary subjects implies a 323 

worsened ability to process respiratory sensations, which may be a risk factor for symptom 324 

discordance in disease (Van den Bergh et al., 2017). 325 

In accordance with behavioural findings, here we have observed differences in the brain 326 

processing of breathing perceptions in athletes. Specifically, a coherent network of brain activity 327 

corresponding to breathlessness intensity scores was observed during anticipation in athletes, 328 

which was reversed (negatively correlated) with subjective scores in sedentary subjects. This 329 

network incorporates key areas involved in sensorimotor control and interoception, such as the 330 

thalamus, insula and primary sensorimotor cortices (Feldman & Friston, 2010; Simmons et al., 331 

2012; Feldman Barrett & Simmons, 2015; Van den Bergh et al., 2017). The opposing 332 

relationship between brain activity and subjective scores in athletes and sedentary subjects 333 

indicates a fundamental difference in preparatory, anticipatory brain activity directed towards 334 

subjective perceptions between these groups, which occurs without any difference in overall 335 

group mean brain activity. Conversely, sedentary subjects demonstrated activity corresponding 336 

to anxiety scores in the ventral striatum (caudate nucleus and putamen) during anticipation of 337 

breathlessness. The striatum has been previously linked with cardiovascular responses resulting 338 
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from social threat (Wager et al., 2009), and may represent heightened threat responses in 339 

sedentary subjects. 340 

 Interestingly, the intensity-related differences in brain activity were observed during the 341 

anticipation period that preceded the actual perception of breathlessness. It is possible that 342 

repeated increases in ventilation and breathlessness during training helps athletes improve the 343 

accuracy of their breathing expectations for an upcoming stimulus, such as expecting to run up a 344 

hill. Recent theories of symptom perception have proposed a comprehensive, Bayesian model 345 

(Feldman Barrett & Simmons, 2015; Van den Bergh et al., 2017), which includes a set of 346 

perceptual expectations or ‘priors’. These expectations are combined with sensory information 347 

from the periphery, for the brain to probabilistically produce the most likely resulting perception. 348 

Furthermore, factors such as attention (Merikle & Joordens, 1997; Phelps et al., 2006; Ling & 349 

Carrasco, 2006) and interoceptive ability (Gray et al., 2007; Critchley et al., 2013; Mallorqui-350 

Bague et al., 2016; Garfinkel et al., 2016b) are thought to influence this system, either by 351 

altering the prior expectations or incoming sensory information.  352 

While previous research had identified reduced anterior insula activity during loaded 353 

breathing in endurance athletes (Paulus et al., 2012), we have not reproduced these findings 354 

when employing more stringent fMRI statistics. Nevertheless, the proposal by Paulus and 355 

colleagues (Paulus et al., 2012) that athletes demonstrate more efficient minimization of the 356 

body prediction error remains a very plausible possibility. Here, instead, we have observed 357 

functional perception-related differences during anticipation of loaded breathing in endurance 358 

athletes. Therefore, repeated exercise training in athletes may develop breathlessness 359 

expectations (or priors) and better direct attention towards breathing sensations, improving the 360 

robustness of the perceptual system to accurately infer the intensity of breathlessness. 361 
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 362 

Differences in functional connectivity within the athletic brain 363 

Understanding differences in underlying communication between functional brain regions may 364 

inform us as to why differences in functional activity, such as observed in these athletes during 365 

anticipation of breathlessness, may arise. The temporal synchronicity of seemingly spontaneous 366 

fluctuations in brain activity across spatially distinct regions can inform us of how ‘functionally 367 

connected’ these disparate regions may be, and is thought to be related to the temporal coherence 368 

of neuronal activity in anatomically distinct areas (Gerstein & Perkel, 1969; Van Den Heuvel & 369 

Pol, 2010). 370 

 It is now well established that the brain can be functionally parsed into resting state 371 

‘networks’, where distinct brain regions are consistently shown to exhibit temporally similar 372 

patterns of brain activity (Smith et al., 2009; Miller et al., 2016). While properties of these 373 

resting state networks have been linked to lifestyle, demographic and psychometric factors 374 

(Smith et al., 2015; Miller et al., 2016), here we have found connectivity differences between 375 

athletes and sedentary subjects for a cingulo-opercular network. This network displays a very 376 

similar spatial distribution to the pattern of activity observed during the breathlessness tasks 377 

(‘task-positive’) (Figure 3), as well as the allostatic-interoceptive network recently identified by 378 

Kleckner and colleagues (Kleckner et al., 2017), and to previously reported networks of ventral 379 

and dorsal attention (Fox et al., 2005; 2006). Here, we have demonstrated greater functional 380 

connectivity in athletes between an area of primary sensory and motor cortices that has 381 

consistently been identified as active during tasks such as breath holds (Pattinson et al., 2009b; 382 

Faull et al., 2015) and inspiratory resistances (Faull et al., 2016b; Faull & Pattinson, 2017; 383 

Hayen et al., 2017). Therefore, it is possible that this greater connectivity in athletes between an 384 
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interoceptive attention network and primary sensorimotor cortex contributes to the processing of 385 

incoming and outgoing respiratory information, and thus may also be related to more accurate 386 

ventilatory perceptions. 387 

 Whilst this cross-sectional study is unable to determine whether endurance exercise 388 

training induces these differences in brain function and connectivity, or whether these 389 

individuals are biased towards training for endurance sports, this work provides intriguing 390 

preliminary insight that the brain may undergo adaptation in conjunction with the periphery, to 391 

more accurately process perceptions of bodily sensations such as breathlessness. 392 

 393 

Neuroimaging statistical considerations 394 

Extensive efforts were made within the analysis of this dataset to ensure only the most robust and 395 

reliable results were reported. Firstly, physiological noise and potential motion artifacts need to 396 

be specifically addressed when using breathing-related tasks, and these can be further 397 

compounded at higher field strengths (Brooks et al., 2013). Here we employed rigorous noise 398 

correction procedures, combining retrospective image correction of physiological parameters 399 

(heart rate, ventilation and end-tidal carbon dioxide) with both extended motion parameter 400 

regression and independent component analysis de-noising (Faull et al., 2016b; Hayen et al., 401 

2017). Secondly, recent work has revealed the potential leniency of previous fMRI statistical 402 

methodologies and thresholds (Eklund et al., 2016). In this manuscript, we have utilized minimal 403 

(2mm) spatial smoothing to maintain accurate localization of brain activity, and employed non-404 

parametric, permutation testing with a robust cluster threshold of 3.1 (Eklund et al., 2016), to 405 

represent only the most reliable statistical results. Whilst these approaches forsake much of our 406 

previously-reported activity within these breathing-related tasks (Faull & Pattinson, 2017), we 407 
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can have greater confidence in our reported differences between brain and behavior in athletes 408 

and sedentary subjects. 409 

 410 

Potential clinical implications of altering breathlessness processing 411 

As discussed, prior expectations of breathlessness are now considered to be a major contributor 412 

to symptom perception (Hayen et al., 2013; Faull et al., 2017; Van den Bergh et al., 2017; 413 

Geuter et al., 2017; Herigstad et al., 2017). Altering the accuracy of breathlessness perception 414 

using exercise training may be of interest when treating individuals with habitual symptomology, 415 

such as those with chronic obstructive pulmonary disease (COPD) or asthma. Recent research 416 

has shown exercise training to reduce breathlessness intensity and anxiety in patients with 417 

COPD, with corresponding changes in the brain’s processing of breathlessness-related words 418 

(Herigstad et al., 2016; 2017). It has been proposed that exercise exposure alters breathlessness 419 

expectations and priors in these patients, modifying symptom perception when it has become 420 

discordant with physiology in chronic disease (Parshall et al., 2012; Herigstad et al., 2017). It is 421 

also possible that exercise helps improve the processing of respiratory signals for more accurate 422 

ventilatory interoception in these patients, allowing breathlessness perception to better match 423 

respiratory distress. Future work investigating the link between exercise, ventilation and 424 

breathlessness perception may yield another treatment avenue (via targeted exercises) to improve 425 

patient quality of life in the face of chronic breathlessness. 426 

 427 

 428 

Conclusions 429 
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In this study, we have demonstrated altered anticipatory brain processing of breathlessness 430 

intensity in athletes compared to sedentary subjects. This altered functional brain activity may be 431 

underpinned by increased functional connectivity between an interoceptive network related to 432 

breathlessness, and sensorimotor cortex that is active during ventilatory tasks. These differences 433 

in brain activity and connectivity may also relate to improvements in ventilatory perception 434 

previously reported between these subject groups (Faull et al., 2016a), and open the door to 435 

investigating exercise as a tool to manipulate brain processing of debilitating breathing 436 

symptoms, such as breathlessness in clinical populations. 437 

 438 
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Tables 630 

 631 
 632 

Table 1. Mean (±sd) physiological variables across conditioned respiratory tasks. *Significantly 633 

(p < 0.05) different from sedentary group. Abbreviations: PETCO2, pressure of end-tidal carbon 634 

dioxide; PETO2, pressure of end-tidal oxygen; RVT, respiratory volume per unit time; bpm, beats 635 

per minute. 636 

 Unloaded breathing Anticipation 
 

Breathlessness 

 

ATHLETE SEDENTARY ATHLETE SEDENTARY ATHLETE SEDENTARY 

PETCO2 (mmHg) 35.96 (5.56) 35.08 (3.20) 35.50 (5.81) 34.76 (3.60) 36.34 (6.23) 35.40 (3.92) 
PETO2 (mmHg) 129.68 (6.41) 134.09 (15.15) 129.55 (6.75) 133.59 (13.47) 131.18 (6.83) 137.55 (16.42) 
Respiratory rate (min-1) 10.15 (2.59)* 13.35 (3.51) 9.99 (2.63)* 12.93 (4.29) 9.40 (3.58) 11.54 (5.11) 
RVT (% change from baseline) -4.06 (5.70) -0.56 (7.94) -0.03 (12.14) 6.07 (18.78) -20.00 (24.88) -13.23 (28.54) 

 637 

 638 

 639 

Table 2. Mean (±sd) physiological and psychological variables during breathlessness for both 640 

athletes and sedentary subjects. 641 

 ATHLETE SEDENTARY 

Peak mouth pressure (cmH2O) 14.4 (8.5) 12.0 (5.8) 
Breathlessness intensity rating (%) 46.3 (14.1) 46.7 (18.1) 
Breathlessness anxiety rating (%) 31.9 (17.8) 36.1 (20.0) 
Unloaded breathing intensity rating (%) 2.3 (3.5) 3.4 (3.4) 
Unloaded breathing anxiety rating (%) 2.8 (4.8) 2.2 (2.7) 

  642 
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Figure legends 643 

 644 

 645 

Figure 1. Mean BOLD activity in athletes and sedentary controls. Top: BOLD activity 646 

during conditioned anticipation of breathlessness. Bottom: BOLD activity during a 647 

breathlessness challenge, induced via inspiratory resistive loading. The images consist of a 648 

colour-rendered statistical map superimposed on a standard (MNI 1x1x1 mm) brain, and 649 

significant regions are displayed with a non-parametric cluster probability threshold of t < 3.1; p 650 

< 0.05 (corrected for multiple comparisons). Abbreviations: M1, primary motor cortex; SMC, 651 

supplementary motor cortex; dACC, dorsal anterior cingulate cortex; PCC, posterior cingulate 652 

cortex; dlPFC, dorsolateral prefrontal cortex; a-In, anterior insula; OP, operculum; amyg, 653 

amygdala; hipp, hippocampus; Crus-I, cerebellar lobe; activation, increase in BOLD signal; 654 

deactivation, decrease in BOLD signal. 655 

 656 

 657 

Figure 2. Interaction between groups and breathlessness scores. Left: BOLD activity during 658 

conditioned anticipation of breathlessness. Red-yellow = BOLD activity correlating with 659 

intensity scores in athletes > sedentary subjects; blue-light blue = BOLD activity correlating with 660 

anxiety scores in sedentary > athletic subjects. Right: Percentage BOLD signal change within the 661 

(red-yellow) intensity-correlated imaging mask against intensity scores, demonstrating a positive, 662 

linear correlation in athletes and a negative relationship in sedentary subjects. The images consist 663 

of a colour-rendered statistical map superimposed on a standard (MNI 1x1x1 mm) brain, and 664 

significant regions are displayed with a non-parametric cluster probability threshold of t < 3.1; p 665 

< 0.05 (corrected for multiple comparisons). Abbreviations: M1, primary motor cortex; a-In, 666 

anterior insula; m-In, middle insula; hipp, hippocampus; put, putamen; CN, caudate nucleus; 667 

VPL, ventral posterolateral thalamic nucleus. 668 

 669 
 670 
Figure 3. Differences in resting functional connectivity between athletes and sedentary 671 
subjects. Increased functional connectivity (purple) observed in athletes between an area of 672 
primary motor corticex that is active during breathlessness (right) and a cingulo-opercular task-673 
positive network (left) identified at rest. The images consist of a colour-rendered statistical map 674 
superimposed on a standard (MNI 1x1x1 mm) brain, and significant regions are displayed with a 675 
non-parametric cluster probability threshold of t < 3.1; p < 0.05 (corrected for multiple 676 
comparisons). 677 
 678 
 679 
Figure 4. Previously reported differences in ventilatory perceptions between athletes and 680 
sedentary subjects. *Significantly different slope from sedentary subjects. Subject-specific 681 
change in breathlessness anxiety and intensity scores plotted against percentage change in 682 
ventilation from baseline, induced by both mild (top) and moderate (bottom) hypercapnia (mild 683 
hypercapnia: aim of 0.8%; and moderate hypercapnia: aim of 1.5% increase in end-tidal carbon 684 
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dioxide, end-tidal oxygen was maintained constant). Athletes are plotted in the left column, and 685 
sedentary subjects in the right column. During both mild and moderate hypercapnia, the athlete 686 
group showed a positive linear correlation between change in ventilation and change in breathing 687 
anxiety that was significantly different from sedentary subjects (slope difference: mild p = 0.018; 688 
moderate p = 0.011). Athletes also demonstrated significant positive correlations for 689 
breathlessness intensity against change in ventilation, where the slope was significantly different 690 
to sedentary subjects in moderate (p = 0.047) but not mild (p = 0.177) hypercapnia. 95% 691 
Confidence intervals are shown. Figure is recreated from previously published data (Faull et al., 692 
2016a) under the Creative Commons license.  693 
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