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Abstract

Background: High-throughput sequencing (HTS) technologies are increasingly
applied to analyse complex microbial ecosystems by mRNA sequencing of whole
communities, also known as metatranscriptome sequencing. This approach is at
the moment largely limited to prokaryotic communities and communities of few
eukaryotic species with sequenced genomes. For eukaryotes the analysis is
hindered mainly by a low and fragmented coverage of the reference databases to
infer the community composition, but also by lack of automated workflows for
the task.

Results: From the databases of the National Center for Biotechnology
Information and Marine Microbial Eukaryote Transcriptome Sequencing Project,
142 references were selected in such a way that the taxa represent the main
lineages within each of the seven supergroups of eukaryotes and possess
predominantly complete transcriptomes or genomes. From these references, we
created an annotated microeukaryotic reference database. We developed a tool
called TaxMapper for a reliably mapping of sequencing reads against this
database and filtering of unreliable assignments. For filtering, a classifier was
trained and tested on sequences in the database, sequences of related taxa to
those in the database and randomly generated sequences. Additionally,
TaxMapper is part of a metatranscriptomic Snakemake workflow developed to
perform quality assessment, functional and taxonomic annotation and
(multivariate) statistical analysis including environmental data. The workflow is
provided and described in detail to empower researchers to easily apply it for
metatranscriptome analysis of any environmental sample.

Conclusions: TaxMapper shows superior performance compared to standard
approaches, resulting in a higher number of true positive taxonomic assignments.
Both the TaxMapper tool and the workflow are available as open-source code at
Bitbucket under the MIT license:
https://bitbucket.org/dbeisser/taxmapper and as a Bioconda package:
https://bioconda.github.io/recipes/taxmapper/README.html.
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Background
Motivation and goals

Metatranscriptome sequencing of diverse ecosystems is becoming a common

methodology in many research institutions, and large scale sampling campaigns such
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as the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP,

[1]) and the Tara Oceans expedition [2] have contributed to a growing amount

of available environmental sequencing data. However, the analysis of the resulting

short read sequences is still far from routine, especially for unicellular eukaryotic or-

ganisms, due to what was termed by Escobar-Zepeda et al. as “the neglected world

of eukaryotes in metagenomics” [3]. This is particularly severe since microscopic

eukaryotes (protists) constitute a paraphyletic taxon [4] spread over the whole

eukaryotic tree of life and represent the bulk of most major groups, whereas multi-

cellular lineages are confined to small corners [5]. Protists occur at high abundance

in almost all habitats, e.g. in freshwaters, oceans, biofilms and soils [5, 6, 7, 2, 8, 9].

They maintain ecosystem functions, as they are responsible for most planktonic

primary production [10], are the most important feeders of bacteria [11, 7] and key

players in the regulation of element cycling, particularly carbon [7, 12].

Perhaps surprisingly then, protists are poorly covered by genomic reference

databases despite their broad diversity, and if at all, only few model species are

present. Therefore, most recent metatranscriptome approaches were designed for

prokaryotes, which offer more complete databases (e.g. NCBI) in contrast to eu-

karyotes. Here, efficient mapping approaches, such as BWA or Bowtie, and method-

ologies allowing few differences to the reference sequences (e.g. k-mer indices) can

be used. It is frequently possible to obtain taxonomic assignments even down to

species level.

In contrast, few genome sequences from eukaryotes exist, and those that do are

not well balanced across the main lineages of the eukaryotic tree of life, and there-

fore do not reflect the diversity within these lineages. The main focus of publicly

available genomes lies on the Opisthokonta (Fungi/Metazoa group), including many

animals, in particular model organisms, and Viridiplantae (green plants, containing

Streptophyta and Chlorophyta) with an emphasis on crop plants. For example, in

the NCBI database the available genomes in these two groups already represent

96% of the available genomes for eukaryotes, whereas eukaryotic genomes represent

43% of all genomes from the three domains (bacteria: 54%, archaea: 3%, NCBI June

2017).

The diversity of microbial eukaryotes is strongly underrepresented and database

searches that aim at an assignment of metatranscriptomic reads on species level

will, for the most part, be incorrect. This is caused by the fact that neither the

species nor a close relative are included in the database and by the disproportional

coverage of taxonomic groups leading to misassignments of reads to incorrect taxa

by chance. In addition, available databases are often too large to be used in their

entirety to map or search with millions of metatranscriptomic sequences on the read

level.

A possible way out (taken here) is to restrict the taxonomic assignment to broader

taxonomic groups, using appropriate reference organisms for each group. In turn,

this requires a different approach to the similarity search, allowing to find more

distantly related sequences. Since such similarity search tools are more time con-

suming, a reasonable search time can only be obtained by restricting the analysis

to smaller reference databases.
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Many existing approaches base their taxonomic assignments on selected sequenced

marker genes. However, for a joint taxonomic and functional analysis (which taxo-

nomic group performs which functions?), it is necessary to assign each single read

to a taxonomic group and to a protein family.

Our goal was therefore to design, test and provide a comprehensive tool and

workflow for eukaryotic metatranscriptome analysis, encompassing everything from

preprocessing to integration of environmental data. A large impediment, as already

mentioned, was a missing reference for the taxonomic assignment of sequences,

which we constructed for all major taxonomic groups based on 142 publicly available

transcriptomes and genomes. Our tool TaxMapper assigns taxonomic information

to each read by mapping to the database using a reduced amino acid alphabet,

and subsequently filtering of unreliable assignments. It is part of an automated

rule-based Snakemake workflow developed to perform quality assessment and both

functional and taxonomic annotation, as well as (multivariate) statistical analysis

including environmental data.

In this work, we (i) describe the microeukaryotic reference database, (ii) present

the TaxMapper software for taxonomic mapping and filtering of reads, and (iii)

provide a detailed step-wise instruction on how to analyse metatranscriptomes from

eukaryotic microorganisms using a modular workflow.

Related work

Metatranscriptome workflows. Existing metatranscriptome workflows often focus

on bacterial composition, like Leimena et al. [13] who describe in detail an analysis

pipeline for prokaryotic datasets. Other studies construct pipelines for subparts of

the analysis, including Goncalves et al. [14] who constructed an R-based pipeline

for pre-processing, quality assessment and expression estimation of RNA sequence

datasets, and Marchetti et al. [15] who provide an R package for differential expres-

sion analysis of metatranscriptome sequences starting from a count matrix of genes

and a phylogenetic annotation. For our purposes, these approaches have two disad-

vantages: (i) they provide no complete executable workflow, and (ii) the available

workflow parts cannot be easily adapted to eukaryotic data.

Metatranscriptome analysis tools. Many metagenomics or metatranscriptomics

analysis tools were conceived for the analysis of bacterial communities. For example,

CLARK [16, 17] is a tool for the taxonomic classification of metagenomic reads using

known bacterial genomes. GOTTCHA [18] is a taxonomic profiler that uses non-

redundant signature databases for prokaryotic and viral genomes. Genometa [19] is

a Java program to identify bacterial species and gene content from high-throughput

datasets. MetaPhyler [20] estimates bacterial composition from metagenomic sam-

ples.

Others use a subset of the sequences for taxonomic profiling of metagenomes. Web-

based solutions are provided by MG-RAST [21] and EBI metagenomics [22] that

automatically analyse rRNA and mRNA in submitted samples. MetaPhlAn2 [23]

and mOTU [24] use a subset of marker genes for taxonomic profiling. QIIME [25]

uses Operational Taxonomic Units (OTUs) to assign a taxonomy.
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A user-specified library of genomes of species that are present in the samples has

to be provided for recent programs utilizing k-mers such as Kraken [26], LMAT [27]

or DUDes [28].

The last category of tools searches the NCBI database to assign reads to taxo-

nomical level after a BLAST search, including MEGAN [29] and Taxator-tk [30] or

after a mapping with Bowtie, e.g. Centrifuge [31].

Four our purposes, we found that each existing tool exhibited a shortcoming that

rendered it unsuitable for the read-level assignment of taxonomic and functional

information to microeukaryotic sequences. We summarize our requirements versus

the properties of existing tools in Table 1.

Methodology and implementation
Reference database

To counter-balance the uneven diversity of eukaryotic microorganisms present in

public databases, we construct the TaxMapper reference database such that it

evenly includes genomic and transcriptomic sequences from all eukaryotic super-

groups and taxonomic groups. References from the databases of NCBI [32] and the

Marine Microbial Eukaryote Transcriptome Sequencing Project [1] were selected

based on the following criteria: (i) The taxa represent the main lineages within

each of the seven supergroups of eukaryotes (see Fig. 1). (ii) Their genomes or tran-

scriptomes are mostly complete; i.e., we excluded obviously incomplete datasets that

consisted of only some hundred sequences. We thus selected 142 transcriptomes and

genomes; the selection is described under “Results”.

The protein sequences of all reference genomes or transcriptomes were down-

loaded, redundant sequences were discarded for each species and the amino acid

sequences were used to build a database index.

TaxMapper

TaxMapper is designed to allow an easy-to-use search with sequence reads in the

compiled database and to filter erroneous hits. It consists of five modules (search,

map, filter, count, plot) that can be run individually with user defined parameters

or as a single step with default settings.

The initial search in the indexed database is conducted for a single read file

or forward and reverse reads in parallel using the protein similarity search tool

RAPSearch2 [33] (v2.24, fast mode, using a loose E-value cutoff of 105, but re-

stricted to the best 20 hits). RAPSearch2 performs a fast similarity search in a

reduced amino-acid search space. The best 20 hits are returned for each query

(read) sequence and mapped to the 7 taxonomic supergroups and 28 main lineages.

Two hits are kept subsequently, the best hit (BH) and the next best hit, according

to E-value, that falls into another lineage (next lineage hit, NLH). (Hits that are

better than the NLH and agree with the taxonomic group of the BH are skipped.)

Forward and reverse results can be combined by choosing either the option “best”

to use the better of both searches or “concordant”, where forward and reverse have

to map to the same taxon.

The filter idea behind TaxMapper is to assign taxonomic information only if the

BH and NLH are “different enough”. If the differences between BH and NLH in
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mapping properties such as the E-value, identity, alignment score etc. are large,

the assignment of the best hit is regarded trustworthy and is returned, otherwise

no taxonomic group is ascribed to reduce false positive assignments. The details of

the filter approach are discussed below (Subsection Filtering). Fig. 2 illustrates the

difference of this approach to other approaches that use only the best hit or the

lowest common ancestor (LCA) of several hits. While the best hit approach returns

just the best hit, regardless of further results that might be equally good, the lowest

common ancestor approach returns the lowest level in the taxonomic tree that the

hits have in common, which might be close to the root if the hits are too diverse.

Subsequently, count matrices can be generated over samples, summarizing the

reads for all taxonomic groups to apply total count normalization and plot commu-

nity compositions.

TaxMapper is implemented as a stand-alone tool in the Python language (v3.5).

The statistical model for the filtering step (described below) was estimated using

the generalized linear model function in R, applying maximum likelihood estimation

(MLE). R is not required for running the TaxMapper software. TaxMapper can be

run either stepwise with user-defined settings or for easier handling in one analysis

step with default parameters. In the second case, just a folder of raw data in FASTQ

or FASTA format has to be provided and all results are generated automatically.

The analysis can be parallelized by declaring the number of threads to use and it

is suggested to run it on a multicore machine or server for large datasets.

Filtering

The filtering step based on the best hit (BH) and the nearest lineage hit (NHL)

is a distinguishing feature of TaxMapper. Since we found it impossible to separate

correct from incorrect taxonomic assignments based on BH and NLH E-values alone,

we estimated a logistic regression model based on five BH/NLH properties:

1 percent identity of the BH,

2 ratio of identities between BH and NLH,

3 log10 E-value of BH,

4 difference in log10 E-values of BH and NLH,

5 the total size (in basepairs) in the database of the BH’s taxonomic group

The base frequencies were added as an independent variable in addition to the map-

ping statistics (E-value and identity) to include the different number of sequences

per taxonomic group, which can bias hits toward more abundant taxa in the refer-

ence database.

In general, the binary logistic model is used to estimate the probability of a binary

response y ∈ {0, 1}, based on one or more independent variables (x1, ..., xp):

P (y = 1 |x1, ..., xp) = 1/(1 + e−(β0+
∑

k
βkxk)) (1)

Here the xk are the five hit properties described above, and y = 1 corresponds to

the event that the BH is a correct assignment, whereas y = 0 means that the BH is

an incorrect assignment. The goal is to search for values of the coefficients β such

that the probability P (y = 1 |x) is large when the hit properties x indicate that
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BH and NLH are sufficiently different such that the taxonomic assignment based

on the BH is correct.

For estimating and testing the classifier, reads were chosen from 18 species that

are included in the reference database and 17 species that are not included in the

database, but where the taxonomic lineage is known and present in the database.

Not all of the 28 groups could be used, since for some groups all available species

were included in the database and further species for testing were not obtainable.

We obtained raw read data belonging to the above 35 species, listed with acces-

sion number in the supplementary file Suppl TestTable.csv. Since for these reads,

we know the correct taxonomic origin, we sorted them into two classes based on

TaxMapper’s best hit (BH) alone: correctly classified or misclassified. We randomly

chose 500 000 correctly classified (true positive, TP) and 500 000 misclassified (false

positive, FP) reads as training data for estimating the model (see Fig. 3). This

dataset of one million reads was split into 20% holdout data and 80% training and

test data. The training and test data was again randomly split into 80% training

and 20% test data 100 times to train and evaluate the classifier using 100-fold Monte

Carlo cross-validation. In addition, in each cross validation round, the holdout data

and randomly created reads were used to evaluate the classifier. Performance on

the random reads (which by definition have no relation to any database sequence)

allows us to estimate how well we are able to reject sequences that are from none of

the eukaryotic lineages contained in the database. Results are given in the “Results”

section.

Workflow

A comprehensive workflow for metatranscriptome analysis was developed and made

available in an executable Snakemake-based workflow. Snakemake is a workflow de-

scription language and execution environment developed by Köster et al. [34]. The

workflow steps are defined in terms of rules with input, output and Shell, Python or

R code. Dependencies between rules are automatically resolved and rules are auto-

matically parallelized where possible. It features an easy to read, self-documenting

syntax which also serves for version and parameter tracking. For the described

workflow Snakemake version 3.9.1 was used.

The workflow covers both taxonomic assignment of each read (using TaxMapper)

and functional assignment (using RAPSearch2 on the UniProt database). Steps and

parameters can be adjusted using a provided configuration file (config.yaml).

In the following, the most important rules and steps of the workflow are explained.

An overview is given in Figure 4.

The steps of the bioinformatic workflow are specified in the workflow management

system Snakemake. Snakemake rules describe how to create output files from input

files by executing commands on the input files. The commands can also be run

on single files in the terminal, Python or R, but for automation, parallelization

and reproducibility of the workflow, Snakemake is used. We briefly explain the

Snakemake syntax here on a short exemplary Snakemake file:
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rule all:

input:

‘‘plots/dataset1.pdf”,

‘‘plots/dataset2.pdf”

rule create plots:

input:

‘‘raw/{dataset}.csv”

output:

‘‘plots/{dataset}.pdf”

shell:

“command {input} {output}”

The desired final outputs of the workflow are described in the rule all, these are

“plots/dataset1.pdf” and “plots/dataset2.pdf”. To create the plot, we run a shell

command in the rule create plots on the input “raw/{dataset}.csv” to create the

output “plots/{dataset}.pdf”. Snakemake determines the rule dependencies by

matching file names and automatically fills the wildcard dataset with the correct

names: dataset1 and dataset2, that are expected as the input of rule all.

Preprocessing

The quality of raw sequencing reads is analysed using the quality control tool

FastQC [35]. It computes various quality measures such as the base quality, over-

represented sequences, read length et cetera. The compressed FASTQ files are used

as input and the snakemake rule runs FastQC as a shell command on the input.

The wildcards sample and pair represent the sample name and forward and reverse

read respectively.

rule fastqc:

input:

‘‘raw/{sample} {pair}.fastq.gz”

output:

‘‘results/fastqc/{sample} {pair} fastqc.zip”

shell:

“fastqc {input} –outdir=fastqc”

Identified low quality bases and sequencing adapters can be removed with trim-

ming tools such as cutadapt (v1.12, [36]). From the forward and reverse read, given

as input, the adapter beginning with ‘GATCGGAAGAGCA’ and bases with a qual-

ity value below 20 are trimmed. If the remaining read length is below 50, the whole

read will be discarded. All output files are saved in the folder results/cleaned.
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rule cutadapt:

input:

r1 = ‘‘raw/{sample} R1.fastq.gz”

r2 = ‘‘raw/{sample} R2.fastq.gz”

output:

r1 = ‘‘results/cleaned/{sample} R1.fastq.gz”

r2 = ‘‘results/cleaned/{sample} R2.fastq.gz”

shell:

“cutadapt -a ‘GATCGGAAGAGCA’ -q 20 -m 50 -o {output.r1} -p

{output.r2} {input.r1} {input.r2}”

Taxa identification

TaxMapper is used for the assignment and filtering of taxonomic information. For

brevity, the one-step version is shown below, since it just needs an input folder with

all FASTQ files and parallelization is performed within TaxMapper (here 20 threads

are used via option -t). We have to get the input folder from the input files and

provide an output file from TaxMapper as output for snakemake. The expand com-

mand is used to get a list of all input files by filling in the wildcards for sample and

pair, which are lists of all filenames and forward and reverse reads provided in the

configuration file. The database index is created within the subworkflow taxonomy

which is given as the input database. To let Snakemake handle parallelization and

provide user-defined parameters, the workflow can also be run in five successive

steps: search, map, filter, count and plot (see Fig. 4 TaxMapper box).

rule taxmapper:

input:

fastq = expand(‘‘results/cleaned/{sample} {pair}.fastq.gz”,

sample=config[‘‘samples”], pair=config[‘‘pair”])

database = taxonomy(‘‘meta database.db”)

output:

plot = ‘‘results/taxmapper/taxa freq norm level2.svg”

run:

indir = os.path.dirname(input.fastq[0])

outdir = os.path.dirname(output.plot)

shell(“taxmapper run -d {input.database} -m 100 -f {indir} -t 20 -o

{indir}”)

Functional annotation

RAPSearch (v2.24, [33]), a fast protein similarity search tool, is used to search

the read sequences in the Uniprot database (release 2016 06) [37]. The Uniprot
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database is downloaded and indexed as part of the workflow (in a subworkflow

termed uniprot). The similarity search is performed with default parameters and the

best hit is returned. Via a Uniprot identifier mapping file, obtained from the Uniprot

database, KEGG (Kyoto Encyclopedia of Genes and Genomes, [38]) Orthology

identifiers can be assigned to the query sequence.

Additional rules are used to shorten the output and combine the forward and

reverse read mapping (see Fig. 4 Uniprot box). The input FASTQ files have to be

first extracted from the gz archive to use them as input for RAPSearch2, then they

are searched against Uniprot returning the alignments of the best hit or no result

for each read.

rule search uniprot:

input:

uniprotdb = uniprot(‘‘uniprot sprot.db”),

reads = ‘‘cleaned/{sample} {end}.fastq.gz”

output:

align = ‘‘results/uniprot/{sample} {end} aligned.aln”

threads: 10

run:

out = os.path.splitext(output.align)[0]

shell(“zcat {input.reads} | rapsearch -q stdin -d {input.uniprotdb}
-o {out} -z {threads} -b 1 -v 0 -p T -t q”)

Statistics and downstream analysis

Subsequent statistical analyses depend on the type of study and question. Since it

is not always possible or intended to perform e.g. differential expression analysis,

we included several possible rules in the workflow. All of the rules execute R code

that is longer than a couple of lines and therefore not depicted here.

Existing rules include a differential expression analysis given different conditions

using the Bioconductor package edgeR (v3.14.0, [39]), ordination analyses such as

principal component analysis and redundancy analysis using the R package vegan

(v2.3-4, [40]) and KEGG pathway analyses with the R packages GAGE (v2.21.1,

[41]) and pathview (v1.9.0, [42]).

Results and discussion
Reference database

According to our criteria, 142 reference sequences were selected for the TaxMapper

reference database (for details see Suppl file: Suppl TaxTable.csv). These references

belong to the seven supergroups of eukaryotes, including 28 main lineages. In accor-

dance with the taxonomy published by Boenigk and Wodniok [43] and with the tree

of life project [44], we chose different levels of each lineage to cover their molecular

and functional diversity. Figure 1 and Table 2 give an overview.
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The supergroup Amorphea consists of two main lineages, the Opisthokonta

(Holomycota and Holozoa) and Amoebozoa. Additionally, the small phylum Apu-

sozoa is considered as a likely paraphyletic sistergroup of the Opistokonta [45, 46].

In the database the Amorphea are represented by 27 reference taxa. 19 taxa are

affiliated with the Opisthokonta, including fungi representing the Holomycota, and

Eumetazoa, Choanoflagellida (Choanomonada) and basal Opisthokonta, e.g. Fi-

lastera and Ichthyosporea here called Opisthokonta Rest, as representatives for the

Holozoa. The Amoebozoa contain 7 reference taxa including lobose Amoebae, Ar-

chamoebae and Mycetozoa (slime moulds). One reference taxa is included for the

phylum Apusozoa.

The supergroup Excavata is a very diverse group that can be summarized into

two main groups, the Discoba including the lineages Euglenozoa, Heterolobosea

and Jakobida as well as the Metamonada including the lineages Parabasalia and

Fornicata. Many species of this supergroup are parasites [5] but some taxa e.g.

most Euglenida are free-living and often occur in freshwater [47]. In the database

the Excavata are represented by 9 reference taxa affiliated with Euglenozoa, Het-

erolobosea, Parabasalia and Fornicata. Due to few available transcriptomes of this

supergroup in public databases and the focus on free-living taxa, only few references

could be added.

The supergroup Archaeplastida includes three main lineages, the species-poor

Glaucophyta (Glaucocystophyceae), the mostly marine Rhodophyta and the

species-rich Viridiplantae (Chlorophyta, Streptophyta). Particularly the Chloro-

phyta are important primary producers in freshwater habitats [48]. Therefore,

Archaeplastida are represented by 22 reference taxa affiliated with Chlorophyta,

Streptophyta, Rhodophyta and Glaucocystophyceae.

The supergroup Rhizaria is a diverse group and consists of two main lineages,

Cercozoa and Retaria (Foraminifera and Radiolaria). Cercozoa are very abundant

in soil but can also occur in freshwaters and marine habitats [49]. In the database

Rhizaria are represented by only 7 taxa belonging to Cercozoa and Foraminifera as

there are only a few sequenced species available in public databases, particularly

from Cercozoa.

The supergroup Alveolata is a very diverse group. It consists of three main

lineages, Ciliophora, Apicomplexa and Dinophyta. Further, the smaller lineages

Chromerida, Colpodellids and Perkinsea are affiliated with the Alveolata. Cilio-

phora and Dinophyceae can occur in high abundances and are important predators

of other protists [50, 51]. Due to their importance and diversity they are covered

by a high number of reference taxa (26) in the database: Ciliophora, Apicomplexa,

Dinophyceae, Chromerida and Perkinsea.

The supergroup Stramenopiles is a very diverse group including many lineages

which can be summarized into three groups, the Pseudofungi, the heterotrophic

Bigyra and the plastid bearing Ochrophyta [52]. Some of these lineages, e.g. Bacil-

lariophyta and Chrysophyceae, are very abundant in freshwater habitats [48, 50].

They are important primary producers and predators of bacteria. Therefore, we

covered this group by a high number of 40 reference taxa. Pseudofungi were in-

cluded as well as Bigyra summarizing the three lineages Bicosoecida, Blastocystis

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2017. ; https://doi.org/10.1101/174227doi: bioRxiv preprint 

https://doi.org/10.1101/174227
http://creativecommons.org/licenses/by-nc-nd/4.0/


Beisser et al. Page 11 of 22

and Labyrinthulida. The Ochrophyta are represented by the two abundant freshwa-

ter groups Bacillariophyta and Chrysophyceae and a collection of other reference

taxa affiliated with several Stramenopile lineages called Stramenopiles Rest.

An additional “group” in the eukaryotic tree of life are the incertae sedis Eukaryota

which include amongst others the Hacrobia (Cryptophyta, Haptophyta) [5]. The

evolutionary position of theses taxa is still uncertain as the phylogenetic position

differs depending on the studied organism and genes. In the database Hacrobia are

represented by 11 reference taxa, affiliated with Cryptophyta and Haptophyta.

Evaluation of the filtering step

After training the classifier to reject assignments of training reads whose best hit

misses the correct taxonomic group, we evaluated the performance on the test,

random and holdout dataset.

The results are depicted as receiver operating characteristic (ROC) curves in

Fig. 5 A and compared based on the area under the curve (AUC) and accuracy

(ACC) in Table 3. Shown are true positive rate (TPR) and false positive rate (FPR)

of TaxMapper results varying over the cutoff for the probability P (y = 1|x1, ..., x5).

Results are also given when no logistic model, but a simple E-value cutoff for the

best hit, is used.

TaxMapper yields superior results, especially in the desired area with low false

positive rates, and an AUC of 0.90–0.91 in contrast to 0.84 for the simple E-value

cutoff method. The highest accuracy of 0.84 was obtained for a probability cutoff

of 0.38 and 0.40 for TaxMapper (test and holdout data, respectively). The best

accuracy (0.79) for a simple E-value cutoff lay below −0.92 (log10 E-value).

A false positive rate below 0.1 could be obtained with a probability cutoff of 0.58

or log10 E-value below 1.66. Obviously, in the random dataset only the number of

false positives can be reduced, resulting in the best accuracy of 1.0 for a probability

cutoff of 1.0, filtering out all reads. But as shown in Fig. 5 B and C, the accuracy

increases rapidly and a low false positive rate below 0.1 is already obtained with an

average probability cutoff of 0.29 (see Fig. 5 and Tab. 3).

Evaluation of TaxMapper against other tools

The runtime and results of TaxMapper were compared to the tool Taxator-tk and

Centrifuge, to our knowledge the only tools that can be run on a server and assign

sequences to a taxonomy on read-level (see Fig. 6). Both tools were run with de-

fault parameters and as described in the manual. As a reference for Centrifuge the

non redundant NCBI index was used as provided by the authors of Centrifuge. For

Taxator-tk the provided refpacks could not be used, since they focus on prokary-

otic taxa, therefore a refpack using the NCBI nr database was build according to

the instructions on the website. The search step of Taxator-tk utilises a blastn or

LAST search against the NCBI nonredundant nucleotide database. Due to the long

runtime, only the holdout data with 200 000 reads was tested. Overall, Taxator-tk

using the Megan algorithm takes 3980:13 minutes, Centrifuge takes 15:07 minutes

and TaxMapper 32:49 minutes (wall clock time) on a server with AMD Opteron pro-

cessors (6176, 2.3 GHz) using 20 threads. This corresponds to a user time of 182:18

minutes for TaxMapper, of which the search step takes longest with 180:23 minutes.
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Centrifuge uses the fast mapping algorithm Bowtie to map the reads against the

NCBI database. The drawback is that Bowtie allows few mismatches and therefore

reads map only to very similar sequences. If the organism or a close relative is not

contained in the database, a taxonomy cannot be assigned, leading to many un-

classified reads for this method. The Megan algorithm of Taxator-tk uses BLAST,

therefore only few reads are unclassified, but the majority map to the root node of

the taxonomy, due to the lowest common ancestor approach described in Figure 2.

The original algorithm developed for Taxator-tk is optimized for longer reads, start-

ing with 500 bp, and was not used here. TaxMapper results in the highest number

of true positive assignments and the lowest number of false positives. Results were

the taxonomic assignment of the best hit was insecure, were removed in the filter

step.

Discussion
Example application: silver dataset

To showcase an application, the metatransciptome workflow was run on a subset

of sequencing data from a study published in 2014 by Boenigk et al. [52]. In brief,

a short-term silver exposure experiment was conducted on nine 20 L plastic tanks

containing water from a natural plankton community from an eutrophic pond at

the campus Essen of the University Duisburg-Essen. The nine tanks were divided

into three experimental groups (control, silver nitrate and silver nanoparticle expo-

sure) with three replicate tanks each. The subsample used here contains the control

samples and the silver nitrate samples. The metatranscriptomic workflow was ap-

plied to analyse the functional and taxonomic differences between the treatments.

Figure 7 A depicts the community compositions with the largest changes visible

in the groups Bacillariophyta and Chlorophyta. The taxonomic changes are also

depicted in the PCA in Figure 7 B, separating on the second principal component

the control samples from the samples treated with a sublethal silver concentration

of 5 µg/L. On the functional level a test for differential expression reveals 34 KEGG

orthologous genes that differ significantly (FDR < 0.1) between the two groups and

show an enrichment of photosynthesis pathways. It is known that silver ions affect

the primary metabolism in particular photosynthesis by direct interference [52, 53].

On the other hand, it has been shown that for low concentrations of silver green

algae grows is increased as observed in Figure 7 A [54].

A subset of this study with the first 100,000 reads per FASTQ file is provided

with the workflow as test dataset.

Future database updates

When new sequences become available which further complete the diversity of the

eukaryotic supergroups, an update of the database will be released. In particular,

the Excavata and Rhizaria should be extended in future versions, for which at the

moment only few appropriate genomes or transcriptomes are present.

Conclusions
Despite the large number of tools developed for taxonomic analyses, the majority of

them aims at different sequencing data (e.g. rRNA, contigs) or organismic groups
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(prokaryotes) and does not allow a combined functional and taxonomic analysis of

metatranscriptomic data. We therefore developed the presented tool TaxMapper

to work in conjunction with a constructed microeukaryotic reference database for

taxonomic assignment, and included the taxonomic analysis in a complete workflow

for metatranscriptomic sequence analysis.

The smaller, but more appropriate reference for protists, allows a faster search

than a comparable search against whole NCBI.

False positive assignments can be filtered using a probability cutoff on a logistic

regression model based on features of the best hit and next lineage hit, which yielded

better result than a simple E-value cutoff.

TaxMapper can be run straightforwardly on a folder of sequencing data or as part

of the Snakemake workflow. The workflow performs quality assessment, functional

and taxonomic annotation and (multivariate) statistical analyses using available

environmental factors or different sample groups. The provided workflow ensures a

reproducible analysis which can be easily extended to new samples.

Both the TaxMapper tool and the workflow are available as open-source soft-

ware at Bitbucket under the MIT license: https://bitbucket.org/dbeisser/

taxmapper and as a Bioconda package: https://bioconda.github.io/recipes/

taxmapper/README.html.
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34. Köster, J., Rahmann, S.: Snakemake–a scalable bioinformatics workflow engine. Bioinformatics 28(19),

2520–2522 (2012). doi:10.1093/bioinformatics/bts480

35. Andrews, S.: FastQC a quality control tool for high throughput sequence data

36. Martin, M.: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal

17(1), 10–12 (2011). doi:10.14806/ej.17.1.200

37. Magrane, M., Consortium, U.: UniProt Knowledgebase: a hub of integrated protein data. Database 2011,

009–009 (2011). doi:10.1093/database/bar009

38. Kanehisa, M.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28(1), 27–30 (2000).

doi:10.1093/nar/28.1.27

39. Robinson, M.D., McCarthy, D.J., Smyth, G.K.: edgeR: A Bioconductor package for differential expression

analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2009).

doi:10.1093/bioinformatics/btp616

40. Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P.,

Stevens, M.H.H., Wagner, H.: vegan: Community Ecology Package (2016)

41. Luo, W., Friedman, M.S., Shedden, K., Hankenson, K.D., Woolf, P.J.: GAGE: generally applicable gene set

enrichment for pathway analysis. BMC Bioinformatics 10(1), 161 (2009). doi:10.1186/1471-2105-10-161

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2017. ; https://doi.org/10.1101/174227doi: bioRxiv preprint 

http://dx.doi.org/10.1073/pnas.1118408109
http://dx.doi.org/10.1186/s12864-015-1419-2
http://dx.doi.org/10.1093/bioinformatics/btw542
http://dx.doi.org/10.1093/nar/gkv180
http://dx.doi.org/10.1371/journal.pone.0041224
http://dx.doi.org/10.1109/BIBM.2010.5706544
http://dx.doi.org/10.1186/1471-2105-9-386
http://dx.doi.org/10.1093/nar/gkv1195
http://dx.doi.org/10.1038/nmeth.2066
http://dx.doi.org/10.1038/nmeth.2693
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1186/gb-2014-15-3-r46
http://dx.doi.org/10.1093/bioinformatics/btt389
http://dx.doi.org/10.1093/bioinformatics/btw150
http://dx.doi.org/10.1101/gr.5969107
http://dx.doi.org/10.1093/bioinformatics/btu745
http://dx.doi.org/10.1101/gr.210641.116
http://dx.doi.org/10.1093/nar/gkw1071
http://dx.doi.org/10.1093/bioinformatics/btr595
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.14806/ej.17.1.200
http://dx.doi.org/10.1093/database/bar009
http://dx.doi.org/10.1093/nar/28.1.27
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1186/1471-2105-10-161
https://doi.org/10.1101/174227
http://creativecommons.org/licenses/by-nc-nd/4.0/


Beisser et al. Page 16 of 22

42. Luo, W., Brouwer, C.: Pathview: an R/Bioconductor package for pathway-based data integration and

visualization. Bioinformatics 29(14), 1830–1831 (2013). doi:10.1093/bioinformatics/btt285

43. Boenigk, J., Wodniok, S.: Biodiversität und Erdgeschichte. Springer, Berlin, Heidelberg (2014).

doi:10.1007/978-3-642-55389-9

44. Maddison, D.R., Schultz, K.-S.: The Tree of Life Web Project. http://tolweb.org

45. Cavalier-Smith, T., Chao, E.E.: Phylogeny and Evolution of Apusomonadida (Protozoa: Apusozoa): New

Genera and Species. Protist 161(4), 549–576 (2010). doi:10.1016/j.protis.2010.04.002

46. Paps, J., Medina-Chacón, L.A., Marshall, W., Suga, H., Ruiz-Trillo, I.: Molecular Phylogeny of Unikonts: New

Insights into the Position of Apusomonads and Ancyromonads and the Internal Relationships of Opisthokonts.

Protist 164(1), 2–12 (2013). doi:10.1016/j.protis.2012.09.002

47. Leander, B.S.: Euglenida (2012). http://tolweb.org/Euglenida/97461/2012.11.10

48. Garnier, J., Billen, G., Coste, M.: Seasonal succession of diatoms and Chlorophyceae in the drainage network of

the Seine River: Observation and modeling. Limnology and Oceanography 40(4), 750–765 (1995).

doi:10.4319/lo.1995.40.4.0750

49. Bass, D., Cavalier-Smith, T.: Cercozoa (2009). http://tolweb.org/Cercozoa/121187/2009.03.22

50. Auer, B., Arndt, H.: Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy

and season. Freshwater Biology 46(7), 959–972 (2001). doi:10.1046/j.1365-2427.2001.00730.x

51. Stoecker, D.K., Li, A.S., Coats, D.W., Gustafson, D.E., Nannen, M.K.: Mixotrophy in the dinoflagellate

Prorocentrum minimum. Marine Ecology Progress Series 152(1-3), 1–12 (1997). doi:10.3354/meps152001

52. Boenigk, J., Beisser, D., Zimmermann, S., Bock, C., Jakobi, J., Grabner, D., Groβmann, L., Rahmann, S.,

Barcikowski, S., Sures, B.: Effects of silver nitrate and silver nanoparticles on a planktonic community: general

trends after short-term exposure. PloS one 9(4), 95340 (2014). doi:10.1371/journal.pone.0095340

53. Beisser, D., Kaschani, F., Graupner, N., Grossmann, L., Jensen, M., Ninck, S., Schulz, S.

Florian ANDandRahmann, Boenigk, J., Kaiser, M.: Quantitative proteomics reveals ecophysiological effects of

light and silver stress on the mixotrophic protist poterioochromonas malhamensis. PLOS ONE 12(1), 1–20

(2017). doi:10.1371/journal.pone.0168183

54. Schmittschmitt, J.P., Shaw, J.R., Birge, W.J.: The 4th International Conference Proceedings: Transport, Fate

and Effects of Silver in the Environment, pp. 245–249. University of Wisconsin System, Sea Grant Institute,

Madison, WI (1996)

55. Dubinkina, V.B., Ischenko, D.S., Ulyantsev, V.I., Tyakht, A.V., Alexeev, D.G.: Assessment of k-mer spectrum

applicability for metagenomic dissimilarity analysis. BMC Bioinformatics (2016).

doi:10.1186/s12859-015-0875-7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2017. ; https://doi.org/10.1101/174227doi: bioRxiv preprint 

http://dx.doi.org/10.1093/bioinformatics/btt285
http://dx.doi.org/10.1007/978-3-642-55389-9
http://tolweb.org
http://dx.doi.org/10.1016/j.protis.2010.04.002
http://dx.doi.org/10.1016/j.protis.2012.09.002
http://tolweb.org/Euglenida/97461/2012.11.10
http://dx.doi.org/10.4319/lo.1995.40.4.0750
http://tolweb.org/Cercozoa/121187/2009.03.22
http://dx.doi.org/10.1046/j.1365-2427.2001.00730.x
http://dx.doi.org/10.3354/meps152001
http://dx.doi.org/10.1371/journal.pone.0095340
http://dx.doi.org/10.1371/journal.pone.0168183
http://dx.doi.org/10.1186/s12859-015-0875-7
https://doi.org/10.1101/174227
http://creativecommons.org/licenses/by-nc-nd/4.0/


Beisser et al. Page 17 of 22

Figures

Figure 1 Taxonomy of eukaryotes. Taxonomy of eukaryotes with the supergroups and groups
used in the reference database. Two remaining groups combining small lineages are not depicted.
Coloured with darker background is the diversity of the supergroups and groups computed as the
maximum Bray-Curtis dissimilarity over 4-mer spectra from the proteins of the reference genomes,
as defined in [55]. Additionally, the mean Bray-Curtis dissimilarity is indicated as a dashed line.
The taxonomy is based on Boenigk and Wodniok [52].
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Figure 2 Differences between TaxMapper, LCA and best hit. Given the green leaves as possible
hits, with the best hit circled in green, TaxMapper compares the best hits on a higher taxonomic
level (blue circle) and uses the better hit (blue node) if the differences between the hits are large
enough, while LCA is a bottom-up method that possibly returns the root of the taxonomy (red
node) if the hits are too diverse.

Figure 3 Classification scheme. One million reads from different taxonomic groups with 50%
false positive and 50% true positive best hit assignments were used. This dataset was split in 20%
holdout data and 80% training and test data, of which again 80% were used to train and 20% to
test the classifier applying 100-fold Monte Carlo cross-validation. In addition, in each fold the
holdout data and randomly simulated (nonsense) reads were used to evaluate the classifier.
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Figure 4 Snakemake workflow. Rules of the Snakemake workflow processing the FASTQ input
files to the final output all.

Figure 5 Validation. (A) False positive rate (FPR, x-axis) versus true positive rate (TPR, y-axis)
of TaxMapper results on test dataset (blue), TaxMapper result on holdout data (orange), and
simple E-value cutoff results on test dataset (red). (The blue and orange curves overlap in the
subfigure on the left side.) The green background indicates the desired area with a low FPR
(≤ 0.1). (B) Accuracy of TaxMapper on the random nonsense data (green) against the probability
cutoff. (C) False positive rate of TaxMapper on the random data over all probability cutoffs.
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Figure 6 Comparison to other tools. Shown are the results obtained on the holdout dataset using
the tool Centrifuge, TaxMapper and Taxator-tk with the Megan algorithm and the required wall
clock time in brackets (run with 20 threads in parallel). Depicted are the number of reads resulting
in a true positive (TP) assignment, false positive (FP) assignment, unclassified taxonomy, reads
mapping to the root of the taxonomic tree and filtered (removed) reads by TaxMapper.

Figure 7 Community composition and principal component analysis of silver dataset. A)
community composition of a subset of data from a metatranscriptome sequencing study, where
the effect of silver nitrate was tested on the community and function. B) principal component
analysis (PCA) of the TMM-normalized taxonomic count data, colored according to treatment:
control in red and samples with added silver nitrate in blue.
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Tables

Table 1 Issues with properties of existing approaches. Properties of existing approaches versus
requirements for microeukaryotic environmental sequence analysis.

Property Existing approaches Requirements
Organisms prokaryotic eukaryotic
Taxonomic assignment from marker genes all reads
Taxonomic assignment on species level higher taxonomic level
Type of tool GUI, webservice stand-alone, workflow
Similarity to reference high low
Search method mapping with BWA, Bowtie2 variant-tolerant local alignment
Database size large small – midsize

Table 2 Number of taxa in used taxonomic groups. Bold numbers: number of taxa used for each
supergroup; non-bold: number of taxa used for each taxonomic group in the reference database.

Supergroup Group Number of taxa
Alveolata 26

Apicomplexa 4
Chromerida 2
Ciliophora 8
Dinophyceae 11
Perkinsea 1

Amorphea 27
Amoebozoa 7
Apusozoa 1
Choanoflagellida 2
Fungi 6
Metazoa 9
Opisthokonta Rest 2

Archaeplastida 22
Chlorophyta 12
Glaucocystophyceae 2
Rhodophyta 3
Streptophyta 5

Excavata 9
Euglenozoa 4
Fornicata 2
Heterolobosea 2
Parabasalia 1

Hacrobia 11
Cryptophyta 4
Haptophyta 7

Rhizaria 7
Cercozoa 3
Foraminifera 4

Stramenopile 40
Bacillariophyta 15
Bigyra 4
Chrysophyceae 6
Pseudofungi 3
Stramenopile Rest 12

Table 3 Evaluation of TaxMapper. Comparison of area under the ROC curve (AUC) and accuracy
(ACC) for the E-value cutoff (test data) and TaxMapper on test, holdout and random data. The
cutoffs leading to the best results in ACC and a false positive rate below 0.1 are shown below.

Method Simple
E-value

cutoff

TaxMapper
test

TaxMapper
holdout

TaxMapper
random

AUC 0.84 0.91 0.90 NA
ACC 0.79 0.84 0.84 1.00
Cutoff for best ACC -0.92 0.38 0.40 1.00
Cutoff for FPR < 0.1 1.66 0.58 0.58 0.29

List of abbreviations
ACC Accuracy
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AUC Area under the curve

BH Best hit

DFG Deutsche Forschungsgemeinschaft

FDR False discovery rate

FP False postive

FPR False positive rate

HTS High-throughput sequencing

KEGG Kyoto Encyclopedia of Genes and Genomes

LCA Lowest common ancestor

MLE Maximum likelihood estimation

MMETSP Marine Microbial Eukaryote Transcriptome Sequencing Project

NCBI National Center for Biotechnology Information

NLH Next lineage hit

OTU Operational Taxonomic Unit

PCA Principal component analysis

ROC Receiver operating characteristic

TMM Trimmed mean of M-values

TP True positive

TPR True positive rate

Additional files
Suppl TaxTable.csv — Taxa contained in reference database

Information on taxa contained in reference database, including taxonomic affiliation,

accession number and database.

Suppl TestTable.csv — Validation taxa

Information on taxa used for evaluating the logistic regression model.
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