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Abstract  

Previously, we classified colorectal cancers (CRCs) into five CRCA subtypes with different 

prognoses and potential treatment responses, using a 786-gene signature. We merged our 

subtypes and those described by five other groups into four consensus molecular subtypes 

(CMS) that are similar to CRCA subtypes. Here we demonstrate the analytical development 

and application of a custom NanoString platform-based biomarker assay to stratify CRC into 

subtypes. To reduce costs, we switched from the standard protocol to a custom modified 

protocol (NanoCRCA) with a high Pearson correlation coefficient (>0.88) between protocols. 

Technical replicates were highly correlated (>0.96). The assay included a reduced robust 38-

gene panel from the 786-gene signature that was selected using an in-laboratory developed 

computational pipeline of class prediction methods. We applied our NanoCRCA assay to 

untreated CRCs including fresh-frozen and formalin-fixed paraffin-embedded (FFPE) 

samples (n=81) with matched microarray or RNA-Seq profiles. We further compared the 

assay results with CMS classification, different platforms (microarrays/RNA-Seq) and gene-

set classifiers (38 and 786 genes). NanoCRCA classified fresh-frozen samples (n=39; not 

including those showing a mixture of subtypes) into all five CRCA subtypes with overall 

high concordance across platforms (89.7%) and with CMS subtypes (84.6%), independent of 

tumour cellularity. This analytical validation of the assay shows the association of subtypes 

with their known molecular, mutational and clinical characteristics. Overall, our modified 

NanoCRCA assay with further clinical assessment may facilitate prospective validation of 

CRC subtypes in clinical trials and beyond. 

 

Novelty and Impact: 

We previously identified five gene expression-based CRC subtypes with prognostic and 

potential predictive differences using a 786-gene signature and microarray platform. Subtype-

driven clinical trials require a validated assay suitable for routine clinical use. This study 

demonstrates, for the first time, how molecular CRCA subtype can be detected using 

NanoString Technology-based biomarker assay (NanoCRCA) suitable for clinical validation. 

NanoCRCA is suitable for analysing FFPE samples, and this assay may facilitate patient 

stratification within clinical trials.  
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Introduction 

Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths worldwide 1. 

The median overall survival of metastatic (m)CRC patients with unresectable disease remains 

around 24 months with standard chemotherapies. Targeted therapies including anti-EGFR 

antibodies, anti-angiogenic and immunotherapy agents may extend survival up to 30 months 

in selected patients 2. However, how to identify patients who will benefit from different drug 

options remains challenging. Additional predictive biomarkers are required to spare patients 

from unnecessary toxicities, improve outcomes and increase cost-effectiveness of treatment. 

 

In order to classify colorectal cancers into subtypes with distinct biology, helping to 

effectively match existing therapies and facilitate subtype-specific therapeutic development, 

we previously identified five distinctive gene expression subtypes using a 786-gene signature 
3. Based on the gene expression similarities with different cell types of the normal colonic 

mucosa, the 5 subtypes were named goblet-like, enterocyte, stem-like, inflammatory and 

transit-amplifying (TA). We demonstrated significantly poorer disease-free survival (DFS) in 

untreated patients for the stem-like subtype, intermediate DFS for inflammatory and 

enterocyte, and better DFS for goblet-like and TA. Then, from two different datasets that 

included drug response information, we observed increased responses within the stem-like 

subtype to irinotecan, fluorouracil and leucovorin treatment combination (FOLFIRI) and the 

TA subtypes to anti-EGFR monoclonal antibody (cetuximab) 3-5. These treatment responses 

were further validated by other studies 6, 7.  

 

Five other groups independently identified between 3 and 6 molecularly distinct CRC 

subtypes based on expression profiles 8-12. These and our findings were aggregated by a CRC 

Subtyping Consortium  (CRCSC) into 4 consensus molecular subtypes (CMS): CMS1 

(similar to inflammatory subtype); CMS2 (enterocyte and TA); CMS3 (goblet-like); and 

CMS4 (stem-like), plus a “mixed” subtype representing either the existence of additional 

subtypes or the presence of multiple subtypes in a single sample 13. In the current manuscript, 

we found “mixed” subtypes to have multiple existing subtypes. CRCA and CMS subtypes are 

similar except that the enterocyte and TA subtypes of CRCA were merged into CMS2 of the 

consensus classification 13. 

 

Recently, the exploratory clinical applicability of our CRCA subtypes was demonstrated 

when secondary analysis of a randomised clinical trial assessing patient benefit from the 
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addition of oxaliplatin to fluorouracil-leucovorin in early-stage disease revealed that benefits 

were highly enriched in the enterocyte subtype compared to the other subtypes in the 

discovery cohort. Therefore, in this study we have applied our CRCA subtype classification 

for assay development and evaluation.  

 

Translating these findings into routine clinical practice remains challenging, mainly due to 

the lack of a fit-for-purpose assay that can classify patient samples into subtypes within a 

clinically relevant turnaround time and reasonable costs using formalin-fixed paraffin-

embedded (FFPE) samples. All classifiers were developed from microarray or RNA-seq gene 

expression profiles, which are expensive, time consuming, require dedicated bioinformatics 

expertise, and have turnaround times incompatible with clinical applicability. They also rely 

on pre-amplification of RNA, with consequent impact on accuracy and reproducibility. We 

previously demonstrated proof-of-concept assays using immunohistochemistry and 

quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) methods 3. 

Nevertheless, these methods may suffer from reproducibility issues. Hence, we applied 

nCounter platform (NanoString Technologies) to develop a clinically-relevant biomarker 

assay for CRC subtype classification.  

 

The nCounter platform has previously been exploited to develop the Food and Drug 

Administration (FDA)-approved Prosigna® Breast Cancer Prognostic Gene Signature Assay 
15 to predict risk of recurrence in patients treated with adjuvant hormonal therapy, as well as 

assays to predict medulloblastoma 16 and lymphoma 17 subtypes. This platform measures 

gene expression in the form of discrete counts of barcoded mRNAs, and requires no 

amplification step, eliminating a potential source of bias. In the present study, we evaluated 

the suitability of this platform for a gene expression-based assay for our CRCA (a potential 

surrogate for CMS) subtypes using a modified protocol to subtype CRCs in 4 different 

cohorts (fresh-frozen and FFPE samples) with different clinical and mutational 

characteristics. The results were compared to the CMS subtype classification and other 

platforms. A summary of the classifiers utilised in this study is given in Table 1. 
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Results and Discussion 

 

Analytical development and assessment of CRC subtyping using a reproducible assay 

In order to evaluate the applicability of the CRC subtype classification in the clinic, we 

initially developed a custom nCounter assay using a 50-gene panel, including 47 genes 

selected from the 786-gene signature and 3 additional genes 3 (Table S1; see Methods). 

Initially, we applied a standard protocol (in which biotin labels and molecular barcodes are 

directly attached to the mRNA probes; Figure 1a) from the manufacturer and tested the 

performance of the custom nCounter assay using primary fresh frozen tumour RNA obtained 

from 22 CRCs from two different cohorts (Montpellier and OriGene; Table S2a). The 

distribution of samples across principal subspace using principal component analysis (PCA; 

Figure S1a) showed no batch effect between the two cohorts. In addition, hierarchical 

clustering analysis using nCounter profiles clustered these 22 samples into different groups 

that potentially represent different subtypes (Figure 1b).  

 

Next, we evaluated if a “modified” protocol (custom unique probes are attached to biotin 

labels and molecular barcodes separately; approximately ~35% less expensive than standard 

protocol; Figure 1a) from NanoString Technologies can deliver similar classification 

performance compared to the standard protocol-based assay. The results from the modified 

protocol-based profiling (Table S2b) showed similar distribution of samples (n=22) across 

principal subspace using PCA (Figure S1b) and clustered into potential subtypes (Figure S1c) 

in a similar fashion to the standard protocol. 

 

We merged both the standard and modified protocols’ gene expression data after normalising 

(gene-wise median centring) each dataset and performed PCA (Figure S1d).  Figure 1c shows 

the clustering of the same samples between protocols. Measurements showed high correlation 

(R2=0.90, p<0.001; Figure 1d) between these different protocols. This demonstrates that we 

can successfully replicate results from standard protocol using modified protocol for a more 

cost-effective assay. Therefore, we adopted the modified protocol for our assay (Figure 1a). 

 

To test if our assay results are highly reproducible between batches, we performed our assay 

on five of the above samples twice, in separate batches of maximum 40 weeks apart; Table 

S2c-d). Figure 1e and Figure S1e shows the clustering of replicate samples together with 

negligible batch effect. We achieved high concordance between the assays across the two 
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replicates, with a Pearson correlation R2 of 0.98 (p<0.001; Figure 1f). This establishes the 

high reproducibility of our assay over non-negligible periods of time. Hence, in the future, we 

can use this assay to test the state of subtypes using matched pre- and post-treatment biopsies 

or surgical materials. 

 

Analytical validation of CRC subtype assay using FFPE samples 

In the clinic, FFPE tumour samples are more prevalent than those that are fresh frozen. 

Hence, clinical diagnosis is mainly dependent on FFPE samples. At the same time, FFPE 

samples can present challenges of low abundance or highly degraded RNA. We therefore 

tested NanoCRCA assay using FFPE samples. Using the FFPE-preserved cohort of samples 

(see Methods), we assessed the congruence of the standard and modified assay protocols 

(Figures S2a-e and Table S3a-c) and the reproducibility of the modified protocol (Figure S2f 

and Table S3d-e) in FFPE samples, as previously with fresh frozen samples. We again 

achieved successful clustering of samples by sample rather than by protocol (Figure 2a). 

Pearson’s correlation coefficient of gene expression between the standard and modified 

protocols for 12 samples was 0.88 (Figure 2b). Five pairs of technical replicates also showed 

highly reproducible results (Figure 2c) with a Pearson’s correlation coefficient of 0.96 

(Figure 2d), similar to that for fresh frozen samples (Figure 1f). 

 

Selection of robust gene set for subtyping 

Successful clinical biomarker assays should be able to classify samples into subtypes with 

high concordance, and this requires a robust set of genes. Hence, we tested the robustness of 

our selected 47 genes (out of 50 genes from 786-gene signature) using two in-laboratory 

developed bioinformatics tools – idSample and intPredict (Figure 3a). Since “mixed subtype” 

samples with more than one subtype were present in CRC 13, we selected only the samples 

from our published training dataset (n=387) 3 that showed at least 70% probability for a 

single subtype (n=192, Figure 3b; Table S4a). This was done using idSample tool that 

employs support vector machine regression method (see Methods). Furthermore, intPredict 

tool, which contains a pipeline of supervised class prediction methods, was used to identify 

38 robust genes (38-gene panel) out of 47 genes with lowest percentage misclassification 

error rate (MCR, 1%; Figure 3c-d; Table S4b-c; Methods). In order to further effectively 

classify our samples into CRC subtypes using the selected 38-gene panel, we calculated 

newly-derived 38-gene panel classification scores (gene centroids using Prediction Analysis 

of Microarrays methodology; see Methods; Figure 3e) having only 1.6% MCR to classify 
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samples profiled on our nCounter assay, and compared to the other gene profiling platforms 

and classifiers in three different CRC cohorts.  

 

Subtyping of fresh frozen samples  

To determine if these assays could successfully stratify patient samples into CRCA subtypes, 

we applied our NanoCRCA assay (utilising the modified protocol and 38-gene signature) to 

fresh frozen CRC samples (n=57; combined samples from the Montpellier, Singapore and 

OriGene cohorts). Subtypes were determined by the correlation of gene expression profiles 

with the 38-gene panel centroids. All five subtypes were identified by the assay and 

demonstrated distinct patterns of gene expression (Figure 4a). A proportion of samples (9/57) 

were determined to be of mixed subtype (Figure 4a; Table S5), indicating the presence of 

multiple distinct subtypes within the same tumour, as previously demonstrated13. 

 

Biological characteristics of the identified subtypes 

To further confirm the molecular characteristics of the subtypes, we performed analysis using 

NanoString Technologies’ PanCancer Progression Panel (Table S6a-b; Figure S3a-b). As 

expected, the stem-like samples had increased expression of genes associated with epithelial 

to mesenchymal transition (EMT), stem cells, metastatic response, extracellular matrix 

(ECM) structure and receptor interaction, cellular differentiation, collagen family and others 

(Figures 4b and S3c-d). In addition, the expression of the 786-gene signature is shown in 

Figure 4c alongside the NanoCRCA subtypes of the samples. Overall, these analyses 

demonstrate that the subtypes identified by NanoCRCA assay represent the published3 

molecular characteristics of these subtypes in 51 samples (with matched gene expression 

profiles from other platforms) from three independent cohorts. 

 

Concordance and distribution of subtypes across fresh frozen samples between platforms 

We sought to confirm that subtyping using the NanoCRCA assay (with the modified protocol 

and 38-gene signature) mirrored the results of subtyping using highly multiplexed platforms 

such as microarrays and RNA-Seq. Matched microarray or RNA-Seq data for the fresh-

frozen Montpellier, Singapore and OriGene cohorts were generated or downloaded from 

public repositories (see Methods) (n=51). Subtypes were determined by correlation of the 

gene expression profiles with both our original 786-gene signature centroids3 and our new 

38-gene panel centroids. 
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As a confirmation that platform and gene set differences did not bias the distribution of 

subtypes assigned to the samples, Figure 4d shows there is no significant difference (p>0.05; 

proportion tests) in the distribution of each subtype across the two CRCA classifiers from 

different platform and CMS classifier in the three cohorts. This again validates the similarity 

between CRCA and CMS subtypes.  

 

To assess the stability of individual subtypes across the various platforms and gene sets, we 

plotted Figure 4e using subtype-determined and non-mixed samples for these three fresh 

frozen cohorts (n=39; Table S5). The three assays are shown (786-gene signature, 38-gene 

panel and NanoCRCA) along with the 5 CRCA subtypes. While the goblet-like subtype was 

consistent across all the different classifications, there were only four samples that had 

different subtypes across classifications (shown in grey in Figure 4e). Two of the samples 

were classified as either enterocyte or stem-like, one as either enterocyte or inflammatory, 

and one as either TA or inflammatory. Three of these four samples were from the OriGene 

cohort, potentially due to platform-specific effects as discussed below. However, overall 

concordance between platforms was good (Figure 4e), with 35 of 39 non-

mixed/undetermined samples (89.7%) showing the same subtype across all 3 assays. 

 

Subtyping of FFPE-preserved samples  

Applying the NanoCRCA assay to FFPE samples from our own clinical cohort (see Methods; 

n=24) revealed that all the CRCA subtypes were present in this cohort along with mixed and 

undertermined samples (Figure 4f and Table S3e-f). Regardless of the generally lower quality 

of RNA obtained from FFPE samples, this pilot cohort demonstrates that the NanoCRCA 

assay can be used to determine the subtypes of FFPE-preserved samples, thereby making our 

assay widely practicable in a clinical setting.  

 

Assessment of CRC subtypes in Montpellier cohort using NanoCRCA assay  

In order to understand the clinical significance of stratifying CRC samples using our 

NanoCRCA, we further analysed our Montpellier cohort of 17 primary tumours (stage IV) 

patients 4, 6 (Methods; Figures 5a and S4a-b; Table S7a-b).  All the CRCA subtypes were 

present in this cohort, and all samples were successfully classified, with none showing mixed 

or undetermined subtype characteristics (Figure 5b-c). We observed a non-uniform 

distribution of the subtypes with enterocyte contributing 41.2% of all the samples followed 
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by stem-like (23.5%) and goblet-like (17.6%) subtypes. However, inflammatory (11.8%) and 

TA (5.9%) subtypes were low in numbers in this cohort of samples (Figure 5c). 

 

Comparison of subtypes with CMS classifier and across platforms 

We additionally compared our NanoCRCA assay with the microarray-based CMS subtypes 

in this cohort. We classified the Montpellier cohort of 17 microarray gene expression profiles 

into CMS subtypes using the published CMS classifier13. We successfully classified the 

samples into all of the CMS subtypes: 47.1% were CMS2 (enterocyte and TA); 11.8% each 

of CMS3 (goblet-like) and CMS4 (stem-like); and 5.9% of CMS1 (inflammatory). However, 

we found 17.6% mixed and 5.9% undetermined samples (Figure 5d). Thus, NanoCRCA 

showed good concordance (84.6%) with the CMS classifier excluding the mixed and 

undetermined samples (Figure 5e).  We further performed pairwise Fisher’s exact test 

between the CMS and NanoCRCA subtypes (Figure 5f), which confirmed borderline 

significant association to the CMS classification (FDR=0.07). This suggests that NanoCRCA 

may be applied as a surrogate to predict CMS subtypes (as CMS classification was partly 

derived from CRCA classification) with reasonable concordance in addition to CRCA 

subtypes.  

 

We also compared the performance of the NanoCRCA assay against classification using 

Affymetrix Human Genome U133 Plus 2.0 (HG-U133 Plus2) microarray profiles 4 in this 

cohort and the new 38-gene signature (Figures 5b and S4c). We classified the samples’ 

microarray profiles into all the five subtypes with 35.2% as enterocyte, 23.5% as stem-like, 

17.6% as goblet-like, 11.8% as inflammatory and 5.9% as TA (Figure S4d). Only one sample 

was defined as a mixed subtype (1/17, 5.9%) expressing both inflammatory and enterocyte 

genes. The expression of enterocyte genes was consistent with the classification of the 

sample as enterocyte on the NanoCRCA platform. The fact that the sample was classified as 

a mixture of subtypes by the 38-gene panel may be attributed to platform-specific effects. 

Overall, the NanoCRCA assay showed perfect 100% concordance with the microarray-based 

38-gene panel classification after excluding samples with mixed classification (due to 

challenges in comparing these mixed subtypes to others) (Figure 5e). 

 

Similarly, we compared the 786-gene signature-based classification using microarray data to 

the results of NanoCRCA. The 786-gene signature-based classification yielded 23.5% 

enterocyte, 29.4% stem-like, 23.5% goblet-like, 11.8% inflammatory and 5.9% TA samples 
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(Figure S4e). There was one mixed sample (1/17, 5.9%; Figures 5b and S4e) that was 

different from that called mixed by 38-gene panel. Irrespective of the different number of 

genes profiled on the different platforms, the NanoCRCA assay showed 87.5% concordance 

with the 786-gene signature subtypes (Figure 5e). Again, the 12.5% discordance may be 

attributable to noisy genes present in the 786-gene signature. Overall, the NanoCRCA assay 

and 786-gene signature classification perform well with good concordance.  

 

We statistically validated these findings by applying Fisher’s exact test on these 

classifications, excluding mixed or undetermined samples. We found that the NanoCRCA 

assay was significantly (false discovery rate; FDR<0.001; Figure 5f) associated with both the 

38-gene panel and 786-gene signature classification systems. This again statistically validates 

the high concordance between NanoCRCA classification and different gene- and platform-

based CRCA classifications, further confirming the robustness of our NanoCRCA subtypes. 

In sum, all the three classifications from the two different platforms identified all the five 

subtypes and the NanoCRCA assay predicted robust subtypes highly consistent with the 

microarray platform. 

 

NanoCRCA assay-based CRC subtypes and associated mutational profiles in a multi-stage 

Asian cohort  

Our profiling of the multi-stage SG cohort using NanoCRCA is the first of its kind in an 

Asian population, to our knowledge. We further observed high concordance in subtypes 

between the NanoCRCA assay (n=23) and RNAseq (for both 38-gene panel and 786-gene 

signature; n=17; Figures S5a-e; Table S7c-d). There was no visible trend in association 

between stages and subtypes (Figure S5f; Table S7e).  

 

Previously, we reported that the inflammatory (CMS1) subtype is associated with MSI and 

BRAF mutations, whereas goblet-like (CMS3) subtype is highly associated with KRAS 

mutations 3, 13, 18. To further validate the NanoCRCA subtypes, we compared these with the 

mutational (BRAF and KRAS) and MSI status (Figure 6a and Table S7e) of cancers in the 

Asian cohort (n=11) that were detected within our laboratory using methods described in 

Supplementary Information. All (100%) the inflammatory subtype CRCs were associated 

with MSI. Interestingly, one of the two BRAF mutant tumours was associated with the 

inflammatory (CMS1) subtype and MSI status. Similarly, all three goblet-like subtype 

(CMS3; 100%) tumours were associated with KRAS mutation. There were three other KRAS 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 12, 2018. ; https://doi.org/10.1101/174847doi: bioRxiv preprint 

https://doi.org/10.1101/174847


Ragulan, et al.   

mutant tumours associated with the enterocyte or stem-like subtypes, representing KRAS 

mutant tumours are also associated less frequently with other subtypes, as previously reported 
13. This analysis with our NanoCRCA assay corresponds with known associations of subtypes 

with mutational and MSI profiles with this small SG data set of 17 samples. However, 

additional large data sets and NanoCRCA assays are warranted to validate these observations. 

 

Effect of tumour cellularity on CRC subtyping using NanoCRCA assay 

Next, we sought to test if tumour cellularity affects our NanoCRCA assay using OriGene 

cohort of samples (n=17) spanning all stages of CRC (Figures 6b and S6a-d; Table S7f-g). 

We observed high concordance between NanoCRCA assay and HTA microarray (for both 

38-gene panel and 786-gene signature; Figure S6e), although CA1 gene was not present in 

the HTA array and there was a low correlation (R2<0.5) in expression of two inflammatory 

genes between HTA and NanoCRCA assay (Figure S6f and Supplementary Information). 

 

With variable tumour cellularity ranging from 10% to 85% in this cohort, we postulated that 

if cellularity affects our assay, the low cellularity samples should be either qualified as 

“undetermined” or “mixed subtype” samples. One sample had extremely low cellularity of 

10% and one additional sample was from a liver metastasis. Interestingly, none of the 

samples were classified as having undetermined subtype, regardless of cellularity. On the 

other hand, the three mixed samples had varying levels of cellularity (50-75%) (Figures 6b-

c). These results suggest that our NanoCRCA may not be affected by cellularity due to the 

selection of robust gene sets, which requires further validation in the future. 

 

 Conclusion 

In summary, we analytically developed and validated NanoCRCA biomarker assay based on 

robust 38-gene panel and classified CRC samples into molecular subtypes, along with mixed 

subtypes. Subtype prediction by the NanoCRCA assay is highly concordant with CMS 

subtypes and multiple platforms. Also, stratification using this assay reproduces the clinical, 

mutational and molecular characteristics of the CRC subtypes. Since multiple CRC clinical 

trials require low-cost, reproducible and rapid clinically implementable assays to 

prospectively validate CRC subtypes for subtype-specific studies, our NanoCRCA assay may 

potentially facilitate this process in the clinic using FFPE samples. 
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Methods 

Patient cohorts 

Four CRC cohorts were studied: three derived from fresh-frozen and one from FFPE 

samples. The first included 17 metastatic (stage IV) CRCs (Montpellier cohort) from patients 

with no prior chemotherapy from a published study 4 (microarray data at GEO accession 

GSE62080). A second cohort (Singapore; SG) included 23 untreated CRC samples from 

patients (20 Chinese, 2 Malay and 1 Indian) participating in an on-going observational CRC 

study from the National Cancer Centre of Singapore and Singapore General Hospital 

(SingHealth Institutional Review Board IRB: 2013/110/B). RNA-Seq for these patients were 

performed (Supplementary Methods) and data are deposited with GEO accession 

GSE101588. A third cohort (OriGene; n=17) was purchased from OriGene (Rockville, MD, 

USA) (microarray data at GEO accession GSE101472). The final cohort consisted of 24 

FFPE CRC samples from “A retrospective translational study at The Royal Marsden NHS 

Foundation Trust: characterisation of molecular predictors of response to cetuximab or 

panitumumab in patients with colorectal cancer (RETRO-C)”, with IRB and ethical approval 

(NRES Committee East of England-Cambridge Central, 10/H0308/28). 

 

Subtype concordance and significance 

Subtype concordance between two different platforms was calculated as the percentage of 

samples that showed the same subtype (not including mixed and undetermined samples) in 

both. Subtypes were deemed concordant between CRCA and CMS subtypes based on the 

following equivalence: CMS1=Inflammatory; CMS2=Enterocyte and TA; CMS3=Goblet-

like; CMS4=Stem-like 13. Fisher’s exact test between different platforms or classifiers was 

performed to assess statistical significance of their subtype concordance, and p-values 

adjusted using the FDR method. 

 

Supplementary Methods & Materials contains detailed information of all methods employed. 
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DATA ACCESS 

Previously published GEO Omnibus data sets were analysed for gene set selection 

(GSE14333 and GSE13294) and microarray-based subtyping of the Montpellier cohort 

(GSE62080). nCounter data for all cohorts (GSE101479 – standard protocol and GSE101481 

– modified protocol) and microarray/RNA-Seq data for OriGene (GSE101472) and 

Singapore (GSE101588) cohorts are deposited under the SuperSeries with accession number 

GSE101651. 
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Table 1. Summary of the classifiers utilised in this study. Overview of expression profile 

classifiers: derivation, platform, publication in which it was first introduced, and relationships 

of the classifiers to each other. 

Classifier Description Platform Original 
publication 

786-gene signature • 786 genes defining the 5 CRCAssigner 
(CRCA) subtypes (enterocyte, goblet-
like, inflammatory, TA and stem-like)  

• Derived from gene expression profiles 
on microarray platform of 387 primary 
CRC samples.  

• Potential subtype-specific drug 
responses have been suggested for stem-
like (FOLFIRI) and a subset of TA 
tumours (cetuximab) using a small 
cohort of samples (rigorous validation 
required) 3, and suggested in the 
enterocyte subtype (oxaliplatin) by 
others 14. 

Microarray/ 
RNA-Seq 

Sadanandam et. 
al. 2013 3 

CMS • 693 genes defining 4 CMS subtypes 
(CMS1-4), here applied to 
microarray/RNA-Seq platforms. 

• Derived from reconciling the CRCA 
subtypes with 5 additional sets of gene 
expression subtypes 8-12. 

Microarray/ 
RNA-Seq 

Guinney et. al. 
2015 13 

38-gene panel • A subset of the 786-gene signature 
genes. 38 genes able to classify samples 
into the CRCA subtypes with minimal 
misclassification errors on microarray 
platform.  

• 38 genes were part of the 47 genes 
selected from 786-gene signature 
(including all 38-gene panel) plus 3 
additional genes not used for subtyping. 

• Derived from a subset of the samples 
used to train the 786-gene signature-
based classifier that were highly typical 
of their subtype (see Methods).  

Microarray/ 
RNA-Seq 

Introduced here 

NanoCRCA • A custom nCounter assay (NanoString 
Technologies) for 38-gene panel above. 
Gene expression is profiled using a 
highly reproducible and modified 
nCounter assay named as NanoCRCA.  

nCounter Custom 
Gene Expression 
Assay (NanoString 
Technologies) 
 

Introduced here 
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Legends 

Figure 1. Assessment of different protocols and replicates of reduced subtype gene-

based nCounter assay. a. Flowchart showing the major steps of the NanoCRCA assay 

protocols. Specifically, this flowchart demonstrates the difference between standard and 

modified protocols. Though modified protocol has additional steps, it substantially reduces 

the cost without significantly increasing the time of the assay. b-c. Heatmap of expression 

levels of the selected 47 subtype-specific genes (and 3 additional genes) for 22 samples from 

the OriGene and Montpellier cohorts as measured on a custom nCounter panel using b) 

standard protocol and c) both standard and modified protocols. d. A scatter plot of gene 

expression measurements for all genes in all samples between the standard and modified 

protocols. Each point is coloured by the gene’s weight (PAM score) in the 786-gene 

centroids. Correlation co-efficient (R2) value is shown. e. Heatmap of expression levels of 

selected 47 subtype-specific genes (and 3 additional genes) from 5 technical replicate 

samples assayed using modified protocol with a maximum interval of 40 weeks. f. Scatter 

plot of gene expression measurements for all genes in all samples between technical 

replicates (median centered within data sets before correlation to remove batch effects). Each 

point is coloured by the gene’s weight (PAM score) in the 786-gene centroids. Correlation 

co-efficient (R2) value is shown. 

 

Figure 2. Assessment of protocols and reproducibility using nCounter in FFPE samples. 

a. Heatmap of expression levels of the selected 47 subtype-specific genes (and 3 additional 

genes) for 24 samples from the RETRO-C cohort as measured on a custom nCounter panel 

using both standard and modified protocols. b. A scatter plot of gene expression 

measurements for all genes in all samples between the standard and modified protocols. Each 

point is coloured by the gene’s weight (PAM score) in the 786-gene centroids. Correlation 

co-efficient (R2) value is shown. c. Heatmap of expression levels of selected 47 subtype-

specific genes (and 3 additional genes) from 5 technical replicate samples assayed using 

modified protocol with a maximum interval of 13 weeks. d. Scatter plot of gene expression 

measurements for all genes in all samples between technical replicates (median centered 

within data sets before correlation to remove batch effects). Each point is coloured by the 

gene’s weight (PAM score) in the 786-gene centroids. Correlation co-efficient (R2) value is 

shown. 
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Figure 3. Selection of robust 38-gene panel. a. Overview of the process and pipelines used 

to select a robust gene set for the NanoCRCA assay. b. A bar plot showing samples (n=387) 

from our original published dataset 3 that shows probability of a sample belonging to a given 

subtype as assessed using idSample tool developed by us. c. A line plot showing MCR and 

number of genes as modelled using intPredict pipeline of class prediction methods and 

samples from b). d. Heatmap showing the gene expression of the 38-gene panel selected by 

the pipeline in the 192 selected samples from b). Top bar shows the 786-gene signature-based 

subtype of the samples. e. Line plots showing MCR using PAM analysis at different gene 

selection and PAM thresholds for all the subtypes (upper) and individual subtypes (lower). 

 

Figure 4. NanoCRCA subtyping, pathway and 786-gene signature analysis with subtype 

stability. a. Heatmap showing the expression of 38-gene panel in the three fresh frozen 

cohorts as measured using NanoCRCA assay. The lower top bar indicates the NanoCRCA 

subtype of the samples and the upper top bar indicates the cohorts. b. Heatmap of nCounter 

PanCancer Progression Panel-based gene expression profiles from the Montpellier and 

OriGene cohorts of samples (n=34). The lower top bar indicates the NanoCRCA subtype of 

the samples and the upper top bar indicates the cohorts. Genes are grouped according to 

functional annotations provided by NanoString Technologies or subtype gene signatures. c. 

Heatmap of batch-corrected RNA-Seq/microarray gene expression profiles from all the three 

cohorts (n=51). The NanoCRCA subtypes, 38-gene panel, 786-gene signature, CMS and 

different cohorts of the samples are shown from bottom to the top bars respectively. Subtype-

specific gene signatures representing each subtype are shown on the side. d. Distribution of 

subtypes according to each classifier. Samples that were mixed or undetermined subtype 

were excluded for each classifier. Results of statistical tests of proportion between the three 

subtype-specific classifiers are shown on the left-hand side. e. Chord plot illustrating the 

tendency of samples to be classified as the same subtype between the three subtype-based 

assays. Samples from all three cohorts which had no mixed or undetermined subtype calls 

were included (n=39).  Each arc connects the classification of a sample in two different 

assays, and each sample is represented by three arcs (connecting NanoCRCA assay 

(nCounter platform), 38-gene panel and 786-gene signature (microarray platform) subtypes). 

Samples with the same subtype in all three assays are coloured by their subtype. Samples 

(only four of 39 samples) that had discordant classification between the assays are coloured 

grey. f. Heatmap showing the expression of 38-gene panel genes in FFPE samples as 
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measured using NanoCRCA assay. The subtypes as assigned using NanoCRCA assay are 

shown on the top bar. 

 

Figure 5. Montpellier cohort - NanoCRCA assay, its comparison with other platforms 

and CMS classifier and characteristics. a. A summary of the Montpellier cohort showing 

patient characteristics, sample size and available HG-U133 Plus 2.0 microarray data.  b. 

Heatmap showing the expression of 38-gene panel in the Montpellier cohort as measured 

using NanoCRCA assay. The subtypes as assigned using NanoCRCA assay (nCounter 

platform), 38-gene panel, 786-gene signature and CMS classifications (microarray platform) 

are shown on the top bars. c. Pie chart showing the proportion of different subtypes 

(including mixed and undetermined samples) from NanoCRCA classification. d. Pie chart 

showing the proportion of different subtypes (including mixed and undetermined samples) 

from CMS classification. e-f. Comparisons between NanoCRCA and other classifications 

including 38-gene panel, 786-gene signature and CMS showing e) percent concordance and 

f) statistical significance (Fisher’s exact test). 

 

Figure 6. Subtype association with MSI and mutations and effect of tumour cellularity. 

a. A plot showing MSI and mutational (KRAS and BRAF) status of samples alongside 

subtypes from NanoCRCA classification using SG cohort. b. A plot showing tumour 

cellularity, stage and grade associated with subtypes from this classification using OriGene 

cohort. c. Histogram showing the distribution of tumour cellularity using OriGene cohort.  
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