
1

Gpufit: An open-source toolkit for GPU-accelerated curve fitting

Adrian Przybylski1, Björn Thiel1, Jan Keller-Findeisen1, Bernd Stock2, and Mark Bates1,*

1Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, Göttingen 37077, Germany
2Faculty of Natural Sciences and Technology, University of Applied Sciences and Arts, Von-
Ossietzkystr. 99, Göttingen 37085, Germany

*Correspondence should be addressed to mark.bates@mpibpc.mpg.de

 We present a general purpose, open-source software library for estimation of non-
linear parameters by the Levenberg-Marquardt algorithm. The software, Gpufit, runs on a
Graphics Processing Unit (GPU) and executes computations in parallel, resulting in a
significant gain in performance. We measured a speed increase of up to 42 times when
comparing Gpufit with an identical CPU-based algorithm, with no loss of precision or
accuracy. Gpufit is designed such that it is easily incorporated into existing applications or
adapted for new ones. Multiple software interfaces, including to C, Python, and Matlab,
ensure that Gpufit is accessible from most programming environments. The full source code
is published as an open source software repository, making its function transparent to the
user and facilitating future improvements and extensions. As a demonstration, we used
Gpufit to accelerate an existing scientific image analysis package, yielding significantly
improved processing times for super-resolution fluorescence microscopy datasets.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

2

Introduction

Optimization algorithms are widely used in science and engineering. In particular,
when comparing data with a model function, numerical optimization methods may be applied
to establish the suitability of the model and to determine the parameters which best describe
the observations. One such method, which is generally applicable to models which may
depend non-linearly on a set of parameters, is the Levenberg-Marquardt algorithm (LMA),1
and this has become a standard approach for non-linear least squares curve fitting.2,3

Although the LMA is, in itself, an efficient algorithm, applications requiring many

iterations of this procedure may encounter limitations due to the sheer number of
calculations involved. The time required for the convergence of a fit, or a set of fits, can
determine an application’s feasibility, e.g. in the context of real-time data processing and
feedback systems. Alternatively, in the case of very large datasets, the time required to
solve a particular optimization problem may prove impractical.

In recent years, advanced graphics processing units (GPUs) and the development of

general purpose GPU programming have enabled fast and parallelized computing by shifting
calculations from the CPU to the GPU.4 The large number of independent computing units
available on a modern GPU enables the rapid execution of many instructions in parallel, with
an overall computation power far exceeding that of a CPU. Languages such as CUDA C
and OpenCL allow GPU-based programs to be developed in a manner similar to
conventional software, but with an inherently parallelized structure. These developments
have led to the creation of new GPU-accelerated tools, such as the MAGMA linear algebra
library,5,6 for example.

Here, we present Gpufit: a GPU-accelerated implementation of the Levenberg-

Marquardt algorithm. Gpufit was developed to meet the need for a high performance,
general-purpose nonlinear curve fitting library which is publicly available and open source.
As expected, this software exhibits significantly faster execution than the equivalent CPU-
based code, with no loss of precision or accuracy. In this report we discuss the design of
Gpufit, characterize its performance in comparison to other CPU-based and GPU-based
algorithms, and we demonstrate its use in a scientific data analysis application.

Results

Software design

 The Gpufit library was designed to meet several criteria: (i) the software should make
efficient use of the GPU resources in order to maximize execution speed, (ii) the interface
should not require detailed knowledge of the GPU hardware, (iii) the source code should be
modular and extendable, and (iv) the software should be accessible from multiple
programming environments.

Gpufit implements the LMA entirely on the GPU, minimizing data transfers between
CPU and GPU memory. Copying memory between the CPU and the GPU is a slow
operation, and it is most efficient to handle large blocks of data at once. Therefore, Gpufit is
designed to process multiple fits simultaneously, each with the same model function and
data size, but allowing for unique starting parameters for each fit. At the start of a

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

3

calculation, a chunk of input data and initial fit parameters are copied to the GPU, and upon
completion the results are transferred back to CPU memory.

GPU architecture is based on a set of parallel multiprocessors, which divide
computing tasks between blocks of processing threads, as illustrated in Supplementary
Fig. S1. While determining how best to parallelize the LMA, we considered calculating one
fit per thread block, and one data point per thread. However, we found that this approach
yielded poor results due to the small number of simultaneously executed threads per
multiprocessor, and therefore the design was modified to allow the calculation of multiple fits
in each thread block. Also, a parallelized Gauss-Jordan algorithm was developed in order to

efficiently solve for the correction (iδ


) to the fit parameters at each iteration (see equation (4)

in Methods).

The number of computing blocks and threads may vary significantly depending on

the GPU hardware, and our aim was to avoid the necessity for any hardware-specific
configuration parameters in the Gpufit interface. Therefore, the software was designed to
read the properties of the GPU at run-time, and automatically set parameters such as the
number of blocks, threads, and the number of fits per thread block. This makes the use of a
GPU transparent to the programmer, and allows the Gpufit interface to be no different from
that for a conventional curve fitting function.

The Gpufit source code is modular, such that model functions and goodness-of-fit
estimators are separate from the core sections of the code, and new functions or estimators
may be added simply (see the Supplementary Information). In its initial release, Gpufit
includes two different fit estimators: the standard weighted least-squares estimator (LSE),
and a maximum likelihood estimator (MLE) which provides better fit results when the input
data is characterized by Poisson statistics.7 The modular concept of the Gpufit software is
illustrated schematically in Supplementary Fig. S2. This modularity allows Gpufit to be
quickly adapted to new applications, or modified to accommodate future developments.

Finally, Gpufit is written in C, CUDA C, and C++, and compiles to a Dynamic Link

Library (DLL) providing a C interface, making it straightforward to call Gpufit from most
programming environments. Furthermore, Gpufit bindings for Matlab and Python (e.g. the
pyGpufit module) were implemented, forming part of the Gpufit distribution.

Performance characterization

We tested Gpufit by using the software to process randomized simulated datasets.
The precision and accuracy of the fit results, as well as the number of fit iterations and the
execution time, were measured. The input data consisted of 2D Gaussian functions defined
by five parameters (see Supporting Information). Random noise (Gaussian or Poisson) was
added to each data point. Test data was generated in Matlab and passed to the fit routines
via their Matlab interfaces.

Algorithm validation

An initial step in characterizing Gpufit was to validate the function of the algorithm.
For this purpose, we tested Gpufit against the well-established MINPACK library,8 evaluating
the precision and accuracy of the fit results, and the convergence of the fit. Gaussian noise
was added to the input data such that a signal to noise ratio (SNR) could be defined. Upon

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

4

testing, the two packages yielded almost identical fit precision over a wide range of SNR
values, and converged in a similar number of steps (Supplementary Fig. S3). At very high
SNR, differences appear due to the limited numerical precision of floating point operations in
CUDA (single precision) vs. MINPACK (double precision). Fit accuracy was checked by
comparing the distributions of the fit parameters (Supplementary Fig. S4), and no systematic
deviation between the output of Gpufit and MINPACK was detected. Together, these
measurements verify that Gpufit yields precise and accurate fit results, and converges
similarly when compared to existing optimization software.

Execution speed and fit precision

 The parallel architecture of the GPU enables significant speed improvements when a
computation is amenable to being divided among multiple processors. To fairly evaluate the
speed improvement obtained by shifting processing tasks from the CPU to the GPU,
equivalent implementations of the LMA, running on both architectures, were required. We
created a library called Cpufit to serve as the reference CPU-based fitting algorithm for
testing purposes (see Methods). Cpufit implements precisely the same algorithm, section by
section, as Gpufit. We verified that Cpufit and Gpufit returned numerically identical fit results
given identical input data.

A comparison of execution speeds, plotted against the number of fits per function call
(N), is shown in Fig. 1. As expected, the fitting speed on the CPU remains constant as N
changes, due to the sequential execution of each fit calculation. On the other hand, for
Gpufit the speed increases with increasing N . The more fits that are calculated in one
execution, the greater the benefit of parallelization. The crossover point at which use of the
GPU becomes advantageous is, in this case, approximately 130N = fits. For large N the
speed of GPU processing saturates, indicating that GPU resources are fully utilized. At

810N = fits per function call, we measured a processing speed of more than 4.5 million fits
per second, approximately 42 times faster than the same algorithm executed on the CPU.

Measurements of the execution time for each sub-section of the Cpufit and Gpufit

code reveal the bottlenecks of the CPU-based algorithm, and how the computational

workload is re-distributed on the GPU. For a set of 65 10× fits we measured the time
duration of each step of the fitting process, and these results are shown in Fig. 2. For
reference, program flowcharts for Cpufit and Gpufit, color coded according to processing
time, are shown in Supplementary Fig. S5 and S6. In our tests, the most time-consuming
task for Cpufit was the calculation of the model function, requiring more than one third of the
total execution time. Gpufit completed the same calculation more than 100 times faster, due
to the parallelization of the work. Similarly, all other steps in the fit process ran 10 – 100
times faster on the GPU. Gpufit includes additional operations, such as data transfers
between CPU and GPU memory, however these did not impact performance when sufficient
numbers of fits were processed.

 Given the parallel computing capability of the GPU, it was not surprising that Gpufit
outperformed an equivalent algorithm running on a CPU. In order to verify that our code is
efficiently implemented, we therefore tested Gpufit against another GPU-based fitting library:
GPU-LMFit.9 These tests were limited to smaller datasets because GPU-LMFit is available
only as a closed-source, 32-bit binary package, restricting the size of the memory it can
address. Figure 3A shows the speed of the Gpufit and GPU-LMFit libraries measured as a

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

5

function of the number of fits per function call (N), with the speed of the MINPACK library
shown for reference. Both packages exhibited similar scaling in speed as the number of fits
and the data size varied, however, Gpufit showed faster performance for all conditions
tested. As the data size per fit was increased (Fig. 3B), the speeds became more
comparable, indicating that Gpufit makes more efficient use of GPU resources for smaller
fits. The increased speed comes with no loss of precision, as it was verified that the fit
results returned by both Gpufit and GPU-LMFit have virtually identical numerical precision
(see Supplementary Fig. S7).

 When data is subject to counting statistics (i.e. when the noise has a Poisson
distribution), curve fitting using an alternative goodness-of-fit measure based on maximum
likelihood estimation (MLE) has been reported to yield more accurate fit results, when
compared with least-squares fitting.10,11 We tested the performance of this estimator using
input data with simulated Poisson noise. The precision of the fit results, using either the
unweighted LSE, weighted LSE, or MLE estimators, is shown in Supplementary Fig. S8. We
found that the MLE estimator yielded better results than the LSE, particularly at small data
values, although for larger values the two methods were approximately equivalent.

Application to super-resolution microscopy

 Gpufit is well suited for rapid processing of large datasets, and its interface allows it
to serve as a drop-in replacement for existing CPU-based fit routines. To demonstrate these
capabilities in a real application, we integrated Gpufit into the image analysis pipeline of a
super-resolution fluorescence microscopy experiment.

Stochastic optical reconstruction microscopy (STORM) is a method for fluorescence

imaging of biological samples, which obtains an image resolution significantly higher than
the classical “diffraction limit” of far-field optical microscopy.12 This method relies heavily on
image processing: the generation of a single STORM image requires thousands to millions
of individual fitting operations, and this task may require minutes to hours of computation
before the final image is obtained.

We integrated Gpufit into a recently published software package, Picasso,13 which
may be used to process raw STORM data into a super-resolved image of the sample. The
Picasso software is written in Python, and is optimized to carry out the fit using a multi-
threaded process running on all cores of the CPU. Moreover, Picasso uses "just in time"
(JIT) compilation to optimize its execution speed. We modified this section of the Picasso
source code, replacing the multi-core CPU-based fitting with a call to Gpufit, as illustrated
schematically in Fig. 4A. Comparing the speed of Picasso before and after the modification
demonstrates the benefit of Gpufit. When analyzing a raw STORM dataset (80000 images
requiring 3.6 million fit operations), a fitting task which required 99.4s with standard Picasso
was completed in only 2.2s after Gpufit was included, a 45-fold speed increase, with
identical fit precision. The output STORM image is shown in Fig. 4B, and a comparison of
the fitting time with and without Gpufit is shown in Fig. 4C.

Discussion

 General purpose GPU computing is a relatively new technology, which is making an
impact in many fields of science and engineering. The software introduced here, Gpufit,
represents the first general purpose, open source implementation of a non-linear curve fitting

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

6

algorithm for the GPU. It is intended as a high performance optimization tool, easily
modified and adapted for new tasks, which can be rapidly implemented within existing data
analysis applications.

 In terms of performance, Gpufit exhibits similar precision and accuracy to other fitting
libraries, but with significantly faster execution. In our measurements, curve fitting with
Gpufit was approximately 42 times faster than the same algorithm run on the CPU. Gpufit
also outperformed another GPU-based implementation of the LMA, GPU-LMFit, for all
conditions tested. These values depend on the details of the fit and the computer hardware.
Higher performance would be expected with a more powerful GPU (e.g. an Nvidia Tesla), or
with multiple GPUs running in parallel. In addition to its speed, the principal advantages of
Gpufit are its general purpose design, which may incorporate any model function or modified
estimator, and the availability of the source code, which allows it to be compiled and run on
multiple computing architectures.

Since Gpufit automatically distributes the curve fitting tasks over the blocks and
threads of the GPU multiprocessors, the user is not required to know the details of the
hardware, thereby allowing Gpufit to be used as a “drop-in” replacement for existing fit
functions. To demonstrate this, we modified Picasso to make use of Gpufit rather than its
own multi-core CPU fitting code. Despite the fact that curve fitting in Picasso was already
parallelized (by virtue of its use of multi-threaded processing) we found that Gpufit
outperformed the built-in Picasso curve fitting by a factor of 45 times (Fig. 4). The ease with
which Gpufit was integrated into Picasso, and the gain in performance, show that our original
design goals were met.

 As of its initial release, the Gpufit package has several limitations. First, the fit model
functions are built into the code at compilation time, and the addition or modification of a
model function requires re-compilation of the source code. We also note that Gpufit requires
the explicit calculation of the gradients and Hessian of the model, and expressions for these
functions must be present in the code embodying the fit model function. As an open-source
software project, however, we expect that Gpufit will continue to develop and improve,
potentially removing these limitations. For example, runtime compilation of model functions
written in CUDA would remove the requirement for re-building the source, and methods to
approximate the gradient and Hessian numerically could be introduced. Finally, there is the
potential for porting Gpufit to other general-purpose GPU computing languages, such as
OpenCL, which would make the code functional on other GPU hardware platforms.

Using an inexpensive graphics card and a standard PC, we achieved speeds higher
than 4.5 million fits per second for data that is typical of STORM experiments (Fig. 1).
Considering recent developments in localization based super-resolution methods, in
particular experiments in which >400 million individual fluorophore switching events were
recorded,14 data processing speed has become highly relevant. A tool such as Gpufit could
make the difference between a researcher waiting minutes (with Gpufit) or hours (without)
before the image can be examined. This rapid feedback has a greater importance than
simply reducing waiting time – it enables the quick screening of samples and test conditions,
ultimately leading to higher quality image data. Furthermore, we expect that Gpufit will
facilitate the adoption of new, computationally demanding data analysis approaches, such as
cubic spline fitting,15 in order to further improve STORM image resolution.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

7

Conclusions

 We have developed a GPU-accelerated implementation of the Levenberg Marquardt
algorithm, with significantly faster performance as compared with traditional CPU-based
software. Gpufit is designed to be general purpose, and as such we expect it to be useful for
diverse applications in science and engineering which may depend critically on rapid data
processing, e.g. high-speed feedback systems and the recently described MINFLUX method
for particle tracking and nanoscale imaging.16 The Gpufit library is accessible from most
programming environments, and the automatic configuration of GPU-specific parameters
makes it simple to work with in practice. Finally, Gpufit makes efficient use of GPU
computing resources to achieve high performance. Using Gpufit with our own hardware, we
achieved a 42-fold improvement in execution time for batch-processing of curve fitting tasks,
with no loss of precision or accuracy.

 Gpufit is published as an open source software project, and is available via the
Github software repository. Open source software development is advantageous from
several standpoints: it enhances code integrity through review by users, and offers the
possibility for users to fix bugs, add features, etc.17 In addition, open source code makes the
workings of an algorithm transparent to the user, which may be a crucial factor when a
“black box” software tool is not sufficient, such as in scientific data analysis applications.
Finally, we note that Marquardt’s original paper introducing his algorithm, published in 1963,
concludes with the following sentence: “A FORTRAN program … embodying the algorithm
described in this paper is available as IBM Share Program No. 1428”.1 The “Share program”
referred to by Marquardt represents one of the origins of the open software concept,18 and
we find it appropriate that Gpufit should be made available in a similar manner.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

8

Methods

Levenberg-Marquardt algorithm

 The LMA provides a general numerical procedure for fitting a non-linear model
function to a set of data points. It may be considered as a combination of the method of
steepest descent and Newton’s method, having a high probability of convergence even
when the initial parameter estimates are poor, and fast convergence near the minimum. The
standard algorithm, as described by Marquardt,1 minimizes iteratively the general least
squares equation:

 () ()()
1 22

0

N

n n
n

a f a zχ
−

=
= − 

 (1)

where nf are the model function values, a is the vector of model parameters, and nz are

the set of N data points. To find the minimum of ()2 aχ 
 (chi-square), the algorithm

performs an iterative search of the parameter space for a coordinate where the gradient of

the function equals zero, i.e. ()2 0aχ∇ =
. The gradient is approximated by a Taylor

expansion:

 () () ()2
2 20 i i i i ia a H aχχ δ χ δ= ∇ + ≈ ∇ +

   
 (2)

where ()2 iH aχ


 is the Hessian matrix of ()2
iaχ∇ 

, and iδ


 is a small correction to ia


 (the

index i corresponds to the iteration number). The expression for the Hessian includes the

first and the second partial derivatives of ()2 aχ 
, however terms containing the second

derivatives are assumed negligible and ignored. Solving (2) for iδ


 yields the Newton step

for the minimization of ()2 aχ 
. Up to this point, the LMA is equivalent to Newton’s Method.

A special characteristic of the LMA is the damping factor λ which controls the step

size of each iteration by modifying the diagonal elements of the Hessian:

 ()
()
() ()

2

2

2

,

,
,

, for

1 , for
kl

kl
kl

H a k l
H a

H a k l
χ

χ
χ λ

 ≠′ = 
⋅ + =




 (3)

where k and l are the matrix indices. The positive factor λ is initialized with a small value,
and thus initially the algorithm behaves like Newton’s method. As the algorithm iterates, if
the value of chi-square in the latest iteration is smaller than in the previous step, λ is
decreased by a constant factor ν . Otherwise, λ is increased by the same factor.
Increasing λ causes the LMA to tend towards the behavior of the method of steepest
descent. In this manner, the LMA adjusts between the two methods, as the minimum is
approached.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

9

By transposing equation (2) and applying the damping factor (3), a system of linear

equations is obtained which may be solved for iδ


, e.g. by the Gauss-Jordan method:3

 () ()2
1 2

i i iH a aχδ χ−′= − ⋅∇
  

 . (4)

If the iteration is successful (chi-square decreased), the difference iδ


 is added to the

previous parameter values:

 1i i ia a δ+ = +
 

 . (5)

The damping factor λ is updated after each iteration, and convergence is tested. Any
convenient convergence criterion may be used, but in general the overall convergence of the
LMA depends on the relative size of the parameter adjustment in each iteration. As

originally set out by Marquardt, with a reasonable choice of r and ε (e.g. 310r −= and
510ε −=), the algorithm has converged when

,

,

i j

i jr a

δ
ε<

+
 (6)

is satisfied for all parameters, where r is a small positive constant (to avoid division by
zero), i is the iteration number, and j is the parameter index.

Estimators of best fit

Least squares estimation (LSE) is a common method for finding the parameters
which yield the minimal deviation between observed data and a model function. The
standard LMA minimizes the general LSE formula given by equation (1). However, it is also
possible to include weighting factors in the calculation of chi-square, for example:

 () () 2
1

2
LSE

0

N
n n

n n

f a z
aχ

σ

−

=

 −
=  

 





 (7)

where nσ represents the uncertainty (standard deviation) of the data. This allows the

precision of each data point to be taken into account.

In cases where the uncertainties of the data points are Poisson distributed, a
maximum likelihood estimator (MLE) yields more precise parameter estimates than the
LSE.10,11 In this situation it is beneficial to use an alternative estimator with the LMA. A
procedure has been described7 in which the LSE formula (1) is replaced by the MLE
equation for Poisson deviates, as follows:

 () ()() ()1 1
2
MLE

0 0, 0
2 ln

n

N N
n

n n n
n n z n

f a
a f a z z

z
χ

− −

= = ≠

  
= − −  

   
 


 

 . (8)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

10

Using this estimator within the context of the LMA is relatively simple to implement, requiring

only the calculation of the gradient and Hessian matrix of ()2
MLE aχ 

, and the calculation of

()2
MLE aχ 

 itself. As before, in the calculation of the Hessian matrix, terms containing second

partial derivatives are ignored.

Gauss-Jordan elimination

 The Gauss-Jordan method is a procedure for solving linear equation systems in
matrix form, and we used this approach to find the solution of the set of equations (4) in the
LMA. In addition, we parallelized the Gauss-Jordan algorithm for use with Gpufit. Our GPU
implementation employs partial pivoting to ensure precise and numerically stable
calculations.3 The sorting step in the pivot operation was accomplished on the GPU by
means of a parallel bitonic merge sort.19

Computer hardware

All tests were executed on a PC running the Windows 7 64-bit operating system and
CUDA toolkit version 8.0. The PC hardware included an Intel Core i7 5820K CPU, running
at 3.3 GHz, and 64 GB of RAM. The graphics card was an NVIDIA GeForce GTX 1080
GPU with 8 GB of GDDR5X memory. All source codes, including the Cpufit, Gpufit, and
C/C++ Minpack libraries, were compiled using Microsoft Visual Studio 2013, with compiler
optimizations enabled (release mode). Additional details of the test conditions and
instructions for compiling the Cpufit and Gpufit software libraries are provided in the
Supplementary Information and the Gpufit documentation.

Software for comparison tests

 To evaluate its performance, Gpufit was compared against an equivalent CPU-based
algorithm (called Cpufit) and two other curve fitting libraries: Minpack8,20 and GPU-LMFit.9
Cpufit is a standard implementation of the LMA based on published examples,1,3,21 which we
wrote in C++ for execution on the CPU. C++ Minpack is an open-source C/C++
implementation of MINPACK which runs on the CPU (we used the fitting function lmder()
from this library).8,20 GPU-LMFit is a closed-source implementation of the LMA (publicly
available in 32-bit binary format) which runs on the GPU and provides the option of using
LSE or MLE as the estimator.9

Code availability

The full source code for Gpufit, including external bindings, is available for download
from a public software repository located at http://www.github.com/gpufit/Gpufit. The source
code for the CPU-based reference algorithm, Cpufit, is included. The repository also
contains a User’s manual with instructions for building the source code, which may be read
online at http://gpufit.readthedocs.io.

Data availability

The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

11

References

1 Marquardt, D. W. An Algorithm for Least-Squares Estimation of Nonlinear
Parameters. Journal of the Society for Industrial and Applied Mathematics 11, 431-
441 (1963).

2 Moré, J. J. in Numerical analysis 105-116 (Springer, 1978).

3 Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes
in FORTRAN; The Art of Scientific Computing. (Cambridge University Press, 1993).

4 Du, P. et al. From CUDA to OpenCL: Towards a performance-portable solution for
multi-platform GPU programming. Parallel Computing 38, 391-407 (2012).

5 Tomov, S., Nath, R., Du, P. & Dongarra, J. MAGMA Users’ Guide,
<http://icl.cs.utk.edu/magma/> (2009).

6 Dongarra, J. et al. in Numerical Computations with GPUs (ed Volodymyr
Kindratenko) 1-26 (Springer, 2014).

7 Laurence, T. A. & Chromy, B. A. Efficient maximum likelihood estimator fitting of
histograms. Nature methods 7, 338-339 (2010).

8 Moré, J. J., Garbow, B. S. & Hillstrom, K. E. User guide for MINPACK-1. (1980).

9 Zhu, X. & Zhang, D. Efficient Parallel Levenberg-Marquardt Model Fitting towards
Real-Time Automated Parametric Imaging Microscopy. PLoS ONE 8, e76665 (2013).

10 Abraham, A. V., Ram, S., Chao, J., Ward, E. S. & Ober, R. J. Quantitative study of
single molecule location estimation techniques. Optics express 17, 23352-23373
(2009).

11 Smith, C. S., Joseph, N., Rieger, B. & Lidke, K. A. Fast, single-molecule localization
that achieves theoretically minimum uncertainty. Nature methods 7, 373-375 (2010).

12 Bates, M., Huang, B. & Zhuang, X. Super-resolution microscopy by nanoscale
localization of photo-switchable fluorescent probes. Curr. Opin. Chem. Biol. 12, 505-
514 (2008).

13 Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R.
Super-resolution microscopy with DNA-PAINT. Nat. Protocols 12, 1198-1228 (2017).

14 Legant, W. R. et al. High-density three-dimensional localization microscopy across
large volumes. Nat. Methods 13, 359-365 (2016).

15 Babcock, H. P., Moffitt, J. R., Cao, Y. & Zhuang, X. Fast compressed sensing
analysis for super-resolution imaging using L1-homotopy. Optics Express 21, 28583-
28596 (2013).

16 Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent
molecules with minimal photon fluxes. Science (2016).

17 Morin, A., Urban, J. & Sliz, P. A Quick Guide to Software Licensing for the Scientist-
Programmer. PLOS Computational Biology 8, e1002598 (2012).

18 Wikipedia. SHARE (computing) --- Wikipedia The Free Encyclopedia,
<http://en.wikipedia.org/w/index.php?title=SHARE_(computing)> (2016).

19 Buck, I. & Purcell, T. in GPU Gems 621-636 (Addison Wesley, 2004).

20 Devernay, F. C/C++ Minpack, <http://devernay.free.fr/hacks/cminpack/> (2007).

21 Markwardt, C. B. in Astronomical Data Analysis Software and Systems XVIII Vol. 411
ASP Conference Series (eds D. Bohlender, P. Dowler, & D. Durand) 251-254
(Astronomical Society of the Pacific, Quebec, Canada, 2009).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

12

Acknowledgements

 We would like to thank Dr. C. Wurm and Dr. E. Rothermel for the preparation of the
sample used for STORM imaging, and also Dr. V. Cordes for providing the primary antibody
against GP210. We thank N. Warmbold for contributions to an early version of the Gauss-
Jordan algorithm used in the Gpufit source code. M.B. gratefully acknowledges funding from
the European Molecular Biology Organization (ALTF 800-2010) and the Max Planck Society.

Author Contributions

 M.B., B.T., and B.S. conceived the project. A.P., B.T., J.K., and M.B. wrote the
Cpufit and Gpufit source code. A.P. and M.B. carried out the quantitative evaluation of
Gpufit. M.B. performed the STORM experiment. A.P. and J.K. wrote the external bindings
for Gpufit. J.K. created the usage examples. J.K., A.P., M.B., and B.T. wrote the
documentation. M.B., B.T., and B.S. supervised the research. M.B. wrote the manuscript.

Additional Information

Competing financial interests

 The authors declare no competing financial interests.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

13

Figure 1: Execution speed of the Levenberg Marquardt algorithm on the CPU or the GPU,
as a function of the number of fits processed. For small numbers of fits, GPU fitting is slower
than on the CPU, due to the extra time spent copying data between the CPU and the GPU.
For larger numbers of fits, however, the GPU significantly out-performs the CPU, as it can
better take advantage of its parallel architecture. In this example, the maximum speed
achieved was 4.65 x 106 fits per second (dependent on the specifics of the hardware and the
fit data). For detailed test conditions, see the Supplementary Information.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

14

Figure 2: Comparison of execution times for each code section of Cpufit and Gpufit. The
bars correspond to the execution time for processing a dataset consisting of five million fits.
Four additional steps are required for Gpufit: GPU memory allocation, data transfer to and
from the GPU, and GPU memory de-allocation. All code sections require less time when
executed on the GPU, with the largest differences corresponding to the bottlenecks of the
Cpufit algorithm: calculation of the model function, the gradients, the Hessian, and the
solution of the equation system. For detailed test conditions, see the Supplementary
Information.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

15

Figure 3: Processing speed comparison between three fitting libraries: Gpufit, MINPACK,
and GPU-LMFit. (a) The execution speed as a function of the number of fits processed per
call. (b) Execution speed as a function of the data size (number of data points) per fit. For
smaller tasks (smaller numbers of fits per call or smaller data sizes) the Gpufit library makes
more efficient use of the GPU processing resources, outperforming GPU-LMFit by more than
one order of magnitude.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

16

Figure 4: Accelerated STORM analysis in Picasso. (a) Schematic diagram comparing the
multi-core CPU based fitting of Picasso (left) vs. parallelized GPU-based fitting (right).
Picasso uses multiple cores ("workers") of the CPU to simultaneously carry out the fits. We
replaced this code with Gpufit, which has a much greater capability for parallelization on the
GPU. (b) STORM image of GP210, a component of the nuclear pore complex in eukaryotic
cells. The conventional epi-fluorescence image is shown in the top right corner, to provide a
resolution comparison. Data processing was performed in Picasso, and required 3.6 million
individual curve fitting operations. (c) Execution time of the curve fitting process using the
published Picasso software and the modified Picasso software including Gpufit. The time
required for curve fitting was reduced by a factor of 45 after including Gpufit in the Picasso
application.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174110doi: bioRxiv preprint

https://doi.org/10.1101/174110

