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Text 37 
Viruses modulate ecosystems by directly altering host metabolisms through auxiliary metabolic genes, 38 
which are obtained through random ‘sampling’ of the host genome and rise to fixation, presumably 39 
through improved viral fitness by alleviating key metabolic bottlenecks during infection. Conspicuously, 40 
however, viral genomes are not known to encode the core components of translation machinery, such 41 
as ribosomal proteins (RPs), though genes for RPs S1 and S21 have been detected in viral 42 
metagenomes1,2. Here we augment this little-noticed observation using available reference genomes, 43 
global-scale viral metagenomic datasets, and functional assays for select proteins. We identify 15 44 
different RPs across diverse viral genomes arising from cultivated viral isolates (5 RPs in 16 genomes) 45 
and metagenome-assembled viruses (14 RPs in 1,403 uncultivated virus genomes). Among these, S21 46 
and L7/L12 are the most common, and functional assays show that both proteins are incorporated into 47 
70S ribosomes when expressed in Escherichia coli, indicating that they might modulate protein 48 
translation during infection. Ecological distributions of virus-encoded RPs suggest ecosystem-specific 49 
virus adaptations, whereby aquatic viruses appear to selectively incorporate genes for S21, L31 and L33, 50 
whereas S6, S9, S15 and S30AE genes are enriched among viruses infecting animal-associated bacteria. 51 
Finally, the fact that viruses tend to encode dynamic RPs, suggests that the viral proteins likely replace 52 
cellular versions in host ribosomes, likely enabling takeover of host translational machinery. 53 
 54 
During billions of years of co-evolution with their hosts, viruses have evolved numerous strategies 55 
ensuring their successful propagation, including tinkering with various metabolic pathways and 56 
subversion of key cellular biosynthetic machineries. For example, ocean viruses that infect 57 
cyanobacteria (cyanophages) commonly encode core photosynthetic reaction center proteins, which 58 
serve to maintain the complex photosynthetic machinery during infection3. These and other ocean 59 
viruses can similarly manipulate their host’s ability to uptake phosphate4, as well as cycle nitrogen5,6 and 60 
sulfur7,8 – the fundamental building blocks of ocean life. Complementarily, viruses employ a diverse 61 
array of host take-over strategies to (i) fight off host defenses by encoding anti-restriction-modification 62 
or anti-CRISPR genes9, and (ii) control transcription by encoding sigma factors or polymerases 63 
themselves 10. Conspicuously not yet observed in viral genomes, however, are the RPs. Indeed, even the 64 
giant mimiviruses, which are known to carry genes for a range of aminoacyl-tRNA synthetases11,12, do 65 
not encode proteins directly participating in the formation of the ribosomes. It is this feature – 66 
ribosome-encoding or not – which is now proposed to separate cellular life from viruses13,14. 67 
 68 
The first crossing of this line appeared when previous analysis of ‘cleaned’ viral metagenomes suggested 69 
that viral genomes might encode ribosomal proteins after all – specifically for S1 and S21 (REF 1,2). 70 
While intriguing, these observations went largely unnoticed, likely because they were based on short 71 
assemblies lacking genome context. To systematically investigate this, we first searched available 72 
reference genomes of cultivated viruses for genes encoding RPs. Of 116 ribosomal protein domains 73 
(Table S1) that seeded our searches, 5 were identified across 16 viral genomes (Table 1). The genes were 74 
generally embedded within variable genomic contexts, even for homologous ribosomal protein genes 75 
(Figure S1).  76 

We identified a ribosomal protein S30 domain, a component of the small 40S ribosomal subunit15, in the 77 
eukaryotic virus, Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV), a member of the family 78 
Retroviridae. This domain was part of the fau gene fused to an N-terminal ubiquitin-like domain (Figure 79 
S2a). Interestingly, FBR-MuSV has acquired the cDNA copy of fau in inverse orientation, and production 80 
of the antisense RNA suppresses expression of endogenous fau mRNA, which leads to apoptosis 81 
inhibition and induces tumorigenesis15,16. Although the viral protein is not translated15, the antisense 82 
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transcript affects the production of the cellular fau16 and thus might have an indirect effect on the 83 
ribosome biogenesis.  84 
 85 
The remainder of the virus-encoded ribosomal proteins – S21, L9, L7/L12 and S30AE – was found in 86 
bacterial viruses (bacteriophages) infecting proteobacterial (from 3 different classes) and mycobacterial 87 
(phylum Actinobacteria) hosts (Table 1). The S21 homolog was identified in pelagiphage HTVC008M, a 88 
myovirus. S21 is a conserved component of the bacterial 30S ribosomal subunit (Figure 1a) required for 89 
the initiation of polypeptide synthesis and mediates the base-pairing reaction between mRNA and 16S 90 
rRNA17. The viral protein was most similar (54% identity over the protein length) to the corresponding 91 
protein of its host, Pelagibacter ubique (Figure 1b), an abundant member of the SAR11 clade (class 92 
Alphaproteobacteria), which is considered to represent one of the most numerous bacterial groups 93 
worldwide18. Maximum likelihood phylogenetic analysis strongly suggests that the phage gene was 94 
horizontally acquired from the Pelagibacter host (Figure 1c).  95 
 96 
Ribosomal protein L9 was identified in Mycobacterium phage 32HC, a siphovirus. L9 binds to the 23S 97 
rRNA and is a component of the large 50S ribosome subunit (Figure S3A). The protein is involved in 98 
translation fidelity and is required to suppress bypassing, frameshifting, and stop codon "hopping"19. L9 99 
has a highly conserved architecture consisting of two widely spaced globular domains connected by an 100 
elongated α-helix20 . While the viral L9 homolog contains the N-terminal globular domain and part of the 101 
α-helical spacer, the C-terminal part has been apparently non-homologously replaced with sequence 102 
that lacks known function (Figure S2b).  103 
 104 
The next ribosomal protein encoded in sequenced viral genomes was L7/L12, which was found in 7 105 
phages infecting proteobacteria from 3 different classes (Table 1). L7 is equivalent to L12 except for the 106 
acetylation at the N-terminus, hence the two proteins are often collectively referred to as L7/L1221. The 107 
L7/L12 proteins participate in the formation of the so-called L7/L12 stalk, a clearly defined 108 
morphological feature in the E. coli 50S ribosomal subunit, which besides L7/L12, contains ribosomal 109 
proteins L10 and L11 as well as the L10- and L11-binding region of the 23S rRNA21 (Figure S3A). The 110 
phage-encoded L7/L12 domains are similar (~50%) to bona fide cellular ribosomal homologs, as well as 111 
conserved residues  involved in interaction with L11 and elongation factors EF-G and EF-Tu (Figure S4a). 112 
Although in some phages (e.g., Ralstonia phage RSB3), the L7/L12 domain spans the entire protein, it 113 
was more common that these domains were variably positioned within much larger polypeptides (up to 114 
724 aa-long; Figure S4b). Interestingly, searches seeded with sequences flanking the L7/L12 domain in 115 
phage proteins resulted in identification of multiple phage homologs which specifically lack the L7/L12 116 
domain (Figure S5). For example, proteins encoded by Salmonella phages FSL_SP-058 and FSL_SP-076 117 
contain the L7/L12 domains, whereas homologous protein from Escherichia phage Pollock lacks this 118 
domain, despite conservation of the upstream and downstream regions (Figure S5). Furthermore, in 119 
different phage genomes, L7/L12 proteins were encoded within widely different genomic contexts 120 
(Figure S1). These observations suggest that L7/L12 domain has been acquired by different phages on 121 
multiple, independent occasions, with some of these genes possibly being fixed in the phage genomes. 122 
 123 
The last ribosomal protein encoded in sequenced viral genomes were S30AE domain-containing 124 
proteins, which were encoded by 7 phages infecting Cronobacter and E. coli (six closely related phages 125 
with 92-97% average nucleotide identity) (Figure S6). S30AE proteins are expressed during stasis and 126 
under unfavorable growth conditions. S30AE proteins binds ribosomes to stabilize 100S dimers that 127 
inhibit translation to enable cells to control translational activity without costly alteration of the 128 
ribosomal pool22. Multiple sequence alignment shows high conservation of the viral and cellular S30AE 129 
homologs (Figure S7), suggesting that the gene transfer has occurred in a relatively recent past. In the 130 
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S30AE phylogeny, homologs from E. coli phages cluster amidst gammaproteobacterial sequences. By 131 
contrast, the more divergent protein encoded by Cronobacter phage clusters with sequences from 132 
members of the phylum Firmicutes, though this association is confounded by potential long-branch-133 
attraction artifact (Figure S8). 134 
 135 
To place these findings of cultivated virus-encoded RPs into broader ecological context, we searched 136 
424,225 viral contigs from two global viral metagenomic datasets8,23 for putative RPs using the same 106 137 
sequence profiles (see Materials and Methods). Overall, 14 putative ribosomal protein genes were 138 
identified across 1,403 contigs (Figure 2, Table S2, Figure S3B). S21, L7/L12 and S30AE, which were 139 
found in cultivated phages, were also detected in uncultivated phages, with S21 homologs dominating 140 
(88%) the pool of RPs detected (Figure 2, Table S2). While found in only one cultivated phage (see 141 
above), maximum likelihood phylogeny and genome context comparison using these metagenomic data 142 
suggested that at least 7 virus-host exchanges of S21 protein-coding genes have occurred, and across 143 
multiple bacterial phyla (Figure 2, Figure S9). Notably, S21-encoding viruses were almost exclusively 144 
from aquatic samples (90% of S21s detected). Such repeated transfers and enrichment in aquatic 145 
samples suggest that virus-encoded S21 proteins likely can provide a direct fitness benefit to aquatic 146 
bacteriophages. By contrast, L7/L12 and S30AE were found across a broad range of samples (Figures 2, 147 
S6, S10), suggesting that their repeated acquisition could be beneficial in multiple types of conditions 148 
and hosts.  149 
 150 
Additionally, however, we identified another 11 RPs in uncultivated viruses that were not identified in 151 
the isolate genomes (Table S2). Notable among these, due to being commonly (>10 viral contigs) 152 
detected, are L31 and L33. Although the biological function of L33 remains obscure 24, it appears to 153 
contact tRNAs in the ribosomal E(exit)-site25, whereas L31, similar to S30AE, plays a role in 100S 154 
formation, 70S association, and translation26. As in the case of S21, viral contigs encoding L31 or L33 155 
were almost exclusively detected in aquatic environments (Figure 2). Maximum likelihood phylogenies 156 
and genome context comparisons highlighted a consistent pattern of at least 2 independent events of 157 
virus-host transfers involving viruses infecting different bacterial phyla (Figures S10 and S11).  158 
 159 
Thus, at this point, there is an emerging picture that viruses might randomly sample host DNA, including 160 
ribosomal protein genes, and that in some cases these might become fixed in viral genomes. Most 161 
(>99%) of the viruses contained only a single ribosomal protein gene (exception: 9 uncultivated viral 162 
contigs contained 2; Figure S12), which is clearly not enough for viruses to build functional ribosomes on 163 
their own. Presumably, these viruses are merely tweaking ribosomal functioning in their hosts – just as 164 
observed for auxiliary metabolic genes whereby viruses do not encode complete pathways, but instead 165 
only select genes critical for the takeover and/or reprogramming of the host cell6,7,27.  166 
 167 
Presence of ribosomal protein genes in viral genomes raises a question of what their functions in the 168 
course of the infection cycle might be and how do viruses benefit from carrying such genes. The S30-169 
encoding gene increases the transformation capacity of FBR-MuSV in vitro by twofold, providing clear 170 
fitness advantage to the virus15. It is conceivable that homologs of other ribosomal proteins might be 171 
also beneficial for the bacteriophages that encode them. For instance, it is known that S21 is necessary 172 
during translation initiation step and in the absence of S21, ribosomes are incapable of binding natural 173 
mRNAs17. Thus, phage-encoded S21 might compete with and replace the cellular S21, forcing 174 
preferential translation of viral transcripts. Similarly, viral L7/L12 domain proteins might provide 175 
interfaces for virus-specific translation factors. Protein L9 is required for translational fidelity and is 176 
involved in suppression of frameshifting. In many members of Caudovirales production of certain tail 177 
components is dependent on programmed translational frameshifting 28 and viral copy of L9 might help 178 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 9, 2017. ; https://doi.org/10.1101/174177doi: bioRxiv preprint 

https://doi.org/10.1101/174177


5 
 

to achieve optimal frameshifting in these genes. It has been demonstrated that stalling of phage protein 179 
synthesis is one of the major defense strategies in Bacteroidetes29. Thus, viral homologs of S30AE and 180 
L31 might compete with the cellular homologs and prevent formation of ribosome dimers, thereby 181 
releasing translation inhibition and ensuring that phage transcripts are efficiently translated. 182 
 183 
Given what seemed to be reasonable explanations for why viruses might benefit from encoding such 184 
genes, we next investigated whether virus-encoded ribosomal protein genes appeared functional. Thus, 185 
we calculated the ratio of nonsynonymous polymorphisms per non-synonymous site (pN) to the number 186 
of synonymous polymorphisms per synonymous site (pS). This ratio can be used to infer whether genes 187 
are evolving neutrally (pN/pS=1) or positively (pN/pS>1) away from the original function, or whether 188 
such substitutions are largely not tolerated due to purifying selection (pN/pS<1) that would suggest the 189 
gene was functional. These analyses suggested that the vast majority of the viral-encoded RPs were 190 
likely functional as well-sampled genes (>10x coverage, and ≥1 single nucleotide polymorphism, or SNP) 191 
had an average pN/pS=0.10, with 84% having a pN/pS≤0.20 (Table S2).  192 
 193 
To build on these in silico functional assays, we next explored whether the viral proteins are 194 
incorporated into ribosomes, by focusing on 3 RPs encoded by cultivated phages and most frequently 195 
detected in uncultivated phage genomes (Figure 2). These were pelagiphage-encoded S21, L7/L12 from 196 
Salmonella phage FSL SP-076, and S30AE from Escherichia coli phage rv5. Following moderate and 197 
controlled expression of the respective viral proteins, 70S ribosomes were isolated under high-198 
stringency salt conditions (see Materials and Methods) to avoid unspecific association of viral proteins30. 199 
Judging from the obtained ribosome profiles (Figure 3A) and transmission electron microscopy (Figure 200 
3B), expression of the viral proteins did not affect the 70S stability. All examined samples nearly 201 
exclusively contained 70S monoribosomes. Subsequent mass spectrometry (MS) analysis of the 70S 202 
ribosomes purified on the sucrose gradients unequivocally showed that S21 and L7/L12 (Figure 3C, 203 
Supplementary Table S4 and S5), but not S30AE (Supplementary Table S6), were stably incorporated into 204 
the 70S ribosomes when expressed in E. coli. Notably, S30AE was detected using MS in the crude cell 205 
extracts (Figure 3C, Supplementary Table S7), indicating that lack of its incorporation into ribosomes is 206 
not due to poor protein expression, but may rather result from other factors, such as inadequate growth 207 
phase, genuine loss of ability to bind to ribosomes or dissociation due to stringent washes with salt 208 
during 70S ribosome isolation. Regardless, binding of viral S21 and L7/L12 to ribosomes strongly 209 
suggests that these and possibly other viral RPs modulate protein translation during phage infection. 210 
  211 
In summary, this work builds upon prior discoveries of aminoacyl-tRNA synthetase genes encoded by 212 
giant viruses (family Mimiviridae)11,12. Our current work shows that even ribosomal proteins are encoded 213 
by numerous cultivated and uncultivated viruses with relatively small genomes, and offers support for 214 
them having an evolutionary fitness advantage for viruses during infection. Interestingly, virus-encoded 215 
RPs appear to be differentially selected for across environments as aquatic viruses are enriched for S21, 216 
L31 and L33, whereas phages of animal-associated bacteria are enriched for S6, S9, S15 and S30AE. 217 
Curiously, although ribosomes are highly stable macromolecular assemblies which retain most of their 218 
original components during cellular growth and division31, some elements (proteins S21, L7/L12, L9, L31 219 
and L33) are highly dynamic, solvent accessible, and among the few proteins that are loosely bound to 220 
the ribosome and can be exchanged in vivo between ribosomes31,32. It is these dynamic ribosomal 221 
proteins that are enriched in viruses, which presumably is because they are most suited to homologous 222 
replacement during infection and therefore of a functional fitness advantage during phage evolution. 223 
Analogously, modulation of photosynthesis as well as nitrogen and sulfur cycles in infected cells hinges 224 
on a handful of key proteins captured by viruses from their respective hosts6,8,33. More generally, such 225 
selective acquisition of key components of the multisubunit assemblies, such as ribosomes and 226 
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photosystems, or recruitment of central regulators of rate-limiting steps in metabolic pathways appears 227 
to be a general strategy employed by viruses to optimize the metabolic state of the infected cells and/or 228 
to achieve the takeover of the host.     229 
 230 
 231 
 232 
METHODS  233 
Sequence analyses 234 
All viral genomes were downloaded from viral RefSeq database 235 
(ftp://ftp.ncbi.nlm.nih.gov/refseq/release/viral/). A hidden Markov model (HMM) profile was 236 
downloaded from the PFAM database (http://pfam.xfam.org/) for each domain listed in Table S1. In 237 
total, 106 sequence profiles corresponding to distinct ribosomal protein domains were used as seeds to 238 
search the proteomes of viruses infecting hosts from the three cellular domains, as well as proteins 239 
predicted on viral contigs from two previously published global metagenomic datasets, Global Ocean 240 
Virome8, and Earth’s Virome23, which are available at https://img.jgi.doe.gov/cgi-bin/vr/main.cgi and 241 
http://datacommons.cyverse.org/browse/iplant/home/shared/iVirus/GOV. Notably, domain S1, which 242 
is repeated 4 to 6 times in the ribosomal protein S1, is not exclusive to RPs as it is common across 243 
diverse RNA-binding proteins and fused to non-ribosomal functional motifs (pfam id: PF00575.18). Thus 244 
while domain S1 was found in homologs of vaccinia virus interferon inhibitor K3L34, which is conserved 245 
in chordopoxviruses belonging to 7 different genera, it was not considered further due to potential 246 
functional ambiguity. The domains were identified by HHsearch 35 with E-value of 1e-5. For isolates, the 247 
identified hits were then manually inspected using HHPRED 35. All alignments were constructed using 248 
PROMALS3D36.  Maximum likelihood phylogenetic trees were constructed using PhyML37 using a WAG 249 
substitution model and the proportion of invariable sites estimated from the data. For metagenomic 250 
predicted proteins, multiple alignments were built with Muscle38 and maximum likelihood phylogenetic 251 
trees were computed with FastTree39, and displayed with iTol40. Genomic comparisons were performed 252 
using BLAST with the BLOSUM45 matrix. The ribosomal structure was downloaded from PDB database 253 
and visualized using Chimera41. 254 
 255 
To further confirm the functionality of RPs encoded on uncultivated viral genomes, selective constraint 256 
on these auxiliary metabolic genes was evaluated through pN/pS calculation, as in REF. 42. Briefly, 257 
synonymous and non-synonymous SNPs were observed in each ribosomal protein gene covered ≥ 10x, 258 
and compared to expected ratio of synonymous and non-synonymous SNPs under a neutral evolution 259 
model if at least 1 SNP was identified. The interpretation of pN/pS is similar as for dN/dS analyses, with 260 
the operation of purifying selection leading to pN/pS values < 1. 261 
 262 
Genetic constructions 263 
The genes encoding for S21 protein from Pelagibacter phage HTVC008M (AGE60443), S30AE protein 264 
from Escherichia coli bacteriophage rv5 and L7/L12 protein from Salmonella phage FSL SP-076 265 
(AGF88397) were synthetized by Eurofins Genomics (Ebersberg, Germany). S21 and S30AE genes were 266 
cloned into pEX-A2 plasmid and L7/L12 gene into pEX-K4 plasmid. The gene corresponding to S30AE viral 267 
protein was digested by BsaI and HindIII and inserted into a pBAD24 vector between NcoI and HindIII 268 
restriction sites. The genes corresponding to S21 and L7/L12 viral proteins were cloned into the same 269 
vector, using EcoRI and HindIII restriction sites. The pBAD24 plasmid harbors an arabinose dependent 270 
promoter, a pBR322 origin and the ampicillin resistance coding sequence.  271 
 272 
Protein expression and cell retrieval 273 
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NM522 Escherichia coli strain was used for expression of viral S21, S30AE and L7/L12 proteins. The same 274 
strain harboring empty pBAD24 was used as a negative control. Overnight pre-cultures were grown in 275 
the presence of 1mM of L-arabinose and 100µg/mL of ampicillin. Then the expression was maintained in 276 
the cell culture until the end of exponential phase. Once the cultures reached an OD600nm of 1, the cells 277 
were centrifuged at 7,000rpm for 7 minutes at 4°C. The cell pellet was then washed into saline water at 278 
a concentration of 9g/L of NaCl. A second centrifugation was made and the bacterial pellet was frozen at 279 
-80°C. 280 
 281 
70S Ribosome purification  282 
The cells were resuspended in Buffer 1 (Tris-HCl pH7,5 20mM,MgOAc 50mM,NH4Cl 100mM, EDTA 283 
0.5mM and DTT 1mM) and finally lysed using the French Press. The lysate was centrifuged and the 284 
supernatant was put above the same volume of high-salt sucrose buffer (Tris-HCl pH7.5 10mM, MgCl2 285 
10mM, NH4Cl 500mM, EDTA 0.5mM, certified RNase free sucrose 1.1M and DTT 1mM) in order to wash 286 
the ribosomes. After centrifugation at 30,000rpm for 20h at 4°C, the ribosomes form a translucent 287 
pellet. The ribosome pellet was washed several times to remove membranes and then resuspended in 288 
Buffer 2 (Tris-HCl pH7.5 10mM, MgCl2 10mM, NH4Cl 50mM, EDTA 0.5mM and DTT 1mM) on ice. An 289 
equivalent of 200OD260nm units of ribosomes were loaded on top of a 10-50% sucrose gradient into 290 
polycarbonate tubes. The ultra-centrifugation was performed at 23,000rpm, for 18h at 4°C using SW28 291 
rotor (BECKMAN L-90 ultracentrifuge). The gradient was then fractionated into 500µL aliquots. The 292 
OD260nm values were determined for each fraction to locate the 70S absorbance peak. The corresponding 293 
fractions were pooled in one volume of buffer 2 and centrifuged at 30,000rpm for 20h at 4°C in order to 294 
remove sucrose. The pellet was recovered in buffer 2 and after titration, the ribosomes were ready for 295 
mass spectrometry analysis. 296 
 297 
Negative staining 298 
Following ribosome separation, we diluted samples 10 times in Buffer 2 and applied them to freshly 299 
glow-discharged 300-mesh collodion/carbon-coated grids. After three washes in this buffer, grids were 300 
stained with 2% uranyl acetate for 30 s. The grids were then observed with a Tecnai G2 Sphera 301 
transmission electron microscope operating at 200 kV. Images were recorded with a 4000 × 4000 Gatan 302 
Ultrascan 4000 CCD camera at a nominal magnification of 50,000×. 303 
 304 
LC-MS/MS proteins identification  305 
- Liquid digestion of ribosomal samples 306 
25 µg of ribosomes were digested according to the following protocol: first, 53.5 µl of 50mM ammonium 307 
bicarbonate buffer (pH 7,8) was added to the sample to 65 µL total volume. After vortexing 1 minute, 308 
tubes were incubated 10 minutes at 80°C and then sonicated for two minutes. Reduction of disulfide 309 
bonds step was processed by adding 12.5 µl of 65mM DTT to the sample and was incubated 15 minutes 310 
at 37°C after agitation 1 minute. Alkylation of reduced disulfide bonds was realized by adding 135mM 311 
iodoacetamide. Microtube was then incubated 15 minutes in the dark at room temperature, under 312 
agitation. Finally, proteins were digested overnight at 37°C with 10 µl of either modified endoproteinase 313 
glu-c ([0.1 µg/µl.], Promega, Madison, WI) in 50 mM ammonium bicarbonate buffer for S21 (due to high 314 
lysine and arginine content in S21) or with modified Trypsine ([0.1 µg/µl.], Promega, Madison, WI) in 50 315 
mM ammonium bicarbonate buffer for S30AE, L7/L12 and control. 316 
 317 
- Protein Prefractionation and Digestion 318 
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Twenty five micrograms of soluble crude protein extracts of E. coli were boiled for 10 min with 5 µl of 319 
LDS Sample buffer 4X and 2µl of reducing agent (DTT 10X (500mM)). They were then separated on a 320 
NuPAGE® Novex® 4-12 % gradient Bis-Tris gel (Invitrogen Corparation, USA) in MES SDS Running Buffer 321 
(Invitrogen: 50 mM MES, 50 mM Tris-HCl, 1 % SDS, 1.025Mm EDTA) using Xcell SureLock Mini Cell 322 
(Invitrogen). 323 
 324 
Gel was stained with EZBlue (Sigma-Aldrich) for 30 min and destained with water over night. Each gel 325 
lane was manually cut into 2 slices of approximately the same size in the region of 7kDa-14kDa. The 326 
slices were first treated with 50 mM NH4HCO3 in acetonitrile/water 1:1 (v/v), dehydrated with 100% 327 
acetonitrile and rehydrated in 100 mM NH4HCO3. Next they were washed again with 50 mM NH4HCO3 328 
in acetonitrile/water, 1:1 (v/v) and dehydrated with 100% acetonitrile. The slices were then treated with 329 
65 mM DTT for 15 min at 37 °C, and with 135 mM iodoacetamide in the dark at room temperature. 330 
Finally, the samples were washed with 100 mM NH4HCO3 in acetonitrile/water, 1:1 (v/v), and 331 
dehydrated with 100% acetonitrile before being rehydrated in 100 mM NH4HCO3, washed with 100 mM 332 
NH4HCO3 in acetonitrile/water, 1:1 (v/v) and then dehydrated again with 100% acetonitrile. Proteins 333 
were digested overnight at 37 °C with 4 ng/l of modified trypsin (Promega, Madison, WI) in 50 mM 334 
NH4HCO3. Peptides were extracted by incubating the slices first in 80 µl of acetonitrile/ 335 
water/trifluoroacetic acid (70/30/0.1; v/v/v) for 20 min, and then in 40 µl of 100% acetonitrile for 5 min 336 
and finally in 40 µl of acetonitrile/water/trifluoroacetic acid (70/30/0.1; v/v/v) for 15 min. Supernatants 337 
were transferred into fresh tubes and concentrated in a SpeedVac (Thermo Scientific) for 15 min to a 338 
final volume of 40 µl. 339 
 340 
- LC-MS/MS analysis 341 
Shotgun analyses were conducted on a LTQ-Orbitrap XL (ThermoFisher Scientific) mass spectrometer. 342 
The MS measurements were done with a nanoflow highperformance liquid chromatography (HPLC) 343 
system (Dionex, LC Packings Ultimate 3000) connected to a hybrid LTQ-Orbitrap XL (Thermo Fisher 344 
Scientific) equipped with a nanoelectrospray ion source (New Objective). The HPLC system consisted of 345 
a solvent degasser nanoflow pump, a thermostated column oven kept at 30 °C, and a thermostated 346 
autosampler kept at 8 °C to reduce sample evaporation. Mobile A (99.9% Milli-Q water and 0.1% formic 347 
acid (v:v)) and B (99.9% acetonitrile and 0.1% formic acid (v:v)) phases for HPLC were delivered by the 348 
Ultimate 3000 nanoflow LC system (Dionex, LC Packings). An aliquot of 10 μL of prepared peptide 349 
mixture was loaded onto a trapping precolumn (5 mm × 300 μm i.d., 300 Å pore size, Pepmap C18, 5 350 
μm) over 3 min in 2% buffer B at a flow rate of 25 μL/min. This step was followed by reverse-phase 351 
separations at a flow rate of 0.250 μL/min using an analytical column (15 cm × 300 μm i.d., 300 Å pore 352 
size, Pepmap C18, 5 μm, Dionex, LC Packings). We ran a gradient from 2−35% buffer B for the first 60 353 
min, 35−60% buffer B from minutes 60−85, and 60−90% buffer B from minutes 85−105. Finally, the 354 
column was washed with 90% buffer B for 16 min and with 2% buffer B for 19 min before the next 355 
sample was loaded. The peptides were detected by directly eluting them from the HPLC column into the 356 
electrospray ion source of the mass spectrometer. An electrospray ionization (ESI) voltage of 1.6 kV was 357 
applied to the HPLC buffer using the liquid junction provided by the nanoelectrospray ion source, and 358 
the ion transfer tube temperature was set to 200 °C. The LTQ-Orbitrap XL instrument was operated in its 359 
data-dependent mode by automatically switching between full survey scan MS and consecutive MS/MS 360 
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acquisitions. Survey full scan MS spectra (mass range 400−2000) were acquired in the Orbitrap secƟon 361 
of the instrument with a resolution of r = 60 000 at m/z 400; ion injection times were calculated for each 362 
spectrum to allow for accumulation of 106 ions in the Orbitrap. The ten most intense peptide ions in 363 
each survey scan with an intensity above 2000 counts (to avoid triggering fragmentation too early 364 
during the peptide elution profile) and a charge state ≥ 2 were sequentially isolated at a target value of 365 
10 000 and fragmented in the linear ion trap by collision-induced dissociation. Normalized collision 366 
energy was set to 35% with an activation time of 30 ms. Peaks selected for fragmentation were 367 
automatically put on a dynamic exclusion list for 30 s with a mass tolerance of ±10 ppm to avoid 368 
selecting the same ion for fragmentation more than once. The following parameters were used: the 369 
repeat count was set to 1, the exclusion list size limit was 500, singly charged precursors were rejected, 370 
and the maximum injection time was set at 500 and 300 ms for full MS and MS/MS scan events, 371 
respectively. For an optimal duty cycle, the fragment ion spectra were recorded in the LTQ mass 372 
spectrometer in parallel with the Orbitrap full scan detection.  373 
 374 
For Orbitrap measurements, an external calibration was used before each injection series ensuring an 375 
overall error mass accuracy below 5 ppm for the detected peptides. MS data were saved in RAW file 376 
format (Thermo Fisher Scientific) using XCalibur 2.0.7 with tune 2.4. The data analysis was performed 377 
with Proline software 1.4 supported by Mascot Distiller and Mascot server (v2.5.1; 378 
http://www.matrixscience.com) database search engine for peptide and protein identification using its 379 
automatic decoy database search to calculate a false discovery rate (FDR) of 1% at the peptide level. 380 
MS/MS spectra were compared to the Escherichia coli Reference proteome set database containing the 381 
phage ribosomal proteins (UniProt release 2017_01, January 18 2017, 23022 sequences, 7070297 382 
residues). Mass tolerance for MS and MS/MS was set at 10 ppm and 0.5 Da, respectively. The enzyme 383 
selectivity was set to full trypsin with one miscleavage allowed for samples S30AE and L7/L12 and the 384 
enzyme selectivity was set to full V8-DE with one miscleavage allowed for sample S21. 385 
 386 
Protein modifications were fixed carbamidomethylation of cysteines, variable oxidation of methionine, 387 
variable acetylation of lysine, variable acetylation of N-terminal residues.  388 
 389 
 390 
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 Table1. Ribosomal protein domains found in cultivated viruses.    

Domain Name (Family) 
Protein 

accession, 
length (aa) 

Coverage 
(%) 

Identity 
(%) 

Probability 
(%) E-value 

Ribosomal_S30 Finkel-Biskis-Reilly murine sarcoma virus (R)  NP_598374, 133 85 86 99.92 2.2E-26 
Ribosomal_S21 Pelagibacter phage HTVC008M (M) AGE60443, 67 59 46 99.81 2.7E-19 

Ribosomal_L9_N Mycobacterium phage 32HC (S) AHJ86298, 86 33 40 98.32 4.3E-07 
Ribosomal_L12 Dinoroseobacter phage DFL12phi1 (P) AHX01035, 106 74 32 99.9 1.0E-23 

  Erwinia phage Ea9-2 (P) AHI60108, 724 9 32 96.87 6.3E-03 
  Ralstonia phage RSB3 DNA (P) BAN92321, 98 59 32 99.77 2.2E-18 
  Roseophage DSS3P2 (P) ACL81275, 107 62 28 99.44 3.7E-13 
  Salmonella phage FSL SP-058 (P) AGF88397, 418 16 34 96.05 1.8E-01 
  Salmonella phage FSL SP-076 (P) AGF88198, 418 15 36 96.21 2.6E-02 
  Sulfitobacter phage phiCB2047-B (P) AGH07436, 126 25 47 97.06 1.8E-03 

Ribosomal_S30AE Cronobacter phage vB CsaM GAP32 (M) AFC21633, 111 71 34 99.96 4.2E-28 
  Enterobacteria phage vB EcoM-FV3 (M) AEZ65272, 105 74 35 99.92 1.5E-23 
  Escherichia coli bacteriophage rv5 (M) ABI79209, 105 74 33 99.96 1.3E-27 
  Escherichia phage 2 JES-2013 (M) AGM12525, 105 74 32 99.96 3.0E-28 
  Escherichia coli O157 typing phage 14 (M) AKE47110, 105 74 33 99.96 3.4E-28 
  Escherichia phage vB EcoM FFH2 (M) AEZ65272, 105 74 35 99.93 7.9E-24 

*R: Retroviridae, M: Myoviridae, S: Siphoviridae, P: Podoviridae           
 404 
 405 
 406 
 407 
  408 
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FIGURE LEGENDS 409 

Figure 1. Virus-encoded ribosomal protein S21. a) Structure of the Escherichia coli 30S ribosomal 410 
subunit (PDB id: 4ADV). 16S ribosomal RNA is shown as blue ribbon. S21 ribosomal protein is highlighted 411 
in pink. b) Alignment of the ribosomal protein S21 encoded by pelagiphage HTVC008M with homologs 412 
from representatives of distinct bacterial taxa and environmental sequences obtained from the Global 413 
Ocean Sampling (GOS) dataset. c) Phylogenetic tree of ribosomal protein S21. Taxonomic affiliations are 414 
represented by colored circles (see legend).  415 
 416 
Figure 2. Detection of ribosomal proteins in uncultivated viral genomes (assembled from 417 
metagenomes). For each ribosomal protein detected, the total number of detection is shown on the y-418 
axis (log10 scale), and the bar is colored according to the type of samples in which this protein was 419 
detected (the sizes of the colored parts are proportional to the number of detections made in each type 420 
of samples). Ribosomal proteins also identified in cultivated viruses are identified with stars. 421 
 422 
Figure 3. Ribosome analysis of extracts from NM522 Escherichia coli cells. a) A260 profile of ribosome 423 
extracts separated on a sucrose gradient. Escherichia coli cells expressing viral S21 (red), S30AE (blue) or 424 
L7/L12 (green) were separated through a 10%–50% sucrose gradient and fractionated to be compared 425 
to the same strain in the absence of induction (black curve) (see experimental section). The dotted lines 426 
indicate the fractions that were pooled and analyzed by mass spectrometry.  b) The corresponding 70S 427 
fractions (dot lines, same color codes) were visualized on electron micrographs of 70S ribosomes 428 
negatively stained with 2% uranyl acetate. Scale bars: 50 nm. c) S21, S30AE and L7/L12 peptides 429 
identified by mass spectrometry in ribosome preparation and crude cell extract, respectively. Asterisk 430 
denotes oxidized form of methionine. N.D., not determined.   431 
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Supporting information available 432 

Supplementary Table S1: List and PFAM accessions of ribosomal protein domains searched for in viral 433 
proteomes. 434 

Supplementary Table S2: Detection of ribosomal proteins in uncultivated viral genomes. Metagenomes 435 
were classified as “Environmental”, “Engineered”, or “Host-associated” according to the GOLD database 436 
(https://gold.jgi.doe.gov). Values of pN/pS were calculated for all ribosomal proteins in a contig covered 437 
> 10x and with at least 1 SNP detected. 438 

Supplementary Table S3: List of 81 proteins identified in ribosomes purified from E.coli control cells, 439 
including detailed mass spectrometry information on peptide sequences.  440 

Supplementary Table S4: List of 54 proteins identified in ribosomes purified from E.coli cells after 441 
expression of viral S21 protein, including detailed mass spectrometry information on peptide sequences. 442 
The table also includes extended information on phage protein identification in S21 ribosomal sample.   443 

Supplementary Table S5: List of 80 proteins identified in ribosomes purified from E.coli cells after 444 
expression of viral L7/L12 protein, including detailed mass spectrometry information on peptide 445 
sequences. The table also includes extended information on phage protein identification in L7/L12 446 
ribosomal sample.   447 

Supplementary Table S6: List of 71 proteins identified in ribosomes purified from E.coli cells after 448 
expression of viral S30AE protein, including detailed mass spectrometry information on peptide 449 
sequenced. Beta-galactosidase was added as an internal control. 450 

Supplementary Table S7: List of 279 proteins identified in crude E.coli cell extracts after expression of 451 
viral S30AE protein, including detailed mass spectrometry information on peptide sequenced. 452 
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