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Abstract

There are numerous sources of variation in the rate of synonymous substitutions inside
genes, such as direct selection on the nucleotide sequence, or mutation rate variation.
However the majority of the codon models which are developed and widely used today
still incorporate an assumption of effectively neutral synonymous substitution rate,
constant between sites of each gene. Here we propose a simple yet effective extension
to codon models, which incorporates codon substation rate variation along the gene
sequence. We assess the performance of our approach in simulations and on real data.
We find strong effects of nucleotide rate variation on positive selection inference, both
under models with variation of protein selection and with branch-site variation of protein
selection. We also demonstrate that the computational load of our approach remains
tractable, and therefore we are able to apply it to genome scale positive selection scans. We
apply our new method to two datasets: 767 vertebrate orthologs and 8,606 orthologs from
twelve Drosophila species. We demonstrate that our new model is strongly favored by the
data, and the support of the model increases with the amount of information. Moreover,
it is able to capture signatures of nucleotide level selection acting on translation initiation
and on splicing sites within the coding region. Finally, we show that rate variation
is highest in the highly recombining regions, and we hypothesize that recombination
and mutation rate variation, such as high CpG mutation rate, are the two main sources
of nucleotide rate variation. Overall, nucleotide rate variation in substitutions is an
important feature to capture, both to detect positive selection and to understand gene
evolution, and the approach that we propose allows to do this in genome-wide scans.
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I. Introduction

Detecting the selective pressure affecting pro-
tein coding genes is an important component
of molecular evolution and evolutionary ge-
nomics. Codon models are one of the main
tools used to infer selection on protein coding
genes (Koonin and Wolf, 2010). This is done by
comparing the rate of nonsynonymous substi-
tutions (dN) that are changing the amino-acid
sequence with the rate of synonymous substi-
tutions (dS) that are supposed not to affect the
gene function.

While there is overwhelming evidence of
negative and positive selection acting on the
amino acid sequence of the proteins (Boyko
et al., 2008), the synonymous substitutions af-
fecting the protein coding genes are assumed
to be effectively neutral. This is a reasonable
first approximation, especially for species with
low effective population size, such as many
mammals (Keightley et al., 2005; Romiguier
et al., 2014). Therefore the synonymous sub-
stitution rate can be used as a proxy for the
neutral substitution rate, and comparison be-
tween dN and dS can be used to identify the
selection acting on the level of amino acids
(Yang and Bielawski, 2000).

Two similar approaches to model the evolu-
tion of codons have been proposed by Gold-
man and Yang (1994) and Muse and Gaut
(1994). In the Goldman and Yang (1994) model,
selection pressure on the protein sequence is
represented by a single parameter (ω), which
defines the ratio of nonsynonymous to synony-
mous substitutions (dN/dS). In the Muse and
Gaut (1994) model, both dN and dS are esti-
mated as two independent parameters called
α (dS) and β (dN). Neither of these approaches
makes a molecular clock assumption, i.e. over-
all substitution rates are free to vary between
the branches of a phylogenetic tree. On the
other hand, both approaches originally incor-
porated an assumption of constant rates or ra-
tio of nonsynonymous and synonymous sub-
stitutions between sites over the gene sequence.
Moreover, they originally incorporated an as-
sumption of constant ratio between branches.

Various extensions have been proposed over
the years to those models, allowing the incor-
poration of variation of selection acting on the
protein sequence between codons (Yang et al.,
2000) and/or between phylogenetic branches
(Zhang et al., 2005). Yet for almost all of those
new models an assumption of effectively neu-
tral synonymous substitution rate, which is
constant between sites, was kept. This leads
to an assumption that all variability along the
sequence is due to variability of the selection
at the protein level. For the rest of this paper,
we will use the term “uniform rate” to denote
the assumption of constant nucleotide rates be-
tween sites within a gene, whether there is vari-
ation in rates or in selection between branches
or not.

There is no biological reason to assume that
the rate of synonymous substitutions is uni-
form in this way. In practice, it has been sug-
gested (Yang, 2014) that the effect of the vari-
ation in the rate of synonymous substitutions
should not substantially bias the inference of
selection strength. The idea is that since the
comparison between dN and dS is a contrast
between the rates before and after the action
of selection on the protein coding gene, while
all the other factors will affect both rates in the
same way. This reasoning might work when
assigning a single ω value to the whole align-
ment, and the estimated value is an average.
But for more sophisticated models, where ω
varies between branches and sites, violation of
the assumption of uniformity of the synony-
mous rate can affect the model performance
(Rubinstein et al., 2011).

There are numerous sources of variation in
the rate of synonymous substitutions inside
genes. First, the neutral mutation rate across
each genome significantly varies. One of the
strongest effects on the mutation rate in mam-
mals are CpG sites. Transitions at CpGs are
more that 10-fold more likely than transitions
at non-CpG sites (Leffler et al., 2013) due to
spontaneous deamination, which causes a mu-
tation from C to T, or from G to A. Both muta-
tion frequency and repair efficiency are highly
dependent on the context. E.g., the mammalian
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CpG mutation rate is lower in high GC regions
(Fryxell and Zuckerkandl, 2000). This is proba-
bly related to strand separation and hydrogen
bonding in the neighboring region (Segurel
et al., 2014). High GC regions themselves are
characterised by a higher mutation rate, which
is probably caused by less efficient repair by the
exonuclease domain. There are other context-
dependent effects which are known, many of
which lack a mechanistic explanation, such as
a higher mutation rate away from T with an
increasing number of flanking purines (Hwang
and Green, 2004) (for reviews see Hodgkin-
son and Eyre-Walker (2011) and Segurel et al.
(2014))

Mutation rate is also affected by replication
time: it is usually higher in the late-replicating
regions (Stamatoyannopoulos et al., 2009). This
effect is caused by the variation in the efficiency
of mismatch repair (Supek and Lehner, 2015).
It is not clear that this affects variation within
genes, as opposed to between genes, but it
could affect very long genes.

Mutation rates are also correlated with re-
combination rates. Some suggest (Lercher and
Hurst, 2002; Hellmann et al., 2003, 2008) that
recombination itself can have a mutagenic ef-
fect, possibly through an interaction with in-
dels. Alternatively this correlation can be a re-
sult of GC-biased gene conversion (GC-BGC),
whereby mutations increasing GC content have
a higher chance of fixation in the population
(Duret and Galtier, 2009). While GC-BGC is a
fixation bias, in some cases it can create a pat-
tern which is hard to distinguish from positive
selection (Ratnakumar et al., 2010).

Finally, the synonymous substitution rate
can be affected by selection on the nucleotide
level. First, while synonymous substitutions
do not affect the protein sequence, they might
affect translation efficiency. This effect is not
limited to species with large effective popu-
lation size, such as Drosophila (Carlini and
Stephan, 2003), since selection for codon usage
was identified even in Homo sapiens (Com-
eron, 2004) and other mammals, especially
for highly expressed genes. It has been sug-
gested that bias in codon usage reflects the

tRNAs abundance, and thereby provides a fit-
ness advantage through increased translation
efficiency/accuracy of protein synthesis (Bul-
mer, 1991), although in many cases there is
no dependency between tRNA abundance and
codon frequency, and the source of the bias
remains unknown (Plotkin and Kudla, 2011).

Selection on the nucleotide sequence can be
also caused by secondary structure avoidance,
as secondary structure can reduce translation
efficiency (Kudla et al., 2009; Kertesz et al.,
2010). Other potentially important sources
of selection on the nucleotide sequence, inde-
pendent of the coding frame, include splicing
motifs located within exons, exon-splicing en-
hancers (Majewski and Ott, 2002), or functional
non-coding RNAs, such miRNAs or siRNAs,
which often reside within coding sequences
(Mattick and Makunin, 2006).

Because of all these mutational and selective
biases, it is important to model rate variation
not only for protein selection, but also at the
nucleotide level. There are in principle two dif-
ferent approaches to incorporate rate variation
into codon models. First, it is possible to model
synonymous and non-synonymous rates sepa-
rately extending a two-rate model, as in Pond
and Muse (2005). Second, it is possible to in-
corporate site-specific rates as an independent
parameter into one-rate models (Scheffler et al.,
2006; Rubinstein et al., 2011). In the second
case, the rate parameter captures biological fac-
tors, such as mutation rates, fixation rates, or
nucleotide selection, which act on all substitu-
tions, both synonymous and nonsynonymous.

Here we focus on the second approach, due
to its more straightforward selection parame-
ter (ω) and interpretation, and to its superior
performance for dN/dS estimation (Spielman
et al., 2016).

While codon models accounting for nu-
cleotide rate variation are available for more
than a decade, they are still rarely used for
large-scale selection analyses, such as Kosiol
et al. (2008); Moretti et al. (2014); Zhang et al.
(2014). This is probably because these mod-
els have even higher computational demands,
and the performance of different approaches to
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nucleotide rate variation was never compared.
Here we extend the Scheffler et al. (2006)

model, which captures variation between
codons, i.e. uses a single rate per codon, and
perform a direct comparison with Rubinstein
et al. (2011), which captures variation between
nucleotides, i.e. with three rate parameters
per codon. We also assess the impact of nu-
cleotide rate variation on the BS-REL-family
model (Murrell et al., 2015). We chose Murrell
et al. (2015) as a comparison, since it is the
only BS-REL model for gene-wide identifica-
tion of positive selection, while other positive
selection models in that family are intended
for inference of selection on individual sites.

We first use simulations to compare differ-
ent approaches of modeling synonymous rate
variation. Then we use our model to detect
positive selection in twelve Drosophila species
and in a vertebrate dataset.

We detect positive selection on genes from
those two datasets under our new model, and
we demonstrate that it is important to take
rate variation into account for such positive
selection inference. We investigate factors af-
fecting the nucleotide substitution rate, and we
show that the new model successfully detects
synonymous selection acting on regulatory se-
quences within the coding sequence. We also
identify which gene features most affect rate
heterogeneity.

II. New approaches

We model the process of codon substitution as
a Markov process defined by the instantaneous
rate matrix Q. In a general case the Q can be
written as (Rubinstein et al., 2011):

qij =



ρ(h)λijπj i and j differ by one
synonymous
substitution at site h

ρ(h)λijωπj i and j differ by one
nonsynonymous
substitutio at site h

0 i and j differ by more
than one nucleotide

where ρ(h) is the substitution rate for a site h,
and λij is the substitution factor to change from
nucleotide i to nucleotide j, which is typically
used to account for the difference between tran-
sitions and transversion rates (Hasegawa et al.,
1985). Here the rate ρ(h) is used to account
for various effects that are not captured by the
variation in ω; in particular it accounts for vari-
ation in mutation rate and selection acting on
the nucleotide sequence.

In Rubinstein et al. (2011), ρ(h) is modeled
using a one parameter gamma distribution
across sites of the alignment, such that the
mean substitution rate is equal to 1, i.e. ρ(h) ∼
Gamma(α, 1/α). Keeping a mean rate of 1 is
important to avoid biases in the estimation of
branch lengths. There is no implicit assignment
of rates to sites, as in the CAT model (Lartillot
and Philippe, 2004). Instead, a random-effects
model is used: the gamma distribution is split
into equally probable discrete categories using
quantiles, and the site likelihood is computed
as the average of the likelihoods for each possi-
ble rate assignment. This approach adds only
one extra parameter to the model, but it is
computationally intensive, since for k discrete
categories, k3 likelihoods have to be computed
per site.

In Scheffler et al. (2006), unlike Rubinstein
et al. (2011), the three positions of each codon
have the same rates. Here a codon belongs to
one of three categories, each one represented
by a single rate value. The rates and their
respective proportions are estimated from the
data, which leads to the estimation of four
different parameters (two rates, as the third
one is fixed by the constraint that the mean rate
ρ = 1, and two proportions). This approach is
virtually equivalent to adding a branch length
multiplier for certain site classes, and therefore
likelihood can be computed efficiently.

Here we propose having one rate per codon,
while allowing this rate to vary following the
gamma distribution, ρk ∼ Gamma(α, 1/α).

With this approach we are combining the
strengths of both Rubinstein et al. (2011) and
Scheffler et al. (2006): we only increase pa-
rameter space by one parameter (α), allow a
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flexible distribution of rates, and keep the com-
putational tractability of the model. Moreover,
having similar parametrization and rate dis-
tributions allows us to compare the statistical
performance of site rate and codon rate varia-
tion models.

Using the proposed approach we extended
two widely used codon models: M8 (Yang
et al., 2000) and the branch-site model (Zhang
et al., 2005). In principle our approach could be
applied to any GY94-based model. These mod-
els were implemented in Godon, a codon model
optimizer in Go, in three variants: no rate vari-
ation, site rate variation (Rubinstein et al., 2011)
and codon rate variation as described above.

Three models out of six were implemented
and used for the first time to our knowledge:
branch-site model with the site rate variation
similar to Rubinstein et al. (2011) and M8 and
branch-site models with gamma distributed
codon rate variation, as proposed above.

III. Results

I. Simulations

Site models

We have simulated three datasets using various
flavours of the M8 model: a dataset without
rate variation, a dataset with site rate variation,
and a dataset with codon rate variation (Ta-
ble 1). We then used three corresponding mod-
els to infer positive selection in those datasets.
In all three cases, as expected, the model cor-
responding to the simulations shows the best
result (Fig. 1, Table 2 and Supplementary Ta-
ble S1).

In the absence of rate variation, the statisti-
cal performance of the three methods is very
similar even though the M8 model without
rate variation has a slightly better performance
(Fig. 1A, Supplementary Fig. S1A). With the
dataset with site rate variation (Fig. 1B, Sup-
plementary Fig. S1B), there is a large underper-
formance when not accounting for variation.
On the other hand, codon variation performs
almost as well as site variation, and clearly bet-

C) Codon gamma variation

A) No variation B) Site gamma variation
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Figure 1: Performance of three M8-based models (M8
with no rate variation, M8 with site rate vari-
ation and M8 with codon rate variation) on
datasets A) without rate variation, B) with site
rate variation, and C) with codon rate varia-
tion. The yellow dashed line indicates the 0.95
specificity threshold (i.e. false positive rate of
0.05). The dashed diagonal line shows theoret-
ical performance of the random predictor, the
dashed vertical and horizontal lines indicate
theoretical performance of the perfect predictor.

ter than the model with no variation. With
the dataset with codon rate variation (Fig. 1C,
Supplementary Fig. S1C), there is a relatively
large decrease in the performance of both other
models, while, as expected, accounting for site
rate variation performs better compared to the
model without rate variation. False positive
rates exceed the significance levels when rate
variation is not taken into account (Supplemen-
tary Fig. S1C). Codon rate variation even in-
creases the false positive rate above 50% for
the model without rate variation at the signifi-
cance level of 0.05. Stronger rate variation (i.e.
smaller α value) causes a higher false positive
rate (Supplementary Fig. S2).

From this we can conclude that a) the per-
formance of models accounting for codon vari-
ation is acceptable in all three scenarios, i.e.
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Estimation
M8 Branch-site BUSTED

No Site Codon No Site Codon
Simulations var. var. var. var. var. var.

No
variation

• • • •

M8
Site

variation
• • • •

Codon
variation

• • • •

No
variation

• • • •

BS
Site

variation
• • • •

Codon
variation

• • • •

Table 1: Summary of estimations performed on the simulated datasets. M8: M8 model of Yang et al. (2000); BS:
branch-site model of Zhang et al. (2005); BUSTED: BUSTED model from the BS-REL-family (Murrell et al.,
2015).

Simulation
Estimation No var. Site var. Codon var.
No var. 0.916/ 100% 0.846/94.4% 0.758/84.5%
Site var. 0.912/99.6% 0.897/ 100% 0.806/89.7%
Codon var. 0.912/99.6% 0.875/97.6% 0.898/ 100%

Table 2: Area under curve (AUC) for all M8-based sim-
ulations (see Fig. 1). Second number computed
as proportion of maximum AUC for a particular
simulation.

no rate variation, site rate variation and codon
rate variation; b) in the presence of codon rate
variation in the data, models not accounting
for this kind of variation suffer from a notable
loss of statistical performance.

The total inference computation time was 76
CPU hours for the model with no rate variation,
232 CPU hours for codon rate variation, and
4,023 CPU hours for site rate variation.

Branch-site models

The simulations based on the branch-site
model show a qualitatively similar behaviour
to the simulations based on the M8-type mod-
els (Fig. 2 and Supplementary Fig. S3, Sup-
plementary Tables S2, S3), although the per-

formances are more similar between models.
As with M8-type models, codon rate variation
models performs well in all three cases, while
simulating with codon rate variation causes a
clear underperformance in both other models.
Unlike in the case of M8-type models, false
positive rates are only marginally inflated com-
pared to theoretical expectations (Supplemen-
tary Fig. S4). Nevertheless, the model with
codon rate variation shows the best perfor-
mance.

The total inference computation time was 37
CPU hours for the model with no rate variation,
101 CPU hours for codon rate variation, and
1,630 CPU hours for site rate variation.

More complex models have a computational
cost. Analyses with codon rate variation were
3.0 and 2.8 times slower compared to no rate
variation for M8 and branch-site models respec-
tively, while those with site rate variation were
52.7 and 44.3 times slower respectively. Thus
codon rate variation captures biological signal
at a much lower computational cost than site
rate variation.
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C) Codon gamma variation

A) No variation B) Site gamma variation
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Figure 2: Performance of three branch-site-based models
(branch-site with no rate variation, branch-
site with site rate variation and branch-site
with codon rate variation) on datasets A) with-
out rate variation, B) with site rate variation
and C) with codon rate variation. The yellow
dashed line indicates the 0.95 specificity thresh-
old (i.e. false positive rate of 0.05). The dashed
diagonal line shows theoretical performance
of the random predictor, the dashed vertical
and horizontal lines indicate theoretical perfor-
mance of the perfect predictor.

Comparisons with BS-REL

It was demonstrated (Murrell et al., 2015) that
in certain cases the statistical power of BS-REL
is superior to other methods, therefore it is
important to study how rate variation affects
the performance of those models. The only BS-
REL model suitable for the gene-wide identifi-
cation of positive selection is BUSTED (Murrell
et al., 2015), and the current implementation
supports neither rate variation nor dS variation
as implemented in Pond and Muse (2005).

Because of differences in the simulations and
model assumptions we did not compare model
accuracy and ROC, but we focused instead
on the effect of the rate variation on the false
positive rate. In other words we are asking
whether the unaccounted rate variations in the
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Figure 3: False positive rate as a function of significance
level for data simulated with the M8 model.
A vertical line indicated typical significance
level equal to 0.05. A diagonal dashed line
corresponds to the identity line, significance
level equal to false positive rate. Three line
colors indicate three simulated datasets (see
legend).

evolutionary process can cause false positives
in positive selection inference.

BUSTED shows highly inflated rates of false
positives in the presence of codon rate variation
(Fig. 3, Supplementary Fig. S5); at a typical
significance level of 0.05 the false positive rate
of BUSTED is close to 0.3 and 0.2 for the M8
and branch-site simulations, respectively.

II. Vertebrate dataset
Given the good performance of our model
in the simulations, we applied it to the real
data. First we used 767 one-to-one orthologs
from vertebrate species. This represents a
set of genes with high divergence (more than
450 My), conservative evolution (Studer et al.,
2008), and relatively low effective population
sizes (although some vertebrates have high Ne,
see Gossmann et al. (2012)), thus relatively
weak impact of natural selection. We analyzed
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A Codon variation
No variation − +

− 6,935 144
+ 790 1,038

B Codon variation
No variation − +

− 7,022 57
+ 486 1,342

Table 3: Positive selection predictions with and with-
out rate variation for the vertebrate dataset; A)
codon rate variation, B) site rate variation.

them with three variants of the branch-site
model: no rate variation, site rate variation
and codon rate variation.

We observed that in most of the cases (a
branch of a gene tree) the data supports
(Akaike information criterion, AIC) the codon
rate variation model: out of 26,721 individual
branches tested, data supports codon rate vari-
ation in 85% of the tests, site rate variation in
15%, and no rate variation model was favored
only in a single test (0.01%).

A large proportion of branches detected to
be under positive selection with the no rate
variation model are not detected to be under
positive selection with the codon rate varia-
tion model (Table 3). More than 40% of the
positive predictions from the standard branch-
site model are not supported when codon rate
variation is accounted for. This suggests that
evolution on these branches can be explained
by nucleotide substitution rate variation with-
out positive selection.

Supplementary Table S4 shows prediction
agreement between each model and the best
supported model out of three, confirming
the good performance of the codon variation
model.

The branch-site model analysis took 9, 76
and 1,732 CPU hours for no variation, codon
rate variation and site rate variation models.
Thus codon rate variation model was 8.4 times
slower, while site rate variation model was 190
times slower.

With real data, differences between genes
are not only stochastic, but are expected to

be driven by underlying biological differences.
It is thus interesting to find which factors af-
fect rate variation as estimated by the model,
as well as to know which genes favoured the
model with codon rate variation the most. In
order to perform this analysis we averaged pa-
rameters obtained by testing different branches
of the tree.

The relative support of the model with codon
rate variation is mostly affected by total branch
length, alignment length, and mean GC con-
tent of the gene (Supplementary Table S5). The
positive correlation with tree length and align-
ment lengths is probably related to the increase
in total amount of information available for the
model. The relation to average GC content
might be due to the relationships between re-
combination rates, substitution rates, and GC
content (Duret and Galtier, 2009; Rudolph et al.,
2016).

For the shape parameter of the gamma dis-
tribution α, the strongest explanatory variable
is also the length of the alignment (Supplemen-
tary Table S6). Counterintuitively, shorter align-
ments are characterized by larger rate variation
(low α value corresponds to the large gamma
distribution variance). We also observe a weak
relation with maximal expression level. Highly
expressed genes tend to have a higher rate
variation, which could be explained by higher
nucleotide level selection on certain parts of
the gene.

III. Drosophila dataset
Second, we used 8,606 one-to-one orthologs
from Drosophila genomes. The Drosophila
data set is ten-fold larger than the vertebrate
dataset. Since analyses on the simulated and
vertebrate datasets show consistent superiority
of codon rate over site variation rate, with a
much lower computational cost, we ran only
codon variation and not site variation model on
this dataset. Therefore for the Drosophila data
we are comparing models with and without
codon rate variation. Drosophila have large ef-
fective population sizes on average (Gossmann
et al., 2012), thus stronger impact of natural
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Codon variation
No variation − +

− 55,717 301
+ 5,203 5,166

Table 4: Positive selection predictions for the Drosophila
dataset with and without rate variation.

selection; the genes studied are less biased to-
wards core functions than in the vertebrate
dataset, and have lower divergence: about 50
mya for Drosophila (Russo et al., 2013) com-
pared to more than 450 mya for the vertebrate
dataset (Betancur-R et al., 2015).

In total 66,387 branches were tested for posi-
tive selection. The model with codon rate vari-
ation was supported by the data using AIC in
97% of the tests. As with the vertebrate dataset,
predictions were not consistent between the
two models (Table 4). In this case the majority
of predictions of positive selection given by the
model without rate variation are not supported
by the model accounting for rate variation.

The slowdown of branch-site model with
codon rate variation was 9.3 times and it took
about 10,200 CPU hours.

The relative support of the model with codon
rate variation is mainly explained by aver-
age GC content, alignment length and tree
length (Table 5), which is consistent with the
vertebrate results (Supplementary Table S5).
We also see a correlation with the number
of sequences and alignment and sequence
lengths, which also represent the amount of
information available (higher coding sequence
length means less gaps for the same alignment
length).

We also observe a dependence on the num-
ber of exons and on recombination rate. A
larger number of exons implies more exon-
intron junctions, which might affect variation
in levels of nucleotide sequence selection (see
below). And recombination might affect GC-
BGC, mutation rate, and selection strength act-
ing on synonymous sites (Campos et al., 2014).

The rate variation parameter α can be ex-
plained by several features of genes (Supple-
mentary Table S7). Most of the effects are not

reproduced between the two datasets. Coun-
terintuitively the direction of dependence is
reversed for the number of sequences, but this
dependency is not very strong and not very sig-
nificant. The strongest and the most consistent
effect between the two datasets is dependence
of the rate variation on GC content (smaller α
implies higher variance of gamma distribution,
hence higher rate variation).

IV. Signatures of selection at
the nucleotide level

Codon rate variation can be influenced by var-
ious factors such as mutation bias, fixation
bias (e.g., gene conversion), or selection acting
against synonymous substitutions. Notably, it
is well known that exon regions adjacent to
the splicing sites are evolving under purify-
ing selection at the nucleotide level (e.g. see
Majewski and Ott (2002)). We determined pos-
terior rates for positions of protein coding gene
regions located in the proximity of exon-intron
and intron-exon junctions; first exons were ex-
cluded from the analysis.

We observe in Drosophila (Fig. 4) that our
codon rate variation model captures these se-
lection constraints: the codon rate is lower at
the exon-intron junction than at the intron-exon
junction, and both have lower rates than the
rest of the exon. This is in agreement with splic-
ing motif conservation scores (e.g. see Cartegni
et al. (2002)), and consistent with negative se-
lection acting on spicing sites.

We used the M8 with codon rate variation
to simultaneously estimate the effect of factors
which affect substitution rates of nucleotide
and protein sequences, again in Drosophila.
We observed that the model is able to recover
opposing trends acting on the 5' region of the
protein coding gene (Fig. 5). These trends are
probably a results of the high functional impor-
tance of the 5' nucleotide sequence, but low
functional importance of the corresponding
amino acid sequence (see discussion). We ob-
serve that the top 25% most highly expressed
genes show both stronger conservation of the
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Variable Estimate Std. Error t value p-value
Number of sequences 0.341405 0.013961 24.455 < 2 · 10−16

Total branch length 0.574623 0.056136 10.236 < 2 · 10−16

Alignment length 1.552349 0.076787 20.216 < 2 · 10−16

Length of coding sequence 0.554160 0.079118 7.004 2.69 · 10−12

GC content (mean) 5.671729 0.492706 11.511 < 2 · 10−16

GC content (stdev) 1.373463 1.813904 0.757 0.44896
Total intron length -0.028203 0.009466 -2.979 0.00290
Number of exons 0.426161 0.039296 10.845 < 2 · 10−16

Maximum expression 0.108736 0.033415 3.254 0.00114
Mean expression -0.088538 0.033832 -2.617 0.00889
Recombination rate 0.243515 0.024765 9.833 < 2 · 10−16

Table 5: Linear model of relative support of model with the codon rate variation; Drosophila dataset. Significant
variables (p-value < 0.05) in bold. Model p-value is < 2.2 · 10−16, multiple R2 is 0.6134.

amino acid sequences (Supplementary Fig. S6)
and more pronounced decrease in the substi-
tution rate of the 5'-region (Supplementary
Fig. S7). The relation with expression levels
is consistent with the assumption that we are
measuring natural selection on gene sequences,
rather than mutation rates.

IV. Discussion

I. Nucleotide level selection in
coding regions
There is strong evidence of selection acting on
synonymous substitutions within protein cod-
ing sequences, and the strength of this selection
is expected to vary across the coding region
(Chamary et al., 2006).

In particular, negative selection strongly af-
fects regulatory sequences, such as exonic splic-
ing enhancers or exon junction regulatory se-
quences (Cartegni et al., 2002). This variation
in the selection strength affecting both synony-
mous and nonsynonymous substitutions can
affect the performance of codon models (Ru-
binstein et al., 2011) and it is essential to take it
into account. While there are multiple ways to
do this, for instance by modeling the synony-
mous and non-synonymous rates separately
(Pond and Muse, 2005), here we focused on
modeling the ratio of non-synonymous vs syn-

onymous rates as a single parameter (ω), while
allowing the substitution rate (ρ) to vary along
the sequence.

Our approach succeeds in recovering a sig-
nal of splicing motif conservation jointly with
positive selection acting on the gene sequence.

We also demonstrate that our model is able
to disentangle opposite trends acting on the
same sequence, i.e. stronger negative selection
acting on the nucleotide sequence combined
with weaker amino-acid selection towards the
beginning of the reading frame.

Selection on the 5' nucleotide sequence is
probably due to selection for translation initia-
tion efficiency (Bentele et al., 2013), and is prob-
ably related to suppression of mRNA struc-
tures at the ribosome binding site. At the same
time N-terminal amino acids are more likely
to be unstructured, and they are relatively less
important to protein function and stability com-
pared to the core (Guharoy and Chakrabarti,
2005).

II. Determinants of rate varia-
tion
The vast majority of gene alignments in the
study indicated better support for the model
with codon rate variation. Moreover, the rel-
ative probability of the models incorporating
codon rate variation increases with the amount
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Figure 4: Codon rate as a function of proximity to the
exon-intron and intron-exon junction in the
Drosophila dataset. The left panel depicts rates
in 5' exon (prior to the exon-intron junction,
negative distances), while the right panel de-
picts 5' exon (rates after the intron-exon junc-
tion, positive distances). A rate of 1 corre-
sponds to the average rate of substitution over
the gene; thus values above 1 do not indicate
positive selection, but simply a rate higher
than average for this gene. The blue ribbon
indicates 98% confidence interval of mean es-
timate. Only alignment positions with more
than 70% of the sequences defined were used
in the plot.

of information available, be it number of se-
quences, alignment length or total number of
substitutions. This indicates that these models
are better in describing the underlying evolu-
tionary process, and if we have enough data
these models are favored. We detect a strong
signal of nucleotide variation in two quite dif-
ferent datasets: flies have high effective popu-
lation size, thus natural selection is relatively
strong, including on codon usage or splicing;
and vertebrates have higher sequence diver-
gence, which does not appear to mask the sig-
nal of nucleotide evolution, despite lower ef-
fective population sizes in many species (Goss-
mann et al., 2012; Romiguier et al., 2014). Thus
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Figure 5: Posterior estimates of median ω (dN/dS, top
panel) and codon substitution rate ρ (bottom
panel) as a function of distance from the start
codon expressed in the number of nucleotides
in Drosophila. The model M8 with codon rate
variation was used to estimate both parame-
ters simultaneously. Smaller values of ω (top
panel) indicate stronger negative selection act-
ing on the protein sequence. A substitution
rate of 1 (bottom panel) corresponds to the av-
erage rate of substitution over the gene; thus
values above 1 do not indicate positive selec-
tion, but simply a rate higher than average
for this gene. The blue ribbons indicate 98%
confidence intervals of median estimates. Start
codons and alignment positions with less than
three sequences were excluded from the plot.

the effect of nucleotide rate variation appears
quite general, and will probably be found in
many other species.

The strongest determinant of the relative sup-
port of the model with codon rate variation is
GC content. It is well known (Fullerton et al.,
2001; Marais et al., 2003; Chamary et al., 2006),
that high-GC regions have higher recombina-
tion rates as a result of GC-BGC, notably in the
species studied here. It has also been shown
that models accounting for rate variation show
significantly better performance in the pres-
ence of recombination (Scheffler et al., 2006),
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even if the true tree topology is used.
The effect of recombination rate as measured

in Comeron et al. (2012) on the relative support
of codon rate variation is weaker than the effect
of GC content alone. In mammals the higher
CpG dinucleotides mutation rates (Kong et al.,
2012) can increase the substitution rate dispari-
tiy and therefore contribute to the dependence
of the GC content and the relative model sup-
port.

Yet we see a similar dependence of
Drosophila, where there is no significant neigh-
boring base contextual effects on the mutation
rate (Keightley et al., 2009). Here we hypoth-
esize that the GC content can be viewed as a
proxy for the average recombination rate over
time via GC-BGC. Considering the rapid evo-
lution of recombination hotspots (Ptak et al.,
2005), GC content is probably better capturing
historical recombination rates, while the direct
measurement of recombination rate captures
only the current state.

In both datasets we observe a signficant pos-
itive association of rate variation with the max-
imal expression level. Pressure for transla-
tional robustness increases with expression lev-
els (Drummond et al., 2005), and codon choice
affects expression level (Bentele et al., 2013).
One of the main causes of selection on the
codon sequence of highly expressed genes is
protein misfolding avoidance (Yang et al., 2010),
but selection for efficient translation initiation
is also a cause of selection (Pop et al., 2014). It is
reasonable to assume that only certain parts of
protein coding genes will be affected by strong
nucleotide sequence selection, and that this
selection will be stronger on more expressed
genes. Indeed our results show strong nega-
tive selection acting on the coding sequence of
translation initiation regions, and the relative
selection strength is higher for the 25% highest
expressed genes (Supplementary Fig. S7). This
can lead to the overall increase in the substitu-
tion rate variation.

Given the stronger negative selection on the
coding sequence and the stronger variation in
the substitution rate in highly expressed genes,
it is especially important to take this variation

into account. Having a few quickly evolving
codons in combination with a low average ω of
highly expressed genes can be interpreted as
positive selection by models without rate vari-
ation. Indeed, in Drosophila the rate of false
positives, i.e. genes identified to evolve under
positive selection only by the model without
rate variation, is strongly correlated with the
maximum expression levels of the gene (Sup-
plementary Table S8).

III. Codon models and rate
variation

Widely used mechanistic codon models rely on
the assumption of constant synonymous substi-
tution rates. This assumption is often violated
due to factors such as mutation bias or nu-
cleotide selection, which vary across the gene.
While substitution rate variation can be caused
by multiple factors, we use a single compound
rate parameter to model this variation.

Here we demonstrate that a simple model
captures such rate variation, and that it both
detects new biological signal, and substantially
decreases the false positive rate in positive se-
lection detection. Not only do we observe this
effect in simulations (Fig. 1, 2, 3), but incon-
sistency between models is even higher when
applied to the vertebrate and fly datasets. Up
to 50% of the positive selection predictions per-
formed using models without rate variation
can be explained by the nucleotide rate varia-
tion (Tables 3, 4), and thus can be considered
as probable false positives.

This indicates that the underlying biological
process is highly variable across positions, and
that a model selection procedure is able to cap-
ture this once enough information is available.

An important question is why accounting
for rate variation changes the statistical prop-
erties of the test. Indeed it has been argued
(Yang, 2014) that comparison between dN and
dS is a contrast between the rates before and
after the action of selection on the protein,
and should not be biased by nucleotide rate
variation. We hypothesise that dN/dS overes-
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timation is caused not only by the variation
in dS, but also by codon-specific substitution
rates. Indeed, having a small percentage of
rapidly evolving codons in the gene would
not be captured by an overall rate for dS, and
therefore would be interpreted as positive se-
lection by models with protein level but with-
out nucleotide level rate variation. Whereas
fully accounting for rate variation allows to
detect these codons as rapidly evolving by the
signatures of both synonymous and nonsyn-
onymous substitutions.

There is recent evidence that double muta-
tions in coding sequences increase the branch-
site model false positive rate from 1.1% to 8.6%
in similar datasets to those investigated here
(Venkat et al., 2017). The interaction between
this effect and rate variation along the gene is
worth investigating.

We compared two different models account-
ing for rate variation: the site variation model
of Rubinstein et al. (2011) and our new codon
variation model which extends Scheffler et al.
(2006). The codon rate variation model can
be informally thought of as a special case of
the site rate variation model. Despite that, the
codon rate variation performs better both in the
simulations (Table 2, Supplementary Table S2)
and on the vertebrate dataset (Supplementary
Table S4). There are probably two reasons for
that. First, the fact that we can assign a rate to
a particular nucleotide position does not neces-
sary mean that we can reliably estimate it. Only
two amino acids allow single nucleotide syn-
onymous substitution associated with the first
or second codon positions. This means that in-
dividual position rates can be estimated mostly
through non-synonymous substitutions, which
are typically rare compared to synonymous
ones. Moreover, branch-site and M8 models al-
low variation in the nonsynonymous rate over
codon positions, which means estimates of ω
and site rates are not independent.

Secondly, we expect site rates to be auto-
correlated along the sequence since many fac-
tors, such as GC content, recombination rate,
or chromatin state change slowly over the gene.
Indeed we see a weak signal of such autocor-

relation in our data (not shown). Therefore
having an independent rate for every site is
probably redundant.

One of the key advantages of codon varia-
tion relative to site variation is computational
performance. Having a distinct rate for every
position increases the number of site classes
for which likelihood computations have to be
performed by a factor of k3, where k is the
number of discrete categories for gamma dis-
tribution. Whereas having a rate only for each
codon increases the number of site classes by
a factor of k. Which means that even for four
discrete categories, the slowdown of likelihood
computation for site rate gamma model will be
about 64 times, vs. only 4 times for codon rate
variation model. In practice this ratio between
the two models was respected in simulated and
vertebrate data. This makes codon rate varia-
tion model usable in large real-world datasets,
as we demonstrate including on the large 12
Drosophila genomes set.

Unlike traditional mechanistic codon models,
our new models allow independent estimations
of substitution rate at the nucleotide level and
of selective pressure on amino acid sequences.
It should be noted that individual site rates esti-
mates may be still noisy because of the amount
of data available. But given enough data it is
possible to have accurate estimates of selection
acting on specific regions, e.g. splicing motifs,
within coding sequences (Fig. 4).

V. Conclusions

We present here a new codon rate variation
model family. These mechanistic codon mod-
els relax an unrealistic assumption that the only
source of substitution rate variation over the
gene sequence is selection on the protein. Fail-
ure to account for this leads to both type I and
type II errors. We demonstrate that our model
has a good statistical performance both in the
presence and in the absence of rate variation.
Rate variation is strongly supported by homolo-
gous genes both from species with larger (flies)
and smaller (vertebrates) effective population
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sizes. We are able to capture differences in sub-
stitution rate caused by nucleotide selection.
Importantly, while being more complex these
model remain computationally tractable and
therefore can be applied to large-scale datasets.
These models open the opportunity of simulta-
neous analysis of different layers of selection.

VI. Methods

I. Sequence simulations

We simulated six datasets (Table 1) that include
either no rate variation across sites (correspond-
ing to the GY94 model), variation between sites
(corresponding to the Rubinstein et al. (2011)
model) and variation between codons (corre-
sponding to our new approach). Each dataset
contains 1,000 alignments simulated under the
null hypothesis H0 with no positive selection
(all ω ≤ 1) as well as 1,000 alignments under
the alternative hypothesis H1 with positive se-
lection (some ω > 1). All the datasets had
between 8 and 12 sequences composed of se-
quences of 100 to 400 codons and were simu-
lated using the software cosim. The parameters
of each simulation, including the alignment
length and the number of species, were gener-
ated at random from their respective distribu-
tion (Supplementary Table S9, Supplementary
Fig. S8). Values of α were within the range of
values estimated from the real data (Supple-
mentary Fig. S9), with an emphasis on smaller
values where the variation is stronger. For
the simulations including rate variation, we
used four discrete gamma categories that we
assigned either to sites or to codons. The M8
model assumes that the neutral sites and those
under purifying selection have an ω drawn
from a beta distribution and we represented
this distribution using five discrete categories.
Finally, to simulate evolution under the branch-
site model, we randomly selected one ’fore-
ground’ branch of the phylogenetic tree (either
internal or terminal) for every simulated align-
ment.

II. Vertebrate and Drosophila
datasets

We analyzed two biological datasets. Our goals
were to compare the fit of the different models
on real data, and to study which gene features
are contributing to the variation of the substitu-
tion rate. First, we used a vertebrate one-to-one
orthologs dataset (Studer et al. (2008), avail-
able at http://bioinfo.unil.ch/supdata/
positiveselection/Singleton.html) consist-
ing of 767 genes (singleton dataset). This
dataset was already used in previous studies of
codon models (Fletcher and Yang, 2010; Gharib
and Robinson-Rechavi, 2013; Davydov et al.,
2017).

We also used a subset of one-to-one or-
thologs from 12 Drosophila species from
the Selectome database (release 6, http://
selectome.unil.ch/). This dataset consists
of 8,606 genes, and the alignments are filtered
to remove unreliably aligned codons (Moretti
et al., 2014).

III. Positive selection inference

For all the tests on simulated data we used
the correct (i.e. simulated) tree topology, but
starting branch lengths were estimated using
PhyML v. 20131022 (Guindon et al., 2010) with
the model HKY85 (Hasegawa et al., 1985). We
did not start the optimization from the true
branch lengths, by similarity to a real use-case,
when only gene sequences are available, and
the true branch lengths are unknown. While
tree topology is also inferred in real use-cases,
and wrong topology could impact the inference
of positive selection (Diekmann and Pereira-
Leal, 2015), investigating this is outside the
scope of our study.

Optimization of all model parameters jointly
with branch lengths is not practical and sub-
stantially increases the computational load. We
instead first estimated branch lengths using the
simpler M0 model, which assumes a constant
ω across branches and sites, and optimized in
a second step the model parameters of the M8
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or branch-site models with or without rate vari-
ation, while fixing branch lengths. A similar
approach was used in previous studies (Schef-
fler et al., 2006; Moretti et al., 2014).

We show that this approach at least in the
case of the absence of variation does not de-
crease significantly the statistical properties of
the positive selection inference (Supplementary
Fig. S10).

The model optimization was performed in
Godon, followed by model selection (see below).

For BUSTED we used an implementation
available in HyPhy v. 2.2.6 (Pond et al., 2005).

For the biological datasets, all the internal
branches were tested using the branch-site
model for positive selection. Tip branches were
not tested to reduce the potential effect of se-
quencing errors. The M8 model was also ap-
plied to estimate substitution rates and ω for
individual sites.

IV. Model selection

During model selection we had six model to
choose from: three rate variation approaches
and, for each, the absence or presence of pos-
itive selection. Although LRT can be used to
test for positive selection, it is not possible to
use it to compare across all six models that
we tested (i.e. any pair of codon rate varia-
tion and site rate variation models cannot be
represented as a nested pair).

We thus first used the AIC on the alternative
model to select one of the three approaches to
model rate variation: no rate variation, site rate
variation or codon rate variation.

The relative support of each model was com-
puted as a log ratio between Akaike weights
(Wagenmakers and Farrell, 2004) of the model
with codon rate variation and the model with-
out rate variation.

Once the rate variation model was selected,
we performed LRT to detect positive selection
on the corresponding pair of models, i.e. model
with ω ≤ 1 and model without this constraint.
A 50:50 mix of a χ2 distribution with one de-
gree of freedom and of a point mass of 0 was

used as a null distribution (Yang and dos Reis,
2011).

V. Posterior rates inference
In order to estimate rates of synonymous sub-
stitution for individual codons we used an ap-
proach similar to Rubinstein et al. (2011). First,
we estimated the probability of a codon be-
longing to each rate as P = Pr(ρ(h) = ρi|xh, η),
where ρ(h) is the rate of codon h, ρi is the i-th
discrete gamma rate, xh is the data observed
at codon h, and η are the parameters of the
model (e.g. for M8 η = {p0, p, q, s}). In this
approach, η is replaced with the maximum like-
lihood estimate of model parameters η̂. Thus
codon rates can be estimated as a weighted
sum ρ̂(h) = ∑k

i Pr(ρ(h) = ρi|xh, η̂)ρi.
An alternative would be to use Bayes em-

pirical bayes (BEB, Yang et al. (2005)) instead.
However BEB was developed and tested for
site detection in particular codon models, and
we do not know how well is it applicable to rate
variation. On top of that given the increased
parametric space of the model, BEB would be
computationally intensive. Since we are aver-
aging rates over multiple sites, random noise
should not introduce a substantial bias.

Site dN/dS ratios in the M8 model can be
estimated using a similar approach, while re-
placing codon rate categories with the ω cate-
gories.

Posterior site rate and dN/dS estimation is
implemented in Godon. In all cases we used an
alternative model codon rate estimation. Since
the null model for every pair is a special case
of the alternative, we can use the later for pa-
rameter estimation without any significant loss
of precision.

For the branch-site model we averaged po-
sition rate estimates from all the individual
branch tests.

VI. Regression analysis
To estimate dependencies between various pa-
rameters we used linear models (lm function, R
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version 3.3.2). Various parameters were trans-
formed to correspond a bell-shaped if possible
(see Supplementary Table S10, Supplementary
Fig. S11).

We used expression data for H. sapi-
ens from Fagerberg et al. (2014), acquired
from Kryuchkova-Mostacci and Robinson-
Rechavi (2015). For D. melanogaster we
used data from Li et al. (2014), avail-
able at http://www.stat.ucla.edu/~jingyi.
li/software-and-data.html. Recombination
rates for genes were computed using Recombi-
nation Rate Calculator (ver. 2.3, Fiston-Lavier
et al. (2010)) using dataset from Comeron et al.
(2012).

VII. Availability
All the code is available from https:
//bitbucket.org/Davydov/codon.rate.
variation. Sequence simulator cosim is
available from http://bitbucket.org/
Davydov/cosim. Codon model param-
eter estimator Godon is available from
https://bitbucket.org/Davydov/godon.
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