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Abstract 

Background: Neuron maturation is a critical process in neurogenesis, during which 

neurons gain their morphological, electrophysiological and molecular characteristics 

for their functions as the central components of the nervous system. 

Results: To better understand the molecular changes during this process, we 

combined the protein-protein interaction network and public single cell RNA-seq data 

of mature and immature neurons to identify functional modules relevant to the neuron 

maturation process in humans. The analysis resulted in 33 discriminable modules 

which participate in varied functions including energy consumption, synaptic 

functions and housekeeping functions such as translation and splicing. Based on the 

identified modules, we trained a neuron maturity index (NMI) model for the 

quantification of maturation states of single neurons or purified bulk neurons. Applied 

to multiple single neuron transcriptome data sets of neuron development in humans 

and mice, the NMI model made estimation of neuron maturity states which were 

significantly correlated with the neuron maturation trajectories in both species, 

implying the reproducibility and conservation of the identified transcriptome 

transition. 

Conclusion: We identified 33 functional modules whose activities were significantly 

correlated with single neuron maturity states, which may play important roles in the 

neuron maturation process. 

 
Keyword: neuron maturation, single-cell RNA-seq, protein-protein interaction 
network 
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Background 

As the central organ of the nervous system, the brain is composed of multiple types of 

neurons and glia ina complex cyto-architecture. By means of synaptic contacts, 

neurons form local and long-distance networks, which is a key component for brain 

function. Prior to the establishment of neuronal connections, neurons are generated 

from neuronal progenitor cells (NPC) located in the areas near the ventricles, and start 

a long maturation process comprised of a series of sequential and sometimes 

overlapping steps: neuronal migration, axon elongation, dendrite formation, 

synaptogenesis and refinement of connections (pruning). This complex developmental 

process leads immature neurons to eventually acquire their mature appearance and 

full electrical excitability [1-3]. However, while the molecular changes and regulatory 

mechanisms of NPC proliferation have been described in detail [4, 5], our knowledge 

of neuron maturation is still relatively sparse. A comprehensive investigation of 

neuron maturation at the molecular level could largely expand our understanding not 

only of brain development and function, but also of neurodevelopmental disorders 

such as autism and schizophrenia. It could also spark the quantitative measurement of 

neuronal maturity states, which may provide a powerful tool for future studies. 

Here, we adapted an insulated-heat-diffusion-based network smoothing procedure 

with a topological overlap matrix-based module identification method to analyze 

differences between immature and mature neurons on the transcriptome level, based 

on published single-cell RNA sequencing data of adult and fetal human brain tissues 

and the protein-protein interaction network annotated in the Reactome database. With 

the identified functional modules discriminating neurons in different maturity states, 

we developed machine-learning-based neuron maturity indices (or NMIs), which aim 

to quantify the level of neuron maturity. By applying the NMI models to multiple 

human and mouse single-cell or purified bulk RNA-seq data from neurons at different 

developmental stages and conditions, we verified the identified transcriptome 

transition during neuron maturation in human neuron in vitro models, as well as its 

high conservation in mouse neurons. The constructed NMI models thus show their 

potential in describing and comparing a variety of neuron maturity states. 

 

 

Results 

Detection of protein-protein interaction modules relevant to human neuron 
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maturation 

To comprehensively investigate changes of functional modules during the process of 

neuron maturation in humans, we adapted the module detection algorithm based on 

the topological overlap matrix (TOM) [6], from the widely used gene co-expression 

network analysis pipeline WGCNA [7], to the protein-protein interaction network 

annotated by Reactome [8, 9]. To include gene differential expression information, 

each edge in the network was weighted by the difference of expression level changes 

between linked genes, which were smoothed with the insulated heat diffusion 

procedure to reduce influence of noise (see Materials and Methods). Gene expression 

level changes during the neuron maturation process in humans were estimated based 

on the published single cell RNA-seq (scRNA-seq) data of fetal and adult human 

brains [10]. 

The analysis resulted in 109 functional modules with sizes ranging from 21 to 203 

genes, with a median size of 38 genes (Fig. 1). As shown by the calculated adjusted 

random index (ARI) [11, 12], choice of insulating parameter did influence the 

identified modules, but the modular composition remained generally robust 

(Supplementary Fig. 1). A two-sided Wilcoxon signed rank test was applied to each 

module in order to identify functional modules with significant expression level 

changes with concordant direction. Thirty-three functional modules with significant 

directional changes, which were referred to discriminable modules, were identified 

(Benjamini-Hochberg (BH) corrected P<0.05, Supplementary Table 1). Among them, 

17 modules accounting for 964 genes in the network showed higher activity in mature 

neurons (referred as mature-high modules). On the other hand, the remaining 16 

modules accounting for 1125 genes showed higher activity in immature neurons 

(referred as immature-high modules). Gene Ontology (GO) enrichment analysis by 

topGO [13] and GOSemSim [14] indicated that genes encoding for membrane proteins 

which participate in cell communication, signaling and oxidation-reduction processes 

for energy generation were strongly enriched in mature-high modules (Fig. 1, 

Supplementary Table 2). On the other hand, genes encoding for nuclear proteins 

related to transcription and post-transcriptional processing including splicing and 

translation were enriched in immature-high modules (Fig. 1, Supplementary Table 2). 

Although lacking additional data for in vivo transcriptome of human neurons across 

the whole neuron maturation process, it has been reported that neuron maturation 

explains the majority of brain transcriptome changes during prenatal and new-born 

postnatal development [15]. Therefore, we took the advantage of fetal and early 

postnatal brain RNA-seq dataset in BrainSpan and another age series RNA-seq data 

[16], to compare the brain transcriptome before and after postnatal day 100. 
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Remarkably, 28 out of the 33 discriminable modules showed significant concordant 

expression level changes (one-sided Wilcoxon signed rank test to fold changes (FC), 

BH-corrected P<0.1) in at least one dataset, while 20 of them showed significant 

concordance in both datasets (Fig. 1). In addition, although not significant, another 

two modules showed consistent direction of changes in both datasets. These results 

suggest that the discriminable modules represent the reproducible functional modules 

discriminating mature and immature neurons. 

Adversarial functional module pairs 

Interestingly, a further comparison with PPI functional modules, which were detected 

without integrating with expression level differences, identified six adversarial 

functional module (AFM) pairs. The two modules in one AFM pair were 

corresponding to the same module when the differential expression information was 

not integrated (Fig. 1). Three out of six AFM pairs (M4-M14, M36-M108, M8-M72) 

showed significant expression changes with consistent directions in at least one bulk 

brain RNA-seq dataset (one-sided Wilcoxon signed rank test, BH corrected P<0.01). 

In addition, consistent discordance in all pairs were observed in both bulk brain 

datasets (one-sided Wilcoxon rank sum test, P<0.01). Further functional analysis 

revealed highly consistent, connected but varied GO term and biological pathway 

enrichment in each pair of adversarial modules (topGO with the parentchild algorithm 

for GO terms, one-sided Fisher’s exact test for pathways; BH-corrected P<0.05, 

Supplementary Table 2). This analysis indicated that highly connected biological 

pathways may play distinct roles during neuron maturation in humans. They may 

reflect decoupling of components in the same pathway during the neuron maturation 

process. 

A good example is the AFM pair M4-M14 (Fig. 2). Genes in both modules participate 

in signaling by Rho GTPases, and more specifically, by activating the Rhotekin and 

Rhophilins pathway according to the Reactome annotation. Interestingly, this pathway 

splits into two parts: RHOB/C and RTKN in mature-high M4, and RHOA, RHPN1/2 

and TAX1BP3 in immature-high M14. This partition implies that, although Rhotekin 

and Rhophilins both participate in Rho GTPases signaling, they interact with different 

members of the Rho protein family and play different roles in the process of neuron 

maturation. Rhophilins interact with RhoA and take part in neuron maturation 

including neuron migration, which is supported by previous studies suggesting 

interaction between them [17] as well as the role of Rhophilins in cell migration [18]. 

Rhetekin, on the other hand, while being important in neural differentiation and 

neurite outgrowth, is also required for neuron survival [19]. This may explain why the 

expression level of RTKN gene remains high in mature neurons. 
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Another AFM pair, M32-M39, represents another scenario. While both modules show 

significant enrichment of pathways related to endocytosis, genes in the two modules 

also participate in distinct pathways (Fig. 2). Spry regulation of FGF signaling 

pathway, which has been reported to be required for cortical development [20], only 

appears in the immature-high module M32, whereas EPH-ephrin mediated cell 

repulsion, whose role extends from development to adulthood regulating neuronal 

plasticity [21], only appears in the mature-high module M39. In summary, the 

pleiotropy of genes and pathways leads to the separation of the two modules. 

Identified functional modules discriminated different maturity states of neurons 

from in vitro models 

To further estimate how well the neuron-maturation-related transcriptome transitions 

we identified, especially genes participating in the detected discriminable modules, 

reflect status of neuron maturation, we establish a machine-learning-based 

quantitative estimate of neuronal maturity state and tried to apply it to other data sets. 

In brief, we constructed a LASSO-regularized logistic regression model based on the 

standardized expression level of genes involved in each identified module. Each 

model provided a value ranging between zero and one, namely a modular Neuron 

Maturity Index (mNMI), with values closer to 1 indicating higher maturity. Ten-fold 

cross-validation suggested high performances for most of the mNMIs (median 

AUC=0.87, Supplementary Fig. 2). Applying the models in the test set also resulted in 

accurate estimations (median AUC=0.84, Supplementary Fig. 2), with those based on 

discriminable modules performing marginally better (two-sided Wilcoxon rank sum 

test, P=0.11). The mNMIs were further added to two integrated NMIs to represent the 

overall maturity state, by taking their averages weighted by their performances. This 

procedure was done by either including all mNMIs (transcriptome NMI or tNMI), or 

only those based on discriminable modules (discriminable NMI or dNMI). Both 

general NMIs performed perfectly in distinguishing mature and immature neurons in 

the test set (AUC=1, Supplementary Fig. 2). 

With the NMI models constructed, we applied them to neuron transcriptome data sets 

of in vitro neuron models in order to check whether the identified transcriptome 

transition could be reproduced and therefore represent the general molecular signature 

of neuron maturation. In a previous study, Bardy et al. combined patch clamping and 

scRNA-seq to investigate the relationship between transcriptome and 

electrophysiology of iPSC-derived neurons [22]. The estimation of NMIs indicated 

trend of increased neuron maturity accompanying increased action potential, i.e. the 

electrophysiological maturity, especially between the most immature and mature 

neurons (one-sided Wilcoxon rank sum test, P=0.12 for dNMI, P=0.02 for tNMI, Fig. 
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3 and Supplementary Fig. 3). 

While this dataset was limited by its relatively small number of neurons (N=56), 

Close et al. applied scRNA-seq to interneurons generated by in vitro differentiation of 

human embryonic stem cells (hESCs) to characterize temporal interneuron 

transcriptome during its maturation, generating another dataset which involved 1733 

cells [23]. By estimating NMIs for each DCX+ interneuron (N=993), we observed the 

significant increase of integrated NMIs across the time course, especially between 

54-day and 100-day (Wilcoxon rank sum test, P<0.0001, Fig. 3 and Supplementary 

Fig. 3). We also noticed that both tNMI and dNMI did not present significant increase 

between 100-day and 125-day interneurons (Wilcoxon rank sum test, P=0.26 for 

tNMI, P=0.58 for dNMI), which is consistent with the weak discrimination between 

them at the whole transcriptome level proposed by Close et al. 

It is worth noting that even at the most electrophysiologically mature state (Bardy et 

al. dataset) or at the latest time point (Close et al. dataset), a large proportion of 

interneurons were still in immature state (Fig. 3 and Supplementary Fig. 3). These 

observations may be due to the technical issue that the NMI model failed to provide 

prediction of mature neurons, or reflected the failure to complete the neuron 

maturation process in vitro. To answer this question, we examined the human single 

neuronal nucleus RNA-seq in adult brains [24], resulting in both tNMI and dNMI 

values significantly larger than 0.5 (Fig. 3 and Supplementary Fig. 3). As expected, no 

significant difference of both tNMI and dNMI was observed between excitatory and 

inhibitory neurons (Wilcoxon rank sum test, P=0.22 for tNMI, P=0.27for dNMI, Fig. 

3 and Supplementary Fig. 3). Hierarchical clustering based on Pearson’s correlation 

coefficient among samples revealed that cell type makes more contributions to sample 

separation than source of dataset, showing that the estimation is less likely to be 

biased by batch effect (Supplementary Fig. 4). The above results suggested the 

potential maturation arrest of the in vitro differentiated neurons. 

Transcriptome transition during maturation is conserved in mouse neurons 

To check whether the detected transcriptome transition during neuron maturation was 

conserved in mice, the most widely used animal model for brain development and 

mental disorders, we applied the constructed human-based NMI model to neuron 

transcriptome data in mice. Chen et al. extracted maturing interneurons from mouse 

embryonic medial ganglionic eminence (MGE) and applied scRNA-seq to measure 

their transcriptome [25]. Estimation of dNMI suggested a boost of maturity state at 

E17.5, the latest time point across the time course. This result suggested that the 

human-based NMI models successfully recurred the neuron maturation process in 

mouse, implying the conserved maturation programs of neuron between humans and 
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mice. Interestingly, the three subtypes of maturing interneurons identified in the study 

showed significantly different dNMIs (ANOVA, df1=2, df2=130, F=55.2, P<0.0001, 

Fig. 4A), suggesting that they represented interneurons at distinct stages of 

maturation. 

Activities of mature-high modules reflect mature neuron functionality level 

Interestingly, applying the dNMI model to the purified neuron transcriptome of 

PS2APP Alzheimer’s disease mouse model [26] suggested a significantly weaker 

maturity state than controls (median dNMIPS2APP=0.782, median dNMIcontrol=0.791, 

two-sided Wilcoxon rank sum test, P=0.003). Further studies on each of the mNMIs 

indicated that three mNMIs, all of which were based on mature-high modules, 

significantly decreased in PS2APP neurons (Wilcoxon’s rank sum test, BH corrected 

P<0.1). In addition, among the top-ten of the 27 discriminable modules with reliable 

mNMIs (AUC>0.8 in cross-validation in training set) and strongest decrease in 

PS2APP comparing to control neurons, eight were mature-high modules (Fisher’s 

exact test, odds ratio (OR)=4.25, P=0.1). The bias of changes to the mature-high 

modules was different from observation from the above MGE interneurons data set, 

as only nine out of 15 (60%) modules with mNMIs significantly different among the 

three subtypes of maturing interneurons were mature-high modules (Fisher’s exact 

test, OR=1.83, P=0.49). 

Considering that the mature-high modules are more likely to be responsible for 

mature neuronal function maintenance, the biased changes implied that the lower 

tNMI of PS2APP neurons represented impairment of neuronal function rather than 

maturation, which has been reported previously [27]. Therefore, we constructed the 

third integrated index, the neuron functionality index (NFI), which integrated mNMIs 

from only the mature-high discriminable modules. As expected, the estimated NFIs of 

PS2APP neurons were significantly lower than those of control neurons (median 

NFIPS2APP=0.836, median NFIcontrol=0.850, Wilcoxon rank sum test, P=0.05, Fig. 4B). 

On the other hand, the integrated NMIs of immature-high discriminable modules did 

not show any significant difference (Wilcoxon rank sum test, P=0.58, Fig. 4B). For 

comparison, no significant difference of either dNMI or NFI was observed between 

purified neuron transcriptome of a lipopolysaccharide-treated neuroinflammation 

mouse model and control mouse (Fig. 4B). These results indicated that the activities 

of mature-high, but not the immature-high, modules may act as signatures of neuron 

functionality. 
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Discussion 

In this study, we studied the transcriptome changes during neuron maturation in 

humans and those functional pathways involved. For this purpose, we developed a 

new bioinformatics framework, by integrating module identification in the 

protein-protein interaction (PPI) network and differential expression (DE) analysis. 

Our strategy revealed 33 functional modules, each of which represents distinct 

biological pathways, which may be relevant to neuron maturation. 

In general, the 17 modules whose genes show significantly higher expression levels in 

mature neurons, namely mature-high modules, tend to participate in processes 

relevant to neuronal function and electrophysiology. For instance, there are six 

discriminable functional modules, all of which are mature-high modules, which show 

enrichment of synaptic genes and have been reported to be relevant to the 

electrophysiological maturity of in vitro differentiated neurons [22]. Genes in M90, 

the module enriched for voltage-gated potassium channel complex components, also 

show higher expression levels in mature neurons. Directly checking those genes in the 

Bardy et al. dataset suggests higher expression levels in neurons with higher action 

potential than in neurons with lower action potential in marginal significance 

(permutation test, P=0.052). Furthermore, energy consumption is suggested to grow 

during neuron maturation, as genes in functional modules related to both respiratory 

chain (M24) and tricarboxylic acid cycle (M37) show higher expression levels in 

mature neurons. As previously reported, higher neuronal activity increased 

mitochondrial oxidative phosphorylation [28]. Therefore, the increasingly active 

energy generation machinery in mature neurons we observed may be an adaptive 

strategy of mature neurons to its higher electrophysiological activity. 

On the other hand, it is interesting that the 17 immature-high modules whose genes 

show significantly higher expression levels in immature neurons tend to show 

enrichment for nuclear functions, which are mainly related to housekeeping processes 

including RNA and protein metabolism. Indeed, genes in the immature-high modules 

are significantly overlapped with human housekeeping genes [29], especially when 

comparing with genes in the mature-high modules (one-sided Fisher’s exact test, odds 

ratio (OR)=2.1 P<0.0001 compared to all genes in the network; OR=3.0, P<0.0001 

compared to genes in mature-high modules). There are two possible explanations. The 

decreased activities of housekeeping processes may be an artificial observation due to 

the increased activities of pathways related to neuronal functions, since the 

quantification of expression assumes constant amount of transcripts in samples. In 

such case, genes in the immature-high modules share similar expression level 
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differences which are not relevant to significances of modular expression level 

differences. However, ANOVA results suggest that genes in different immature-high 

modules show different amplitude of changes (F=6.37, P<0.0001). Partial Pearson 

correlation (PPC) between statistical significances (log-transformed P) and modular 

expression level changes (average expression alteration score) given the module sizes 

as condition (PPC=0.57, P=0.025) suggest dependency between them. Therefore, 

although this possibility cannot be completely ruled out, there is another scenario, 

where at least parts of these “housekeeping” processes may play more important roles 

in the maturation process compared to the final mature stage. This hypothesis is 

supported by previous studies where mRNA metabolism has proven relevant to some 

neuronal diseases such as spinal muscular atrophy (SMA) [30], and many regulators 

of transcription, mRNA translation and protein synthesis have been reported to be 

related to neurodevelopmental disorders such as autism [31]. 

To further verify the observed differences between mature and immature neurons, we 

generated the LASSO logistic regression based neuron maturity index (NMI) model 

based on the detected gene differential expression, to estimate overall maturity states 

of neuronal samples. By applying NMI to two public data sets of neurons in vitro 

generated from neuronal progenitor cells (NPC), we find that the constructed NMI 

model correctly predict neuron maturation statuses. It suggests that the observed 

transcriptome differences represent general transition during neuron maturation which 

can be reproduced in neuron models in vitro. Meanwhile, we also observed that 

neurons in vitro generated from neuronal progenitor cells (NPC) are likely undergoing 

maturation arrest, as their estimated maturity states hardly attain complete maturation. 

In a previous study comparing the transcriptome of in vitro neuron models to 

spatiotemporal human brain transcriptome, in vitro neuron models were suggested to 

be similar to fetal brains [32]. However, the comparison between bulk neural samples 

with both neurons and proliferative cells can hardly tell whether this similarity is due 

to the similar NPC:neuron combination, or similar maturity states. Our results suggest 

that in vitro neuronal models are likely to be far from full maturation, which may be 

due to the lack of environmental stimulation that has been shown to be relevant to 

neuronal development [33]. 

Results of applying the NMI model in the mouse medial ganglionic eminence (MGE) 

single cell RNA-seq data suggests that our observed transcriptome transition 

happened during neuron maturation is applicable and conserved in mouse. At the 

same time, it is interesting to see that the three subtypes identified by the study 

represent neurons with distinct maturity states [25]. In the original study, three 

neuronal subtypes were identified on a spatial distinction basis: neurons from lateral 

ganglionic eminence (LGE) expressing LGE markers, neurons from MGE expressing 
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MGE markers, and LGE/MGE neurons expressing both markers. Our study suggests 

that neurons expressing LGE markers tend to be more mature, and those expressing 

MGE markers tend to be immature. This observation provides an alternative 

explanation on a developmental sequential basis, which reconciles with spatial 

distinction basis explanation, as a previous study has reported that interneurons are 

generated in MGE and migrate to LGE during their maturation [34]. Together, they 

provide a more comprehensive description about the origin of interneurons during 

brain development. 

It is worth to mention that our NMI model, although was originally developed to 

verify the detected transcriptome transition between immature and mature neurons in 

other data sets, has the potential to corroborate or benchmark transcriptome changes 

during neuron maturation. Previous studies have developed statistical tools to evaluate 

maturity state of neural samples, e.g. CoNTExT [32]. Those tools were designed to be 

used for bulk tissue samples, e.g. dissected brain samples and in vitro neural cultures, 

which consist of multiple cell types including neuronal progenitor cells, immature and 

mature neurons, as well as non-neuronal glial cells. The NMI model, on the other 

hand, serves homogeneous neuronal samples, including single neurons and purified 

neuron populations. In the era of single cell biology, pseudo-time construction 

analysis, e.g. TSCAN [35], is commonly used to study transcriptome trajectory of cell 

development, and may be applied also to study neuron maturation [23]. This analysis, 

however, is limited by lacking benchmark of maturation stages. Although expression 

of several biomarkers may be helpful in a rough manner, the quantitative description 

is still missing. The relatively large sample size required to reconstruct a reliable 

pseudo-time series is also one limitation (although with less significance), as many 

studies only measured limited number of neurons [22, 25, 36]. In such a scenario, the 

NMI model can be implemented into, and complement, the existing framework, thus 

potentially benefitting future research. 

 

 

Conclusions 

To our knowledge, our study is the first report to comprehensively investigate and 

characterize molecular functions related to the transcriptome transition happened 

during neuron maturation in humans. By comparing public single cell RNA-seq data 

with both immature and mature neurons in vivo, we identified 33 functional modules 

with activities related to neuron maturity states and participating in varied biological 

processes, including synaptic functions, energy consumption and housekeep processes 
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such as translation and splicing. The detected transcriptome transition was further 

validated by public human brain transcriptome profiles during development, as well 

as its high predictive power of neuron maturity states in multiple human neuron in 

vitro models. We also showed that such transition is conserved in mammals, 

considering its reasonable predictive power of neuron maturity states in mouse 

neurons. 

 

 

Methods 

Identification of neuron maturation relevant functional modules in the human 

protein-protein interaction (PPI) network 

The human protein-protein interaction network was retrieved from the Reactome 

database (v57) [8, 9], which is comprised of 8,170 proteins and 200,260 undirected 

interactions. Proteins encoded by genes whose expression was undetectable in brains 

were excluded, with 5,962 proteins and 125,437 interactions remaining. 

Single-cell RNA-seq (scRNA-seq) data of human brains was retrieved from SRA 

(SRP057196) [10]. The RNA-seq reads were mapped to the human genome hg38 

using STAR 2.3.0e [37] with default parameters. The number of reads covering 

exonic regions of each protein-coding gene annotated in GENCODE v21 was counted 

and normalized using DESeq2 [38]. FPKM was calculated for each gene in each 

sample. Average FPKM of each gene was calculated for mature and immature neurons, 

as the mean FPKM across all cells classified as “neurons” and “fetal quiescent”, 

respectively. Expression level difference between mature and immature neurons of 

each gene was represented by expression alteration score s: 

� � log� � � �	 log�� 
�, 

where f is the fold change between average FPKM of mature and immature neurons, 

and p is the P-value of ANOVA with neuron maturity state as the independent 

variable. 

A heat-diffusion-based network smoothing procedure, as described and implemented 

in HotNet2 [39], was then applied to the obtained PPI network where the above 

expression alteration scores were assigned to corresponding nodes. In brief, a 

diffusion matrix, which describes the amount of heat diffused between each node pair 

in the network during the insulated heat diffusion process when the system reaches 

equilibrium, was defined as: 
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� � �� 	 �1 	 �����. 

Here, β is the insulating parameter (set to 0.55 in this study), and W is the normalized 

adjacency matrix. The smoothed expression alteration score of nodes in the network 

was then calculated as: 

�� � ��, 

where s is the vector of expression alteration scores of all nodes in the network. 

Weights were assigned to the edges which represent the annotated protein-protein 

interactions: 

��,� � 1 	
�	�
�	�
 �

�����|	�
 |,�	�
 ��
� �0,1�. 

A topological overlap matrix (TOM) based module identification procedure [6], as 

implemented in WGCNA [7], was then applied to resulted weighted PPI network. In 

brief, TOM was defined as a N×Nsquare matrix with N as the number of nodes in the 

network: 

����,� �
��,��∑ ��,�������,�

������,��������,�
, 

where ai,j is the weight of edge between node i and node j, ki is the degree of node i. 

Hierarchical clustering with average linkage method was applied using TOM as the 

distance matrix, followed by the dynamic tree cutting procedure implemented in the R 

package DynamicTreeCut [40], requiring minimal module size as 20. For each 

identified module, a Wilcoxon signed rank test was applied to the expression 

alteration scores of proteins in the module. Modules with Benjamini-Hochberg (BH) 

corrected P<0.05 were defined as discriminable functional modules. Discriminable 

functional modules with positive median expression alteration scores were defined as 

mature-high modules, while the remaining ones were defined as immature-high 

modules. 

The pipeline to identify functional modules has been implemented as an R package 

and can be downloaded at https://github.com/maplesword/TOMRwModule. 

Characterization of functional modules 

A Gene Ontology (GO) enrichment analysis was performed for each identified 

discriminable functional module using the parentChild algorithm [41] implemented in 

topGO [13], with all genes encoding for proteins involved in the PPI network as 

background. Pairwise functional similarities of discriminable modules were calculated 

using GOSemSim [14], by averaging similarities of the three GO categories: cellular 

component (CC), biological process (BP), and molecular function (MF). Hierarchical 
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clustering with complete linkage was applied to the distances among discriminable 

modules defined as one minus the calculated similarity. 

Functional pathway annotation was performed for each identified discriminable 

functional module based on the pathway gene set annotation in Reactome using a 

one-sided Fisher’s exact test to compare with all genes encoding for proteins in the 

PPI network. Pathways with BH corrected P<0.05 were selected. 

Generation of Neuron Maturity Index (NMI) 

The NMI models were constructed aiming at the discrimination of mature and 

immature neurons. To objectively build and test the models, the mature and immature 

neuron scRNA-seq data mentioned above were randomly separated into two groups. 

The training set included 99 mature neurons and 82 immature neurons. The test set 

included 32 mature neurons and 28 immature neurons. 

Based on the training set, LASSO logistic regression as implemented in glmnet [42] 

was applied to each identified functional module, with standardized expression levels 

of genes in the module in each sample set as independent variables and neuron 

maturity state as the dependent variable. Expression level standardization was 

performed for each gene separated as following: 

�̂ �
����	����������
�������	��
����

	 
�������	��
����
. 

Here, means∈T(log10(es+1)) and sds∈T(log10(es+1)) represent the mean and standard 

deviation of the log10-transformed expression levels (in FPKM) across all samples in 

the training set. The LASSO regularization parameter λ was then determined using 

ten-fold cross-validation to maximize area under curve (AUC) of receiver operating 

characteristic (ROC) of the model. For each sample given the expression levels in 

FPKM, the resulted LASSO logistic regression model of each module predicted the 

probability of the sample being mature neuron in relative to immature neuron; 

therefore, it was defined as the modular neuron maturity index (mNMI) of the 

functional module. Those mNMI models were then applied to the test set for 

performance evaluation, as well as other neuron scRNA-seq data or purified neuron 

bulk RNA-seq data for further investigations. 

To integrate multiple mNMIs of different functional modules, a weighted mean of 

multiple mNMIs was calculated for module set S: 

��� ! �
∑ "�#�$%&���

∑ "���
. 
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Here, the weight of mNMIi (wi) was defined as AUCi-0.5, where AUCi is the AUC of 

ROC of mNMI during the ten-fold cross-validation in the training dataset. When 

S={all functional modules, the corresponding iNMIS was defined as transcriptome 

NMI (tNMI). Discriminable NMI (dNMI), on the other hand, was defined as the 

iNMIS when S={all discriminable modules}. Lastly, neuron functionality index (NFI) 

was defined as the iNMIS when S={all mature-high modules}. 

The NMI models have been implemented as an R package (neuMatIdx) and can be 

downloaded at https://github.com/maplesword/neuMatIdx. 
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Figures 

 

Figure 1. Neuron maturation relevant functional modules in protein-protein 

interaction (PPI) network. The left panel shows the network of PPI functional 

modules. Nodes represent distinct modules and are scaled to reflect the number of 

proteins in each. Colors of nodes represent directions of expression changes during 

neuron maturation: red – higher in mature neurons, blue – higher in immature neurons, 

and grey – no significant tendency. Nodes are connected if proteins within the 

respective modules interact with significantly high frequency. Ellipses mark the 

functional clusters of modules identified based on hierarchical clustering of Gene 

Ontology (GO) similarity among discriminable modules using GOSemSim, as shown 

in the right panel. There, labels are colored to represent directions of expression 

changes of the respective modules during neuron maturation. Colors of the two 

columns next to labels show gene expression changes of the respective modules in 

two brain RNA-seq data (left: He Z, et al. 2014; right: BrainSpan) during prenatal and 

early postnatal development: red – increase during development, blue – decrease 

during development. Color darkness indicates whether the change is significant 

according to Wilcoxon rank sum test. Boxes mark adversarial module pairs. 
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Figure 2. Two examples of adversarial functional module (AFM) pairs. Each circle 

represents one gene. Edges show annotated PPIs in Reactome among genes in the two 

functional modules. Colors of circles show expression alteration scores. The upper 

panel shows the AFM pair M4-M14. Circles with grey border show genes in the 

network which participate in the pathway “RHO GTPases activates rhotekin and 

rhophilins”, with PPIs among them shown by the wider grey lines. The lower panel 

show the AFM pair M32-M39. Circles with grey border show genes which participate 

in the pathway “Clathrin-mediated endocytosis”. Interactions connecting genes 

participating in the pathway “Spry regulation of FGF signaling” are shown as blue 

lines, and interactions connecting genes in the pathway “EPH-ephrin mediated 

repulsion of cells” are shown as pink lines. 
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Figure 3. Applications of dNMI in human brain single cell RNA-seq data of neurons 

to investigate neuron maturity dynamics. The estimated dNMI of each neuron sample 

is shown, as represented by the y-axis, in four public single cell/nucleus RNA-seq 

data sets. Each dot represents one cell, with cells involved in the training set colored 

in brown. The dash line represents NMI=0.5 as the boundary of estimated immature 

and mature state. For each of the four data sets, cells are grouped based on the 

respective metadata: Bardy et al. 2016 dataset: action potential (AP) type; Close et al. 

2017 dataset: differentiation time; Darmanis et al. 2015: cell donor ages; Lake et al. 

2016: neuron subtypes (excitatory and inhibitory neurons). P values of Wilcoxon rank 

sum test are shown for comparisons of dNMIs between neuron subgroups in each 

dataset. Purple label on top marks the dataset used to train the NMI model (Darmanis 

et al. 2015 dataset). 
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Figure 4.Applications of NMI/NFI in mouse brain neuron RNA-seq data to 

investigate neuron maturity dynamics. (A) Estimated dNMI of dissected single 

neurons in mouse medial ganglionic eminence (MGE) based on Chen et al. 2017 

dataset. Each dot represents one cell, with color darkness showing maturity states 

estimated by dNMI. Darker color represents higher level of maturity. Cells are 

grouped based on the dissection time (x-axis) and cell groups identified by Chen et al. 

(y-axis). (B) Changes of neuron functionality indicated by neuron functionality index 

(NFI) in mouse purified neurons responding to neuroinflammation and 

neurodegeneration, based on Srinivasan et al. 2017 dataset. The left panel shows the 

estimated NFI, and the right panel shows the integrated NMI of immature-high 

modules. Each dot represents one purified neuron bulk sample, grouped by the 

treatment conditions. 
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Supplementary Figures 

 

Supplementary Figure 1. Robustness of module identification to the choice of 

insulating parameter (β). The x-axis shows 20 different choices of β ranging from 

0.05 to 1 with step size of 0.05. Height of each bar shows the adjusted random index 

(ARI) between modules identified with β=0.55 and those with β set to be the 

corresponding value as shown by the x-axis. ARI calculates the proportion of 

agreements between two groupings with adjustment to random performance. Shadow 

bars show the proportions comparing to random modules. Dots show Pearson 

correlation coefficient of expression alteration scores after diffusion between choices 

of β being 0.55 and the value shown by the x-axis. 
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Supplementary Figure 2. Modular and integrated NMIs of samples in Darmanis et al. 

dataset. (A) Performance of NMI to estimate neuron maturity state. Bars on top show 

performance of tNMI, dNMI and each of the mNMIs in prediction of neuron maturity 

state using Darmanis et al. dataset, as indicated by Area under curve (AUC) of 

Receiver operating characteristic (ROC). AUC of the training set is calculated based 

on ten-fold cross-validations. The heatmap shows the estimated NMIs for each neuron 

in the test set, with each column represent one of tNMI, dNMI and mNMIs of 

discriminable modules. Module labels are colored based on expression changes of 

genes in the modules during neuron maturation: red – higher in mature neurons, blue 

– higher in immature neurons. The real neuron maturity states are shown by the every 

left column: red – mature neurons, blue – immature neurons. (B) NMIs of 

discriminable modules perform better than other mNMIs. Y-axis shows ratio between 

the number of discriminable modules among the top-N modules ranked by their 

mNMI performance in the test set, to the number of discriminable modules among the 

top-and-bottom-N (in total 2N) modules. X-axis shows variable N. Dots show the 

observed ratios, with the curve showing the smoothen pattern (natural spline, df=5). 

Grey arrows show the 90% confident intervals based on 1000 permutations of module 

ranks. 
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Supplementary Figure 3. Applications of tNMI in human brain single cell RNA-seq 

data of neurons to investigate neuron maturity dynamics. It shows the estimated tNMI 

of each neuron sample, as represented by the y-axis, in four public single cell/nucleus 

RNA-seq data sets. Each dot represents one cell. The dash line represents NMI=0.5 as 

the boundary of estimated immature and mature state. For each of the four data sets, 

cells are grouped based on the respective metadata: Bardy et al. 2016 dataset: action 

potential (AP) type; Close et al. 2017 dataset: differentiation time; Darmanis et al. 

2015: cell donor ages; Lake et al. 2016: neuron subtypes (excitatory and inhibitory 

neurons). P values of Wilcoxon rank sum test are shown for comparisons of dNMIs 

between neuron subgroups in each dataset. Purple label on top marks the dataset used 

to train the NMI model (Darmanis et al. 2015 dataset). 
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Supplementary Figure 4. Transcriptome signatures of single neurons are driven by 

maturity states rather than batch effect across datasets. (A) Origins and datasets of 

single neurons in the two neuron clusters identified by hierarchical clustering based 

on standardized expression levels of signature genes for NMI estimations. The two 

columns show neurons grouped in the two neuron clusters, with the two rows show 

their origins (red – from fetal brains or in vitro cultures) and datasets (red – Bardy et 

al. dataset; blue – Close et al. dataset; green – Darmanis et al. dataset; purple – Lake 

et al. dataset). (B) Normalized pairwise mutual information among the neuron clusters, 

neuron origins and datasets across different single neurons. Darkness of red shows the 

strength of dependency. (C) Conditional mutual information between neuron clusters 

and either neuron origins or datasets, under the condition of the other one. The first 

two columns show the corresponding conditional mutual information and mutual 

information, with the third column showing the ratio of the first two columns. 

Darkness of red shows proportions of conditional mutual information among mutual 

information. 
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