New Results
Extracting a Biologically Relevant Latent Space from Cancer Transcriptomes with Variational Autoencoders
View ORCID ProfileGregory P. Way, View ORCID ProfileCasey S. Greene
doi: https://doi.org/10.1101/174474
Gregory P. Way
1Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA E-mail:
Casey S. Greene
2Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania, Philadelphia, PA 19104, USA E-mail:

Article usage
Posted October 02, 2017.
Extracting a Biologically Relevant Latent Space from Cancer Transcriptomes with Variational Autoencoders
Gregory P. Way, Casey S. Greene
bioRxiv 174474; doi: https://doi.org/10.1101/174474
Subject Area
Subject Areas
- Biochemistry (7801)
- Bioengineering (5686)
- Bioinformatics (21316)
- Biophysics (10592)
- Cancer Biology (8193)
- Cell Biology (11954)
- Clinical Trials (138)
- Developmental Biology (6772)
- Ecology (10411)
- Epidemiology (2065)
- Evolutionary Biology (13890)
- Genetics (9719)
- Genomics (13083)
- Immunology (8158)
- Microbiology (20037)
- Molecular Biology (7865)
- Neuroscience (43116)
- Paleontology (321)
- Pathology (1279)
- Pharmacology and Toxicology (2264)
- Physiology (3358)
- Plant Biology (7242)
- Synthetic Biology (2009)
- Systems Biology (5545)
- Zoology (1130)