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ABSTRACT  

 

We use deep sequencing to identify sources of variation in mRNA splicing in the 

dorsolateral prefrontal cortex (DLFPC) of 450 subjects from two prospective cohort 

studies of aging. Hundreds of aberrant pre-mRNA splicing events are reproducibly 

associated with Alzheimer’s Disease (AD). We also generate a catalog of splicing 

quantitative trait loci (sQTL) effects in the human cortex: splicing of 3,198 genes is 

influenced by genetic variation. sQTLs are enriched among those variants influencing 

DNA methylation and histone acetylation. In assessing known AD loci, we report that 

altered splicing is the mechanism for the effects of the PICALM, CLU, and PTK2B 

susceptibility alleles. Further, we leverage our sQTL catalog to identify genes whose 

aberrant splicing is associated with AD and mediated by genetics. This transcriptome-

wide association study identified 21 genes with significant associations, many of which 

are found in AD GWAS loci, but 8 are in novel AD loci, including FUS, which is a known 

amyotrophic lateral sclerosis (ALS) gene. This highlights an intriguing shared genetic 

architecture that is further elaborated by the convergence of old and new AD genes in 

autophagy-lysosomal-related pathways already implicated in AD and other 

neurodegenerative diseases. Overall, this study of the aging brain’s transcriptome 

provides evidence that dysregulation of mRNA splicing is a feature of AD and is, in 

some genetically-driven cases, causal.  
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INTRODUCTION  

 

Alternative splicing (AS) is an important post-transcriptional regulatory mechanism 

through which pre-mRNA molecules can produce multiple distinct mRNAs. AS affects 

over 95% of human genes1, contributing significantly to the functional diversity and 

complexity of proteins expressed in tissues2. AS is abundant in human nervous system 

tissues3 and contributes to phenotypic differences within and between individuals: at 

least 20% of disease-causing mutations may affect pre-mRNA splicing4. Mutations in 

RNA-binding proteins (RBPs) involved in AS regulation and aberrant AS have been 

linked to Amyotrophic lateral sclerosis (ALS)5 and Autism6. Further, disruptions in RNA 

metabolism, including mRNA splicing, are associated with age-related disorders, such 

as Frontotemporal lobar dementia (FTD)7, Parkinson’s disease8 and Alzheimer's 

disease9,10. These studies have largely focused on alternative splicing of selected 

candidate genes, including the amyloid precursor protein (APP) 8 and microtubule 

associated protein Tau (MAPT)8,9,11. However, proteomics profiles of AD brains12 

identified an increased aggregation of insoluble U1 snRNP, a small nuclear RNA 

(snRNA) component of the spliceosomal complex, suggesting that the core splicing 

machinery may be altered in AD. Apart from these studies, there have been few 

investigations of the possibility of more widespread splicing disruption affecting brain 

transcriptomes in AD13. However, a comprehensive study of cis- and trans- acting 

genetic factors that regulate alternative splicing in aging brains is lacking.  

Over twenty-four genetic loci have now been associated with AD susceptibility by 

Genome-wide Association Studies (GWAS)14, and these AD variants are enriched for 

associations with gene expression levels in peripheral myeloid cells and often lie within 

cis-regulatory elements15. For example, we reported that one of these variants 

influences splicing of CD3316. Given the high abundance of alternative splicing in the 

brain, we hypothesized that other AD-associated genetic variants might also affect pre-

mRNA splicing, possibly by disrupting efficient binding of splicing factors.  

Here, by applying state-of-the-art analytic methods, we generated a 

comprehensive genome-wide map of splicing variation in the aging prefrontal cortex. 

We use this map to identify: (1) aberrant mRNA splicing events related to AD; (2) 
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thousands of genetic variants influencing local mRNA splicing; (3) trans acting splicing 

factors that are involved in intron excision in brain; and (4) association of GWAS 

findings to specific genes that are likely to be causal in the etiology of AD. Overall, we 

deepen our understanding of genetic regulation in the aging brain’s transcriptome and 

provide a foundation for the formulation of mechanistic hypotheses in AD and other 

neurodegenerative diseases. 

 

RESULTS 

 

Aberrant mRNA splicing in AD and related-pathology 

We deeply sequenced RNA from frozen dorsolateral prefrontal cortex (DLFPC) samples 

obtained at autopsy from 450 participants in either the Religious Order Study (ROS) or 

the Memory and Aging Project (MAP), two prospective cohort studies of aging that 

include brain donation. All subjects were without known dementia at study entry. During 

the study, some subjects experienced cognitive decline, and, at autopsy, they displayed 

a range of amyloid-β and Tau pathology, with 60% of subjects having a pathologic 

diagnosis of AD17,18 (Supplementary Table 1).  

Following alignment and quantification of RNA-Seq reads, LeafCutter19,20 was 

applied to estimate “percent spliced in” values (PSI, Ψ) for local alternative splicing 

events (Fig. 1). LeafCutter detects splicing variation using those reads that span splice 

junctions. We identified 53,251 alternatively spliced intronic excision clusters in 16,557 

genes. To identify aberrant splicing events, we analyzed the association between the 

PSI of each intron excision event and a pathologic diagnosis of AD or quantitative 

measures of AD neuropathology including neuritic plaques (NP), neurofibrillary tangles 

(NFT), and amyloid-β burden, while accounting for confounding factors (Online 

Methods). At False Discovery Rate (FDR) < 0.10 we identified a total of 303 

differentially spliced introns in 224 genes associated with different AD neuropathologies 

including 13 with NP, 82 with amyloid, and 234 with NFT (Supplementary Table 2). A 

heat map of the top differentially spliced introns associated with NFT is shown in Fig. 

2a. On average, these differentially excised introns explain ~2-13% of total variation in 
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different neuropathologies after accounting for biological (age and sex) and technical 

covariates (Fig. 2b; Supplementary Fig. 1).  

 

To test for association with the clinical diagnosis of AD, we used Leafcutter19,20 to 

identify differentially spliced introns by jointly modeling intron clusters using a Dirichlet-

multinomial GLM (Online Methods). At a Bonferroni-corrected P < 0.05, we identified a 

total of 87 intron clusters (corresponding to 84 genes) that displayed altered splicing in 

relation to AD (Supplementary Table 3). For example, the most significant differentially 

excised intron (chr10: 3147351-3147585) in the gene PFKP, phosphofructokinase: the 

frequency of this event was associated with AD (P < 4.9x10-24) and all pathologic 

measures tested in this study. Similarly, the next most differentially excised intron 

(chr14: 21490656-21491400) associated with AD is found in the alpha/beta-hydrolase 

fold protein gene NDRG family member 2 (NDRG2) (P < 5.6 x 10-19) and is also 

associated with measures of both amyloid and Tau pathology (Fig. 2c). Differential 

splicing of both PFKP and NDRG2 in human brains has been previously shown to be 

associated with AD pathogenesis21,22, offering a measure of replication. Other genes 

with differentially excised introns associated with AD include APP (P < 1.6 x 10-3) and 

genes in known AD GWAS loci including PICALM (P < 0.02) and CLU (P < 3.2 x 10-4). 

Next, to assess the robustness of our results, we performed a replication analysis using 

RNA-Seq data from the Mount Sinai Brain Bank (MSSB)23 involving 301 samples from 

AD and control brains (see Supplementary Note). Of the 84 genes with differentially 

spliced intron clusters in ROSMAP, 52 (including APP, PFKP, and NDRG2) were 

significant at a Bonferroni-corrected P < 0.05 thresholds in the MSBB data (Fig. 2c; 

Supplementary Table 4). This constitutes an independent replication of specific, 

aberrant splicing alterations in AD brains. Finally, to further validate and explore the 

mechanism of our observations, we analyzed RNA-Seq data derived from control iPSC-

derived neurons (iN) and iN overexpressing Tau: differential intron excision was noted 

at APP (P < 4.9 x10-6) and NDRG2 (P < 0.006) in this model system (Fig. 2d). These 

data suggest that tau accumulation in neurons – at a stage in which neurons are 

accumulating phospho-tau but are not apoptotic- is sufficient to induce splicing 

alterations; this in vitro validation of disease-related splicing changes suggests that (1) 
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altered splicing is not related to confounding factors relating to autopsy or the agonal 

state and (2) has specific target RNAs that can be modeled in vitro. 

 

Genetic effects on pre-mRNA splicing in aging brains 

We next performed a splicing QTL (sQTL) study to identify local genetic effects that 

drive variation in RNA splicing in the DLFPC. First, we assessed the splice events from 

the LeafCutter algorithm (Fig. 1); 30% of these 54,463 intron excision clusters are novel 

splicing events, not previously reported in other sQTL studies. The PSI values were 

adjusted for known and hidden factors (15 principal components) and then fit to imputed 

SNP data using an additive linear model implemented in fastQTL24 (Online Methods; 

Supplementary Fig. 2). At FDR < 0.05, we found 9,028 sQTLs in 3,006 genes 

(Supplementary Table 5). Over 60% of these sQTLs involve changes in cassette 

splicing (simple or complex exon skipping events), followed by 5’/3’ exon extension 

(23%), and alternative upstream or downstream exon usage (17%). As expected, 

splicing was most strongly affected by variants in the splice region itself (59.8%): 20.2% 

of variants are mapped to splice acceptor sites and 16.4% to splice donor sites. The 

remaining (23.2%) mapped to other splice regions or are found within an intron 

(Supplementary Fig. 3). Further, sQTLs are mapped to distinct regulatory features as 

defined by 15 chromatin states in DLPFC25: sQTLs were significantly enriched in 

actively transcribed regions and enhancers. They are depleted in repressed chromatin 

marked with polycomb, heterochromatin, and quiescent regions (Fig. 3a).  

To assess the extent of sQTL replication, we compared our sQTLs to the recently 

published dataset from the CommonMind Consortium (CMC), consisting of DLFPC 

profiles from 258 persons with schizophrenia and 279 control subjects26 (see 

Supplementary Notes). Our sQTLs yield a Storey’s π1 = 0.78 in the CMC data, 

suggesting substantial sharing of sQTLs between these two different brain collections 

(Fig. 3b). Moreover, 93% of sQTLs showed the same direction of effect (Fig. 3b). The 

fraction of sQTLs that are novel deserve further evaluation to assess the extent to which 

they may be context-specific given that the average age at death of our participants is 

88 years. 
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In agreement with recent findings in lymphoblastoid cell lines (LCLs)20, we found 

that a majority of sQTLs act independent of gene expression effect, as evident by the 

low degree of sharing between sQTLs and eQTLs27 from the same brains (π1 = 0.18) 

(Fig. 3c). Of the 9,045 lead sQTL SNPs, only 42 are also a lead eQTL, suggesting that 

a substantial fraction of sQTLs are unique and are not detected by standard eQTL 

analysis.  

To further understand the mechanisms underlying sQTLs, we assessed the 

overlap of sQTLs with SNPs influencing epigenomic marks (xQTLs) such as DNA 

methylation (mQTL) and histone H3 acetylation on lysine 9 (H3K9Ac, haQTL)27 that are 

available from the same DLPFC samples (Online Methods). Indeed, we found that 

such xQTLs27 are significantly enriched among sQTLs when compared to randomly 

selected, matched SNPs (Kolmogorov–Smirnov test P < 0.001 (Fig. 3d): of the lead 

sQTL, 9% (578) and 19% (1246) were also associated with haQTL and mQTL, 

respectively, suggesting extensive genetic co-influences on splicing, methylation, and 

histone modifications. Finally, we found significant sharing of sQTL SNP among SNP 

that also influence histone (π1 = 0.74) or methylation (π1 = 0.82). These overlaps 

suggest a contribution of epigenomic regulation in directing splicing. 

Given prior reports20,28, we evaluated whether our sQTLs from the aging brain 

were enriched for AD susceptibility variants (Figs. 3e and 3f). We also assessed 

enrichment of AD SNPs (P < 1 x 10-5) in splicing, methylation or expression QTLs from 

DLFPC27, monocytes15,29, neutrophils29 and T-cells15,29. Using an enrichment method 

that uses permutation testing (matching for MAF, distance to TSS, and a number of LD 

proxies), we found that DLFPC sQTLs are more likely to be enriched among AD GWAS 

SNPs (P <10-5), followed by sQTL and eQTL from monocytes (Fig. 3f). These findings 

suggest the important role of RNA splicing on variation in AD susceptibility, the 

prominent role of myeloid cells in AD susceptibility15 but also the fact that a number of 

AD variants have mechanisms that may be mediated through non-myeloid effects. 

Some of these effects of AD variants on splicing are known, such as the 8-fold 

increase in full-length CD33 isoform16,30 and the SPI1 functional consequence31, but 

several of these - in CLU, PICALM, and PTK2B - have not been previously reported 

(Supplementary Table 6). For example, the PTK2B risk allele leads to increased 
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skipping of exon 31 (chr8: 27308560- 27308595) which contains a coding part of the 

gene (Fig. 5d). These results delineate the initial events along the cascade of functional 

consequences for these three AD variants and provide important mechanistic insights 

into their development as potential therapeutic targets. 

 

Splicing regulators associated with alternative splicing in DLFPC 

Splicing of pre-mRNA is catalyzed by a large ribonucleoprotein complex called the 

spliceosome, which consists of five small nuclear RNAs (snRNA) and numerous splicing 

factors32. To identify brain splicing factors that regulate sQTL events in trans, we 

evaluated whether the lead sQTL SNPs identified in our study are enriched in RNA 

binding protein (RBP) binding sites using publicly available cross-linking 

immunoprecipitation (CLIP)-Seq datasets from 76 RBPs in CLIPdb33. We found that 

binding targets of 18 RBPs are significantly enriched among lead sQTLs (Fig. 4a). The 

most enriched RBP is PTBP1 (Fisher’s exact P < 0.006), followed by HNRNPC, CPSF7, 

and ELAVL1. Notably, the enrichment for neuronal ELAVL1 RBP target sites is 

consistent with a recent report that, upon neuronal ELAVL1 depletion, 

BIN1 and PICALM transcripts were found to have lower exon inclusion for those sites in 

which ELAVL binding sites directly overlapped with SNPs associated with AD34.  

 

On the other hand, we also observed significant enrichment for the lead sQTL 

SNPs within the binding sites for a number of heterogeneous nuclear ribonucleoproteins 

(hnRNP) including hnRNP C (P < 0.009). Further, we find that the expression levels of 

hnRNP splicing factors are correlated with intronic excision levels of hundreds of genes, 

many of which are in AD susceptibility loci including BIN1, PICALM, APP, and CLU 

(Supplementary Figs. 4 and 5). The hnRNP C factor has been linked to AD in previous 

studies, including in a recent biochemical study reporting the translational regulation 

of APP mRNA by hnRNP C35.  This observation goes towards the mechanism of the 

sQTL: consistent with the assumption that, altering the sequence of a binding site 

changes the likelihood that a splicing event occurs in vivo. In one example of a sQTL 

affecting intron usage, a TBC1D7 (one of the new AD genes described in a later 

section; Figs. 6a and 6b) SNP is found within CLIP-defined binding sites for hnRNP C 
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as well as other RBPs (Fig. 4b). Thus, incorporating RBP binding sites as a functional 

annotation allows for improving our accuracy in selecting plausible causal variants that 

may disrupt binding of splicing factors to cause the alternative-splicing event. Further 

biochemical studies will be required to understand the full regulatory program that 

orchestrates the disease-related splicing changes. 

 

Transcriptome-wide association studies prioritizes AD genes in endocytosis and 

autophagy-lysosomal pathways 

 

To identify genes whose mRNA expression or alternative splicing is associated with AD 

and mediated by genetic variation, we performed two Transcriptome-wide association 

studies (TWAS)36 by using either the ROSMAP expression data or its intronic excision 

levels as reference panels to re-analyze summary level data from the International 

Genomics of Alzheimer's Project (IGAP) AD GWAS that includes data from 79,845 

individuals37. Using the reference data, this method infers expression levels into the 

IGAP summary statistics, performs a case/control analysis of the imputed expression or 

splicing data, and generates a joint association statistic that integrates the extent of 

genetic and expression or splicing association for a given gene. A total of 4,746 genes 

and 15,013 differentially spliced introns could be analyzed, and we identified 21 genes 

at FDR < 0.05 whose imputed gene expression or intronic excision levels were 

significantly associated with AD status (Fig. 5a; Supplementary Table 6). Among 

these, there were genes in known AD loci including SPI1, CR1, PTK2B, CLU, MTCH2, 

and PICALM. These results help to pinpoint the likely gene that is the target of the 

known susceptibility variant in each locus, particularly at the MTCH2 locus in which the 

functional consequence of the risk allele was unclear. However, the new AD genes are 

even more interesting, and 8 of these associations are found in loci that harbored only 

suggestive evidence of association in the IGAP study. These genes include AP2A1, 

AP2A2, FUS, MAP1B, TBC1D7 and others that are now significant at a threshold 

adjusted for genome-wide testing and therefore help to prioritize the long list of 

suggestive IGAP associations (Figs. 5a, 6a, and 6b; Supplementary Figs. 6-14). FUS 

is particularly intriguing since mutations in FUS have been previously linked to ALS38; 
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this suggests that there may be some shared genetic susceptibility between these two 

neurodegenerative diseases that have not been appreciated previously. 

 

To replicate these results, we first assessed whether using the expression 

imputation model built using the CMC dataset26 that was deployed in IGAP AD GWAS 

yields significant results. We focused on the 21 significantly associated genes above: 

five genes (CR1, PTK2B, CLU, TBC1D7, and AP2A2) replicated at FDR < 0.05 and two 

genes (MTCH2 and PICALM) were nominally significant at P < 0.05 with the expression 

and splicing inference from CMC (Fig. 5b). The directions of effect for all six 

associations were consistent in both datasets (Fig. 5b). Thus, we see robust replication, 

and our results are not due to the unique properties of the ROSMAP dataset. Second, 

we used the UK BioBank (UKBB) AD GWAS by proxy39 to replicate the IGAP TWAS 

results. We note that, despite analyzing data from 116,196 subjects, the UKBB AD 

GWAS is underpowered since the GWAS does not use AD cases but, rather, subjects 

who have a first-degree relative with AD as “cases”. Nevertheless, we were able to 

replicate (at nominal P < 0.05) seven of our IGAP TWAS associations in the UKBB 

TWAS (Fig. 5c). These two complementary replication efforts demonstrate the 

robustness of our results. Finally, we performed a TWAS using the summary statistics 

of a meta-analysis of IGAP and UKBB GWAS, and identified three additional genes 

(ABCA7, RHBDF1, and VPS53) that meet a genome-wide significant threshold in the 

meta-analysis (Supplementary Table 7), with ABCA7 being one of the well-validated 

AD loci. 

 

Most of the TWAS associations are the result of differential intron usage, 

suggesting the importance of pre-mRNA splicing in AD (Fig. 5a). An example of TWAS 

association with intron usage at PTK2B, a known AD susceptibility locus, is shown in 

Fig. 5d. We often observed multiple TWAS-associated genes in the same locus, likely 

due to co-expression of genes in close physical proximity or allelic heterogeneity within 

the susceptibility locus40. To account for multiple associations in the same locus, we 

applied conditional and joint association methods that rely on summary statistics40,41 to 

identify genes that had significant TWAS associations when analyzed jointly (Online 
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Methods; Figs. 5e and 6b; Supplementary Figs. 6-14). A region with multiple TWAS 

association includes the PTK2B/CLU locus, which shows independent co-localized 

association for both GWAS37 and splicing effects (Fig. 5e).  

Refining known associations is important to translate results into functional 

studies, but the newly validated AD genes offer new insights into AD:  we used the 

GeNets (http://apps.broadinstitute.org/genets) to evaluate the connectivity of our new 

AD genes with the network of known AD susceptibility genes that are interconnected by 

protein-protein interaction (PPI)42. These new and known AD susceptibility genes are 

directly connected (i.e., they form shared ‘communities’) (P < 0.006) (Fig. 6c). Further, 

this joint network is enriched for endocytosis pathways (P < 0.0002), highlighting the 

existing narrative of endocytosis pathways being preferentially targeted in AD. More 

interesting is the enrichment for the autophagy-lysosomal related pathway (P < 0.003) 

(Fig. 6c). The genes in the autophagy-lysosomal related pathway (AP2A2, AP2A1, and 

MAP1B) form a statistically significant P < 4.3x10-4) PPI sub-network with known AD 

genes (PTK2B, PICALM and BIN1) (Fig. 6d). Protein degradation pathways have been 

implicated previously in ALS43 and to a limited extent in AD44. Overall, these PPI 

analyses suggest that our new TWAS-derived genes are not a random set of genes but 

are part of an AD network.  

 

DISCUSSION 

 

In this study, we directly examined alternative splicing events in a large dataset of aging 

brains, which led to both the observation that specific alternative splicing events are 

reproducibly associated with AD and the functional dissection of genetic associations to 

AD. Our replication efforts demonstrate that the observed AD-related perturbations in 

splicing are not simply due to spliceosomal failure. Further, our in vitro model of tau 

overexpression in iPSC-derived neurons shows that perturbation of MAPT is sufficient 

to cause these disease-related splicing changes that are observed in the human cortex 

at autopsy. Finally, since these neurons are functionally normally, we now know that 

these splicing changes occur very early in the series of molecular events that are 

caused by perturbation in MAPT expression.  
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We combined this splicing map of the aging brain with common genetic variants and 

cataloged the genetic architecture controlling local splicing events. These analyses 

revealed a preponderance of brain and myeloid splicing events as being the functional 

consequence of AD susceptibility alleles, which connects with the broader AD-related 

splicing changes to highlight the role of altered RNA maturation as playing a key role in 

this neurodegenerative disease (Figs. 3f and 5a; Supplementary Table 6).   

 

To address the issue of causality in results derived from our cross-sectional brain 

data, we used the powerful TWAS approach, which leverages our splicing map and 

common genetic variants to test the hypothesis that the effect of such variants in AD is 

mediated, by altering splicing levels. These analyses confirmed many of the known AD 

genes (i.e., CLU and PTK2B), which supports the role of regulation of splicing levels as 

key mechanisms in certain AD loci, but also found several new AD loci: TBC1D7, 

AP2A1, AP2A2, FUS, and MAP1B (Figs. 5a and 6b; Supplementary Figs. 6,8, and 

12). These new genes reinforce the association of the Clathrin/AP2 adaptor complex 

with AD susceptibility45. Both AP2A2 and AP2A1, which are components of the AP2 

adaptor complex that serves as a cargo receptor, selectively sorting membrane proteins 

involved in receptor-mediated endocytosis46. The AP2 complex and PICALM interact 

with APP, directing it to degradation and autophagy46.  

 

Our study also offers insights for several well-known AD loci in which the gene was 

known but the functional mechanism remained unclear. Similar to our work in CD3316, 

the careful analysis of these cortical data highlights a specific splicing mechanism for 

the AD risk alleles at CLU, PICALM, and PTK2B. All three are complex proteins with a 

large number of exons, so our results prioritize specific domains in these proteins as 

harboring the functional domain that influences AD risk. These domains will be critical in 

beginning to assemble a protein:protein interaction scaffold for AD susceptibility that 

goes beyond repurposing existing databases of interactions that are assessed in 

GeNets. Further, our analyses of RBP involved in splicing regulation of AD susceptibility 

genes including PICALM and RNA binding site analysis of HNRNPC (Fig. 4c; 
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Supplementary Fig. 5) and ELAVL helps to prioritize the putative causal variant and to 

elaborate the series of events upstream of the susceptibility variant that enable its 

expression. Thus, our catalog of splicing variants made available with this study 

provides a starting point for further focused molecular and biochemical experimental 

validation to fully elucidate the role of these splicing variants in the etiology of AD.  

 

This transcriptome-wide reference map of RNA splicing in the aging cortex is a new 

resource that highlights strong effects of neuropathology and genetic variation on 

splicing. It will be useful in annotating the results of genetic and epigenomic studies of 

neurologic and psychiatric diseases, but it has an immediate impact in (1) identifying the 

functional consequences of several AD susceptibility alleles, (2) extending the list of loci 

involved in AD, and (3) implicating the protein degradation machinery in the pathology 

of AD.  

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 10, 2017. ; https://doi.org/10.1101/174565doi: bioRxiv preprint 

https://doi.org/10.1101/174565


METHODS 

Study Cohorts 

Religious Orders Study (ROS): From January 1994 through June of 2010, 1,148 persons 

agreed to annual detailed clinical evaluation and brain donation at the time of death. Of these, 

1,139 have completed their baseline clinical evaluation: 68.9% were women; 88.0% were white, 

non-Hispanic; their mean age was 75.6 years; and mean education was 18.1 years. There were 

287 cases of incident dementia and 273 cases of incident AD with or without a coexisting 

condition. Details of the clinical and pathologic methods have been previously reported 17. 

 

Memory and Aging Project (MAP): From October 1997 through June 2010, 1,403 persons 

agreed to annual detailed clinical evaluation and donation of the brain, spinal cord, nerve, and 

muscle at the time of death. Of these, 1,372 completed their baseline clinical evaluation: 72.7% 

were women; 86.9% were white, non-Hispanic; their mean age was 80.0 years; and mean 

education was 14.3 years with 34.0% with 12 or fewer years of education. There were 250 

cases of incident dementia and 238 cases of incident AD with or without a coexisting condition. 

Details of the clinical and pathologic methods have been previously reported 47. To avoid 

population stratification artifacts in the genetic analyses, the study was limited to non-Latino 

whites.  

 

See Supplementary Notes for the details of CommonMind Consortium (CMC) and Mount Sinai 

Brain Bank (MSBB) datasets.  

 

Data acquisition, quality control, and normalization 

Genotyping. DNA from ROS and MAP subjects was extracted from whole blood, lymphocytes 

or frozen post-mortem brain tissue and genotyped on the Affymetrix GeneChip 6.0 platform at 

the Broad Institute’s Center for Genotyping. Only self-declared non-Latino Caucasians were 

genotyped to minimize population heterogeneity. PLINK software48 was used to implement our 

QC pipeline. We applied standard QC measures for subjects (genotype success rate >95%, 

genotype-derived gender concordant with reported gender, excess inter/intra-heterozygosity) 

and for single nucleotide polymorphisms (SNPs) (HWE P > 0.001; MAF > 0.01, genotype call 

rate > 0.95; misshap test > 1x10-9) to these data. Subsequently, EIGENSTRAT49 was used to 

identify and remove population outliers using default parameters. Imputation was performed 

using Michigan Imputation Server with Minimac350 using Haplotype Reference Consortium 

(HRC version r1.1, 2016)51 panel consisting of 64,940 haplotypes of predominantly European 
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ancestry. Imputation filtering of r2 > 0.3 was used for quality control. After QC, 450 individuals 

and 8,383,662 genotyped or imputed markers were used for sQTL analysis. 

  

RNA-Seq data. RNA was sequenced from the gray matter of dorsal lateral prefrontal cortex 

(DLPFC) of 542 samples, corresponding to 540 unique brains. These samples were extracted 

using Qiagen's miRNeasey mini kit and the RNase free DNase Set. RNA was quantified using 

Nanodrop. The quality of RNA was evaluated by the Agilent Bioanalyzer. All samples were 

chosen to pass two initial quality filters: RNA integrity (RIN) score >5 and quantity threshold of 5 

μg (and were selected from a larger set of 724 samples). RNA-Seq library preparation was 

performed using the strand specific dUTP method14 with poly-A selection. Sequencing was 

performed on the Illumina HiSeq with 101bp paired-end reads and achieved coverage of 150M 

reads of the first 12 samples. These 12 samples served as a deep coverage reference and 

included 2 males and 2 females of non-impaired, mild cognitive impaired, and Alzheimer's 

cases. The remaining samples were sequenced with target coverage of 50M reads; the mean 

coverage for the samples passing QC is 95 million reads (median 90 million reads). The 

libraries were constructed and pooled according to the RIN scores such that similar RIN scores 

would be pooled together. Varying RIN scores result in a larger spread of insert sizes during 

library construction and leads to uneven coverage distribution throughout the pool.  

 

The RNA-Seq data were processed by a parallelized pipeline. This pipeline includes trimming 

the beginning and ending bases from each read, identifying and trimming adapter sequences 

from reads, detecting and removing rRNA reads, and aligning reads to reference genome. 

Specifically, RNA-Seq reads in FASTQ format were inspected using FASTQC program. 

Barcode and adapter contamination, low-quality regions (8bp at beginning and 7bp at ending of 

each FASTQ reads) were trimmed using FASTX-toolkit. To remove rRNA contamination, we 

aligned trimmed reads to rRNA reference (rRNA genes were downloaded from UCSC genome 

browser selecting the RepeatMask table) by BWA then extracted only paired unmapped reads 

for transcriptome alignment. STAR (v2.5)52 (was used to align reads to the transcriptome 

reference, and RSEM (v1.3.0)53 was used to estimate expression levels for all transcripts. To 

quantify the contribution of experimental and other confounding factors to the overall expression 

profiles, we used the COMBAT algorithm54 to account for the effect of batch and linear 

regression to remove the effects of RIN, post-mortem interval (PMI), sequencing depth, study 

index (ROS sample or MAP sample), genotyping PCs, age at death, and sex. Finally, only 

highly expressed genes were kept (mean expression >2 log2-FPKM), resulting in 13,484 
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expressed genes for eQTL analysis. The details for cis-eQTL analysis are in Ng et al.27. 

 

Intron usage mapping and quantification. We used LeafCutter19,20 to obtain clusters of 

variably spliced introns. Leafcutter allows the identification of splicing events without relying on 

existing annotations, which are typically incomplete, especially in the setting of large genes or 

individual/population-specific isoforms. Leafcutter defines  “clusters” of introns that represent 

alternative splicing choices. To do this, it first groups together overlapping introns (defined by 

spliced reads). For each of these groups, Leafcutter constructs a graph where nodes are introns 

and edges represent overlapping introns. The connected components of this graph define the 

intron clusters. Singleton nodes (introns) are discarded. For each intron cluster, it iteratively (1) 

removed introns that were supported with fewer than 100 reads or fewer than 5% of the total 

number of intronic read counts for the entire cluster, and (2) re-clustered introns according to 

the procedure above. The intron usage ratio for each clusters was next computed and 

standardized (across individuals) and quantile normalized (across sample) as in Li et al. 20.  

 

Association of intron usage with AD and neuropathology traits. The association analysis 

with neuropathology traits and intron usage was performed using a linear model, adjusting for 

experimental batch, RNA integrity number (RIN), sex, age at death, and post-mortem interval 

(PMI). To test for association with AD, we limited the comparison to those participants clinical 

diagnosis of AD and those who have neither diagnosis (Supplementary Table 1). We used 

Leafcutter to identify intron clusters with at least one differentially excised intron by jointly 

modeling intron clusters using a Dirichlet-multinomial GLM19. To account for neuronal loss and 

cell type proportion in each brain sample, we used gene expression level of cell type specific 

genes as an additional covariate. However, these measures did not affect our association 

analysis. We report differentially spliced introns at Bonferroni-corrected P < 0.05 to correct for 

multiple hypothesis testing.  

 

We used variancePartition55 to estimate the proportion of variance explained of differently 

excised introns association with AD, burden of amyloid, burden of tangles, and neuritic plaques. 

 

Splicing QTL mapping. We used Leafcutter to obtain the proportion of intron defining reads to 

the total number of reads from the intron cluster it belongs to. This intron ratio describes how 

often an intron is used relative to other introns in the same cluster. We used WASP56 to remove 

read-mapping biases caused by allele-specific reads. This is particularly significant when a 
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variant is covered by reads that also span intron junctions as it can lead to a spurious 

association between the variant and intron excision level estimates. We standardized the intron 

ratio values across individuals for each intron and quantile normalize across introns57 and used 

this as our phenotype matrix. We used linear regression (as implemented in fastQTL)24 to test 

for associations between SNP dosages (MAF ≥ 0.01) within 100kb of intron clusters and the 

rows of our phenotype matrix that correspond to the intron ratio within each cluster. As 

covariate, we used the first 3 principal components of the genotype matrix to account for the 

effect of ancestry plus the first 15 principal components of the phenotype matrix (PSI) to regress 

out the effect of known and hidden factors. The principal components regress out the technical 

and biological covariates such as experimental batch, RNA integrity number (RIN), sex, age at 

death, and post-mortem interval (PMI). To estimate the number of sQTLs at any given false 

discovery rate (FDR), we ran an adaptive permutation scheme24, which maintains a reasonable 

computational load by tailoring the number of permutations to the significance of the 

association. We computed the empirical gene-level p-value for the most significant QTL for each 

gene. Finally, we applied Benjamini-Hochberg correction on the permutation p-values to extract 

all significant splicing QTL pairs with an FDR < 0.05. 

 

Transcriptome-wide Association Studies. We used RNA-seq data and genotypes from 

ROSMAP to impute the cis genetic component of expression/intron usage36,40 into large-scale 

late-onset AD GWAS of 74,046 individuals from the International Genomics of Alzheimer's 

Project (IGAP)37. The complete TWAS pipeline is implemented in FUSION 

(http://gusevlab.org/projects/fusion/) suite of tools36,40. The details steps implemented in 

FUSION are: (1) estimate heritability of gene expression or intron usage unit and stop if not 

significant. We estimated using a robust version of GCTA-GREML58, which generates 

heritability estimates per feature as well as the as well as the likelihood ratio test (LRT) P-value. 

Only features that have a heritability of Bonferroni-corrected P < 0.05 were retained for TWAS 

analysis. (2) The expression or intron usage weights were computed by modeling all cis-SNPs 

(1MB +/- from TSS) using best linear unbiased prediction (BLUP), or modeling SNPs and effect 

sizes (BSLMM), LASSO, Elastic Net and top SNPs36,40. A cross-validation for each of the 

desired models are performed; (3) Perform a final estimate of weights for each of the desired 

models and store results. The imputed unit is treated as a linear model of genotypes with 

weights based on the correlation between SNPs and expression in the training data while 

accounting for LD among SNPs. To account for multiple hypotheses, we applied an FDR < 0.05 

within each expression and splicing reference panel that was used.  
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We used the same TWAS pipeline to process the CMC datasets (see Supplementary Notes). 

 

Joint and conditional analysis. Joint and conditional analysis of TWAS results was performed 

using the summary statistic-based method described in Yang et al.41, which we applied to genes 

instead of SNPs. We used TWAS statistics from the main results and a correlation matrix to 

evaluate the joint/conditional model. The correlation matrix was estimated by predicting the cis-

genetic component of expression for each TWAS gene and computing Pearson correlations 

across all pairs of genes. We used FUSION tool to perform the joint/conditional analysis, 

generate conditional outputs, and generate plots. 

 

Gene Expression, DNA Methylation, Histone Modification QTL Mapping. The details of 

ROSMAP gene expression, DNA methylation, and histone modification data are described in 

Supplementary Notes. The quantitative trait locus (xQTL) analysis on a multi-omic dataset is 

described in Ng et al.27. The xQTL results and analysis scripts can be accessed through online 

portal, xQTL Serve, at http://mostafavilab.stat.ubc.ca/xQTLServe. 

 

QTL Sharing. We used the Storey’s π1 statistics59 also described in Nica et al.60, QTL sharing 

was estimated as the proportion of true associations π1 among the top SNP in each QTLs in the 

second QTL.  

 

Enrichment of sQTLs within epigenomic marks and splicing factor binding sites. We 

selected a set of 71 human curated RNA-binding proteins (RBP) splicing regulatory proteins 

from the SpliceAid-F database61 to analyze the relationship between gene expression levels of 

RBP and intron usage patterns across all samples. To test for enrichment of sQTLs in RBP 

binding sites, we downloaded human CLIP data in BED format from ClipDB33. We used 

GREGOR62  (Genomic Regulatory Elements and Gwas Overlap algoRithm) to evaluate global 

enrichment of trait-associated variants in splicing factor binding sites. GREGOR62 evaluates the 

significance of the observed overlap (of sQTL and splicing factor binding sites) by estimating the 

probability of the observed overlap of the lead sQTL relative to expectation using a set of 

matched control variants (random control SNPs are selected across the genome that match the 

index SNP for a number of variants in LD, minor allele frequency, and distance to nearest 

intron). 
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Enrichment of sQTLs in Chromatin States. We downloaded chromatin states from the 

Roadmap Epigenomics Project. The 15 chromatin states were generated from 5 chromatin 

marks in DLPFC of a cognitively non-impaired MAP subject with minimal pathology as part of 

the Roadmap Epigenomics Consortium25. A ChromHMM model applicable to brain epigenome 

was learned by virtually concatenating consolidated data corresponding to the core set of 5 

chromatin marks assayed (H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3). BED 

files downloaded from http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html. To 

test for enrichment for sQTLs among the 15 chromatin states, we used GREGOR62 to evaluate 

global enrichment of trait-associated variants in splicing factor binding sites. 

 

GWAS Enrichment Analyses. We used GARFIELD (unpublished; http://www.ebi.ac.uk/birney-

srv/GARFIELD/) to test for enrichment of IGAP AD GWAS SNPs among sQTLs and other 

publicly available QTL datasets. GARFIELD performs greedy pruning of GWAS SNPs (LD r2 

>0.1) and then annotates them based on functional information overlap. It quantifies fold 

enrichment at GWAS P <10-5 significant cutoff and assesses them by permutation testing, while 

matching for minor allele frequency, distance to nearest transcription start site and a number of 

LD proxies (r2 > 0.8). 

 

Q-Q plots show quantiles of one dataset against quantiles of a second dataset and are 

commonly used in GWAS to show a departure from an expected P-value distribution. We 

generated Q-Q plots for LD-pruned GWAS SNPs (PLINK with the settings “-- indep- pairwise 

100 5 0.8”). We compared the sQTLs overlapping with LD-pruned GWAS SNPs and compared 

the distribution to a random set of SNPs with similar MAF.  

 

GWAS Datasets. We performed transcriptome-wide association study using GWAS summary 

statistics from: (1) AD GWAS from the International Genomics of Alzheimer's Project (stage 1 

data)37; (2) AD genome-wide association study by proxy (GWAx) in 116,196 individuals from the 

UK Biobank39. 

 

Protein-protein Interaction Network and Pathway Analysis. We constructed a protein-

protein interaction (PPI) network using the GeNets online tool (unpublished; 

https://apps.broadinstitute.org/genets) to determine whether the AD TWAS genes significantly 

interact with each other and with known AD associated proteins. GeNets create networks of 

connected proteins using evidence of physical interaction from the InWeb database, which 
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contains 420,000 high-confidence pair-wise interactions involving 12,793 proteins63. Community 

structures of the underlying genes are displayed in GeNets. These “communities” are also 

called modules or clusters. This feature highlights genes that are more connected to one 

another than they are to other genes in other modules. To assess the statistical significance of 

PPI networks, GeNets applies a within-degree node-label permutation strategy to build random 

networks that mimic the structure of the original network and evaluates network connectivity 

parameters on these random networks to generate empirical distributions for comparison to the 

original network. In addition to PPI network analysis, GeNets allows for gene set enrichment 

analysis on genes within the PPI network. We used Molecular Signatures Database (MSigDB) 

Curated Gene Sets (C2), curated from various sources such as online pathway databases, the 

biomedical literature, and knowledge of domain experts and Canonical Pathways (CP), curated 

from pathway databases such KEGG, BioCarta, and Reactome to test for gene set enrichment 

within the PPI network. Then a hypergeometric testing is applied to get P-value for gene set 

enrichment. We used Bonferroni-corrected P < 0.05 to correct for multiple hypothesis testing. 

 

Data availability. The ROSMAP data are available at the RADC Research Resource Sharing 

Hub at www.radc.rush.edu. The ROSMAP and MSBB mapped RNA-seq data that support the 

findings of this study are available in AMP-AD Knowledge Portal 

(https://www.synapse.org/#!Synapse:syn2580853) upon authentication by the Consortium. The 

CommonMind Consortium data are available in CMC Knowledge Portal: 

https://www.synapse.org/#!Synapse:syn4923029. 

 

URLs. LeafCutter, https://github.com/davidaknowles/leafcutter;   
xQTL Browser, http://mostafavilab.stat.ubc.ca/xQTLServe;  
FUSION, http://gusevlab.org/projects/fusion/ 
MISO, http://genes.mit.edu/burgelab/miso/;  
SpliceAid-F, http://srv00.recas.ba.infn.it/SpliceAidF/;  
Roadmap Epigenomics Project,  
http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html;  
GREGOR, http://genome.sph.umich.edu/wiki/GREGOR;  
GARFIELD, http://www.ebi.ac.uk/birney-srv/GARFIELD;  
GeNets, https://apps.broadinstitute.org/genets;  
Michigan Imputation Server, https://imputationserver.sph.umich.edu/index.html;  
The RUSH Alzheimer’s Disease Research Center Research Resource Sharing Hub, 
https://www.radc.rush.edu;  
AMP-AD Synapse Portal, https://www.synapse.org/#!Synapse:syn2580853/wiki/409844;  
CommonMind Consortium Knowledge Portal, 
https://www.synapse.org/#!Synapse:syn2759792/wiki/69613;  
IGAP GWAS summary statistics, http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php;  
UK Biobank summary statistics, http://gwas-browser.nygenome.org/downloads/gwas-browser/. 
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FIGURE 1 
 

 
Figure 1: Overview of the study. RNA was sequenced from the gray matter of the dorsal lateral prefrontal cortex (DLPFC) of 542 samples (461 re
after QC and matching for genotype data) from the ROS/MAP cohort. RNA-Seq data were processed, aligned and quantified by our parallelized p
The intronic usage ratios for each cluster were then computed using LeafCutter19,20, standardized (across individuals) and quantile normalized. The 
usage ratios were used for differential splicing analysis, for calling splicing QTLs, and for transcriptome-wide association studies (TWAS). TWA
performed on summary statistics from IGAP AD GWAS of 74,046 individuals37.  
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FIGURE 2 
 

  

Figure 2: Differential splicing analysis in relation to AD diagnosis and AD neuropathology. (a) Heat map of top 35 differently excised intron ass
with burden of tangles in ROSMAP. Each column is one subject, who are ordered by their tangles burden (yellow row at the top of the panel). The assoc
Z-score strength and direction are denoted using the key at the bottom of the panel. (b) Variance explained (%) of top 5 differently excised introns ass
for four different traits. (c) The left two panels present the mean and distribution of intron usage for differently excised introns in NDRG2 in relation to a
diagnosis of AD in ROSMAP and in MSBB. The right two panels display the association of amyloid or tangle burden to intron usage in NDRG2. (d) Diffe
excised intron in APP upon Tau overexpression in iPSC Neurons. 
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FIGURE 3 
 

Figure 3: Enrichment of splicing QTLs in epigenomic marks and in AD GWAS. (a) Splicing QTLs are enriched in regions (or chromatin states) ass
with active transcription and genic enhancers, and they are depleted in polycomb regions that are transcriptionally repressed in the DLPFC. (b) Left: 
distribution of ROSMAP sQTLs that are significant in CMC (FDR < 0.05). The majority (78%) of sQTLs in ROSMAP are also discovered in CMC. Rig
direction of effect is consistent for the majority (93%) of the significant (FDR 0.05) lead sQTLs in CMC and in ROSMAP. (c) P-value distribution of RO
eQTLs that are significant sQTLs (FDR < 0.05). (d) SNPs that drive QTLs in H3K9ac and DNA methylation data in the same ROSMAP brains are more 
be sQTLs than matched SNPs within H3K9ac domains (left) and near DNA methylated CG (right). (e) QQ-plot for AD GWAS suggests that sQTLs are e
among AD GWAS (IGAP study37) compared to other types of QTLs. (f) Fold-enrichment of AD GWAS SNPs (P < 10-5) among QTL SNPs driving vari
gene expression, splicing, histone acetylation, and DNA methylation in primary monocytes15,29,64, T-cells15,29, or DLFPC27.  
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FIGURE 4 
 
 

Figure 4: Enrichment of RNA-binding protein (RBP) binding sites among sQTLs. (a) RBP enrichment (expected vs. observed) among the lead 
Significant RBSs are in bold and shown with an “*”. (b) Regional plot of sQTL results for SNPs in the vicinity of TBC1D7 (6:13306759:13307828). SNPs
splicing QTLs for TBC1D7 overlap CLIP binding sites (from CLIPdb33) for several splicing factors. The top SNP (rs2439540, red color) overlaps mot
number of RBPs. Splicing QTL results are highly consistent between ROSMAP (orange) and CommonMind (blue) data. (c) Association of hnRNPA2B
and hnRNPC (right) gene expression levels with differential intron usage in TBC1D7 (left) and in PICALM (right). 
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FIGURE 5 

 
Figure 5: Transcriptome-wide association study of Alzheimer’s Disease. (a) Transcriptome-wide results using the IGAP AD GWAS summary s
based on data from 74,046 individuals; each dot is one gene. The dotted green line denotes the threshold of significance (FDR 0.05). Genes for which 
evidence of significant differential intron usage are highlighted in blue. In green, we highlight those genes where the TWAS using total gene expression
are significant. (b) Replication of ROSMAP TWAS in CMC DLFPC data. The red triangles denote genes where the replication analysis is signific
Replication of IGAP AD TWAS using the UK BioBank AD GWAS based on an independent set of subjects. (d) PTK2B gene structure (top): clu
differential splicing events are noted with the colored curves. The panel then zooms to highlight differential intronic usage for chr8:27308412-27
stratified by rs2251430 genotypes (right). On the left, we show the same data use a box plot. (e) Conditional analysis of IGAP AD GWAS results for two 
effects for PTK2B and CLU in AD GWAS data. As noted in the top aspect of the panel, these two AD genes are located close to one another. The 
excision events for PTK2B and CLU are present in both ROSMAP (blue) and in CMC (green) dataset. When the AD GWAS is conditioned on the 
(chr8:27308412-27308560) splicing effect, the CLU effect remained significant, demonstrating its independence from the PTK2B association (superio
plot where each dot is one SNP in the genomic segment under evaluation). The reciprocal analysis conditioning on the CLU (chr8:27461909:27462441
the PTK2B association remained significant.  
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FIGURE 6 

  

Figure 6: TWAS prioritizes AD genes in endocytosis and autophagy-related pathway. (a) Differential intronic usage for 6: 13306759:13307828 (TB
stratified by rs2439540 genotypes (left). Box plot for the same data (right). (b) Regional plot showing the AD IGAP P-values in TBC1D7 locus. Two 
excision events at TBC1D7 are present in both ROSMAP (blue) and in CMC (green) dataset. The AD GWAS effect is mostly explained by intronic u
6:13306759:13307828. The AD GWAS at TBC1D7 is suggestive in the original IGAP study (p<10-5). (c) The product of three of the novel AD genes (
AP2A1, and MAP1B) are members of the same PPI network (P < 0.006). The genes in this network and others not in the network (i.e., TBC1D7, PAC
RABEP1) are significantly enriched in genes annotated as being involved in endocytosis (blue; P < 0.0002) and autophagy-related pathways (gree
0.003). (d) The novel AD genes (AP2A2, AP2A1, and MAP1B) form a significant PPI sub-network (P < 4.3 x10-4) with known AD genes (i.e., PICALM
and PTK2B).  
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