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Abstract	
	
Background:	Explaining	the	variability	in	drug	sensitivity	across	a	panel	of	cell	lines	using	
genomic	information	is	a	key	aspect	of	cancer	drug	discovery.	The	results	of	such	analyses	
may	ultimately	determine	which	patients	are	likely	to	benefit	from	a	new	treatment.	There	
are	numerous	experimental	factors	that	can	influence	the	outcomes	of	cell	line	screening	
panels	such	as	the	number	of	replicates,	number	of	doses	explored	etc.	Simulation	studies	
can	aid	in	understanding	how	variability	in	these	experimental	factors	can	affect	the	
statistical	power	of	a	given	analysis	method.	In	this	study	dose	response	data	was	simulated	
for	a	variety	of	experimental	designs	and	the	ability	of	different	methods	to	retrieve	the	
original	simulation	parameters	was	compared.	The	analysis	methods	under	consideration	
were	a	combination	of	non-linear	least	squares	and	ANOVA,	conventional	approach,	versus	
non-linear	mixed	effects.		
Results:	Across	the	simulation	studies	explored	the	mixed-effects	approach	gave	similar	and	
in	some	situations	greater	statistical	power	than	the	conventional	approach.		In	particular	
the	mixed-effects	approach	gave	significantly	greater	power	when	there	was	less	
information	per	dose	response	curve,	and	when	more	cell	lines	screened.	More	generally	
the	best	way	to	improve	statistical	power	was	to	screen	more	cell	lines.		
Conclusions:	This	study	demonstrates	the	value	of	simulating	data	to	understand	design	and	
analysis	choices	in	the	context	of	cancer	drug	sensitivity	screening.		By	illustrating	the	
performance	of	different	methods	in	different	situations	these	results	will	help	researchers	
in	the	field	generate	and	analyse	data	on	future	preclinical	compounds.		Ultimately	this	will	
benefit	patients	by	ensuring	that	biomarkers	of	drug	sensitivity	have	an	increased	chance	of	
being	identified	at	the	preclinical	stage.		
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Introduction	
	
Testing	anti-cancer	compounds	on	model	systems	with	different	genetic	backgrounds	to	
assess	the	correlation	of	genetic	features	to	compound	response	is	a	central	tenet	of	
biomarker	discovery.		The	exemplar	of	this	approach	is	the	discovery	that	loss	of	BRCA1	or	
BRCA2	conferred	an	increase	in	sensitivity	to	PARP	(poly	(ADP-ribose)	polymerase)	inhibitors	
(1,2)	Since	then,	numerous	large	scale	screens	of	hundreds	of	compounds	in	panels	
containing	up	to	1000	cell	lines	have	been	conducted.	These	screening	studies	are	designed	
to	enable	hypothesis	free	discovery	of	novel	biomarkers	of	drug	sensitivity	(3–6).		Drug	
discovery	groups	now	routinely	screen	novel	compounds	in	such	panels	to	generate	
hypotheses	on	which	patient	subgroups	are	most	likely	to	benefit	from	the	new	compound	
(7,8).		Consistency	and	reproducibility	of	these	projects	has	been	a	source	of	debate	(9–15).		
Efforts	have	also	been	made	to	leverage	these	datasets	for	a	variety	of	purposes	(16)	and	
provide	infrastructure	for	analysis	(17).	
	
Within	drug	discovery,	dose	response	screening	on	a	large	scale	predominantly	involves	
testing	a	variety	of	compounds	within	the	same	biological	system.	As	a	result,	experimental	
noise	remains	approximately	the	same	across	compounds.		With	cell	line	screening,	
however,	data	is	being	compared	from	different	assays	where	growth	characteristics	of	cell	
lines	vary.		One	analysis	approach	that	takes	this	confounding	factor	into	consideration	is	to	
calculate	the	concentration	at	which	cell	growth	rate	is	reduced	by	50%,	GR50,	(18).		Other	
confounding	factors	that	are	routinely	being	accounted	for	are	tissue	specific	effects	(19),	
and	the	general	level	of	drug	sensitivity	(20).	
	
Dose	response	data	is	conventionally	analysed	by	carrying	out	a	non-linear	regression	on	
each	unique	combination	of	compound	and	assay	to	generate	an	estimate	of	IC50	or	Area	
Under	Curve	for	use	in	subsequent	analyses.		This	approach	discards	uncertainty	in	the	
estimates,	and	doesn’t	allow	information	to	be	shared	between	curves.	The	use	of	mixed	
effects	models	where	data	is	combined	across	cell	lines	and	drugs	has	been	shown	to	
increase	the	accuracy	of	IC50	estimates	for	large	scale	screens	by	sharing	information	(21).		
An	extension	of	this	approach	is	to	include	the	genetic	covariate	itself	in	the	non-linear	
mixed	effects	model.		Estimating	the	genetic	effect	in	one	step	rather	than	two	theoretically	
allows	uncertainty	information	to	be	retained	which	may	improve	precision	and	reduce	bias.	
	
Screens	can	be	designed	in	different	ways:	number	of	cell	lines	screened,	concentration	
range,	number	of	concentrations	tested,	and	number	of	replicates	per	concentration	can	all	
be	varied.		A	large	scale	screen	of	1000	cell	lines	may	have	a	single	replicate	per	
concentration	and	only	8	or	9	different	concentrations	(3,4)	whereas	a	pharmaceutical	
company	may	screen	a	smaller	panel	of	20	cell	lines	in	triplicate	with	10	different	
concentrations.		Inherent	or	unknown	variables	that	will	affect	the	ability	of	the	screen	to	
detect	genetic	effects	include	the	effect	size	itself,	the	proportion	of	cell	lines	with	a	feature,	
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the	variability	in	response	to	compound,	the	experimental	noise,	and	the	efficacy	of	the	
compound	relative	to	minimum	and	maximum	dose.	
	
In	the	present	study,	cell	lines	and	their	dose	response	data	were	simulated	to	compare	the	
ability	of	different	analysis	methods	and	experimental	designs	to	recapture	known	genetic	
effects.		The	results	presented	will	assist	researchers	in	choosing	appropriate	analysis	
methods	and	assist	in	experimental	design	strategies	to	get	the	best	balance	of	cost	and	
power	for	the	scientific	question	being	asked.	

Methods	
Simulating	cell	lines	
The	pIC50	(pIC50	=	log10	(IC50))	values	for	wild-type	cell	lines	were	sampled	from	a	normal	
distribution	with	mean	m1	and	standard	deviation	s1.	The	pIC50	values	of	the	mutant	cell	
lines	were	sampled	from	a	normal	distribution	with	mean	m1-k1	and	standard	deviation	s1.	
That	is	only	the	population	mean	of	the	pIC50	values	was	assumed	to	change	between	
mutant	and	wild-type	cell	lines	whereas	the	variation	was	assumed	to	be	the	same.		
	
Simulating	dose	response	curves	
Combining	pIC50	values	for	the	wild-type	and	mutant	cell	lines	gave	us	a	population	of	
pIC50	values.	For	each	pIC50	value	we	then	simulated	a	response	value,	R,	for	a	cell	line	i	
(i=1,…,n)	at	dose	j	(j	=	1,…,m)	for	replicate	k	(k	=	1,…,l)	using,	
	

𝑅"#$ = 	 1 −
)*

+,-./0)*
1 + 𝑒3"#$ + 𝑒4"#$																																									(E1)	

In	the	above	equation	Dj	refers	to	the	drug	concentration	value	j	used,	IC50i	refers	to	cell	
line	i’s	IC50	value,	while	e1ijk	and	e2ijk	are	the	proportional	and	additive	residual	error	values	
sampled	from	a	normal	distribution	with	standard	deviation	s2	and	s3	respectively.	These	
residual	error	terms	perturb	the	true	dose-response	to	create	noisy	data.	We	also	created	a	
genotype	vector	Gi,	which	represents	what	genotype	IC50i	came	from,	E1	equates	to	the	
mutant	cell-line	and	0	the	wild-type.			
	 	
Methods	for	retrieving	genetic	effect	
Given	that	the	data	generation	process	began	with	sampling	pIC50	values	the	first	method	
we	used,	which	can	be	considered	as	a	benchmark,	was	to	perform	an	ANOVA	with	sampled	
pIC50	values	with	genotype	as	a	covariate.	We	collected	the	p-value,	from	the	F-test,	and	
the	estimated	size	of	the	effect	together	with	95	percent	confidence	intervals.	The	R	
function	lm	was	used	for	this	analysis.	Therefore	we	shall	refer	to	this	approach	as	lm.	In	the	
subsequent	methods	we	used	the	noisy	dose-response	data	generated.		
	
The	first	of	these	involved	fitting	the	following	dose-response	model	(E2)	to	each	cell	line	
using	the	nls.lm	function	from	the	minpack.lm	R	package	.		
	

𝑅 = 1 − )
+,-.0)

																																																																	(2)	
	
This	led	to	the	generation	of	a	distribution	of	estimated	IC50	values	which	was	transformed	
to	generate	a	distribution	of	pIC50	values	for	the	population	of	cell	lines.		Any	pIC50	
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estimates	that	fell	either	below	the	minimum	concentration	tested	minus	3	log10	units	or	
above	the	maximum	concentration	plus	3	log10	units	were	set	to	these	limits.	These	
estimated	pIC50	values	were	then	used	within	an	ANOVA	in	the	same	way	as	the	lm	
approach	detailed	above.			This	approach	is	referred	to	as	nls_lm.	
	
The	next	method	involved	fitting	the	dose-response	model	described	in	(E2)	within	a	
hierarchical	modelling	framework	(21)	using	the	nlme	R	package.	That	is	we	replace	the	
parameter	IC50	in	(E2)	with,		
	

𝑙𝑜𝑔 𝐼𝐶50 = 𝑏. + 𝑏" 																																																									(E3)		
	
where	b0	is	the	population	estimate	of	the	log(IC50)	value	and	bi	is	the	distance	from	b0	for	
each	cell	line	i.	The	individual	pIC50	values	derived	from	the	estimation	were	then	
subsequently	used	within	an	ANOVA	as	stated	above.		This	approach	is	referred	to	as	
nlme_lm.	
	
The	final	method	involved	modifying	equation	(E3)	to	include	genotype	in	the	following	
way,		
	

				𝑙𝑜𝑔 𝐼𝐶50 = 𝑏. + 𝑐.𝐺" + 𝑏" 																																															(E4)	
	

where	c0	is	the	shift	in	the	population	estimate	of	log(IC50)	for	the	mutant	cell	lines	versus	
the	wild-type.	Model	(E3)	can	be	considered	to	be	nested	within	model	(E4)	therefore	we	
used	the	likelihood	ratio	test	to	assess	if	the	fit	to	the	data	improved	with	model	(E4)	over	
(E3).	We	collected	the	p-value	and	the	estimate	of	c0	and	the	95	percent	confidence	
intervals.		This	approach	is	referred	to	as	nlme_gene.	
	
Simulations	carried	out	
Four	simulations	were	carried	out	to	explore	different	types	of	experimental	design	(Table	
1).	
	
Table	1:	Set	of	simulation	parameters	used	within	the	studies.	
Sim		 mu_pIC50	 sd_pIC50	 Effect	size	 Prop.	 N	 sd_add	 sd_prop	 Doses	
1	 -5	to	4	 N/A	 N/A	 N/A	 181	 0.1,	

0.2,	
0.4,	0.8	

0.1,	0.2,	
0.4,	0.8	

7x1,	
10x3	

2	 0,1,2,3	 0.4,	1	 1	 0.5	 50	 0.15,	
0.5	

0.3	 7x1,	
10x3	

3	 0.5	 0.4,	1	 0.3,	0.5,	1	 0.5	 10,	20,	
40	

0.15,	
0.5,	1	

0.3	 7x1,	
10x3	

4	 0.5	 1	 0.3,	0.5,	1	 0.05,	
0.1,	0.2	

50,	200,	
800	

0.15,	
0.5	

0.3	 7x1,	
10x3	

mu_pIC50	-	population	mean	pIC50	value;	sd_pIC50	-	standard	deviation	of	the	distribution	
of	pIC50	values;	Prop.	–	proportion	of	cell	lines	that	have	a	mutation;	sd_add	–	standard	
deviation	of	the	additive	error;	sd_prop	–	standard	deviation	of	the	proportional	error	
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The	first	simulation	compared	the	actual	pIC50	with	that	estimated	by	the	conventional	
non-linear	regression	model	(2)	and	the	hierarchical	model	(3)	across	a	range	of	pIC50	
values	and	with	different	amounts	of	additive	and	proportional	noise.	
	
The	second	simulation	went	on	to	examine	how	each	of	the	four	methods	performed	at	
retrieving	the	genetic	effect	when	the	pIC50	population	mean	was	altered	but	the	
proportion	of	mutant	cell	lines	and	the	number	of	cell	lines	was	kept	the	same.	
	
The	third	simulation	kept	the	proportion	mutated	at	0.5	and	average	pIC50	fixed	at	0.5	
(~3𝜇M),	varied	numbers	of	cell	lines	(10,	20,	40),	effect	size	(0.3,	0.5,	1),	additive	error	(0.15,	
0.4,	1),	and	variation	in	pIC50	values	(0.4,	1).			
	
The	fourth	simulation	was	meant	to	represent	a	realistic	cell	line	panel	screen	of	different	
sizes	(50,	200,	800	cell	lines)	with	two	different	amounts	of	additive	error	(0.15	and	0.4),	
three	different	effect	sizes	(0.3,	0.5,	1)	and	three	different	proportions	(0.05,	0.1,	0.2).	
	
For	each	simulation,	two	different	experimental	designs	were	considered:	in	the	first	a	10	
point	dose	response	curve	with	3	replicates	at	each	dose	was	simulated	(10pt_3rep),	
whereas	in	the	second	a	7	point	dose	response	curve	with	a	single	replicate	was	simulated	
(7pt_1rep).		The	former	represents	‘gold	standard’	data	that	might	be	generated	at	low	
throughput,	whereas	the	latter	represents	high	throughput	data	produced	in	a	large	scale	
screen.		
	
For	each	of	the	simulation	set-ups,	2	to	4,	described	above	and	summarised	in	Table	1	we	
conducted	200	simulations.	The	distribution	of	the	results	were	then	explored	both	
graphically	and	quantitatively	via	reporting	the	statistical	power;	proportion	of	simulations	
which	gave	a	p-value	<0.05.	
	
Running	the	simulations	
Simulations	were	carried	out	in	R	version	3.4.0	using	the	pgxsim	package	(GitHub	repo	
https://github.com/chapmandu2/pgxsim).		R	scripts	for	the	different	simulations	and	
instructions	for	their	use	can	be	found	on	GitHub	at	
https://github.com/chapmandu2/pgx_simulation_scripts).		Amazon	Web	Service	c4.x8large	
instances	were	provisioned	using	the	RStudio	Amazon	Machine	Image	maintained	by	Louis	
Aslett	(http://www.louisaslett.com/RStudio_AMI/)	and	analysis	was	parallelised	using	the	
batchtools	R	package	(Lang	et	al	2017).	
	
	

Results	
	
Simulation	1:	Compare	real	vs	estimated	pIC50	
10	point	triplicate	dose	response	curves	simulated	with	varying	amounts	of	additive	and	
proportional	error	with	an	actual	pIC50	of	0	(1uM)	are	shown	in	Figure	1.		Consultation	with	
a	number	of	scientists	and	showing	them	these	dose	response	curves	gave	rise	to	the	
consensus	view	that	additive	residual	error	values	(sd_add)	between	0.4	and	0.8	and	
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proportional	residual	error	value	(sd_prop)	between	0.2	and	0.4	represented	the	maximum	
noise	that	would	be	acceptable	in	a	panel	screen.			
	
Correlation	plots	of	real	versus	estimated	pIC50	using	the	nls	(non-linear	least	squares)	and	
nlme	(non-linear	mixed-effects)	methods	from	10	point	triplicate	and	7	point	single	replicate	
dose	response	curves	are	shown	in	Figure	2.	As	expected,	the	relationship	between	actual	
and	estimated	pIC50	is	stronger	for	the	10	point	triplicate	than	7	point	singe	replicate	curve,	
and	is	also	stronger	when	there	is	less	variability	in	the	simulated	data.	
	
Whilst	the	plots	for	each	model	are	similar,	the	most	visible	effect	is	how	estimates	of	
pIC50’s	outside	of	the	experimental	dose	response	range	(vertical	green	broken	lines)	are	
handled.		The	standard	model	can	produce	very	large	or	very	small	estimates	which	are	
truncated	to	a	maximum	of	3	log	units	above/below	the	minimum/maximum	concentration.		
By	contrast,	when	there	is	less	information	the	mixed	effects	model	regularised	the	
estimates	towards	the	population	mean	pIC50.		
	
Simulation	2:	Explore	effect	of	mu	on	estimating	genetic	effect	
Estimated	genetic	effect	sizes	and	p-values	for	each	simulation	are	plotted	in	Figure	3.		
There	is	a	systematic	shrinkage	of	the	estimate	of	the	genetic	effect	size	towards	zero	for	
the	nlme_lm	method,	while	nlme_gene	seems	to	give	slightly	more	precise	estimates	than	
nls_lm.		However,	the	distribution	of	p-values	is	similar	across	all	methods,	with	the	nls_lm	
method	showing	slightly	worse	performance	under	certain	circumstances.		In	particular,	all	
methods	perform	less	well	as	the	average	pIC50	moves	above	and	beyond	the	maximum	
dose	and	the	difference	between	the	nlme	based	methods	and	nls_lm	gets	more	
pronounced.		There	is	also	a	greater	difference	between	methods	when	there	is	more	
variability,	and/or	more	points	in	the	dose	response	curve.			
	
In	general,	nlme_gene	performs	the	best	since	it	gives	the	most	accurate	(or	no	worse)	
estimate	of	the	genetic	effect	size,	as	well	as	the	most	power.		In	particular,	an	advantage	is	
seen	over	the	nls_lm	method	when	the	average	pIC50	is	near	or	above	the	maximum	
concentration	of	the	dose	response	curve,	a	situation	which	is	often	encountered	in	
practice.	
	
Simulation	3:	Exploring	error	in	dose	response	
Estimated	genetic	effect	sizes	and	p-values	for	each	simulation	are	plotted	in	Figure	4.		As	in	
Simulation	2,	a	systematic	shrinkage	of	effect	size	estimates	is	seen	using	nlme_lm.		For	low	
number	of	cell	lines	little	difference	is	seen	between	the	methods	in	terms	of	power,	most	
likely	because	there	is	not	enough	information	to	share	between	cell	lines	within	the	mixed	
effects	methodology	to	improve	outcomes.		As	expected	the	difference	between	the	
baseline	lm	method	and	the	methods	using	dose	response	data	increases	as	noise	is	added	
to	the	dose	response	data	(increasing	sd_add),	and	where	there	is	less	information	in	each	
dose	response	curve	(7	points	single	replicate	vs	10	points	triplicate).		In	general,	however,	
this	simulation	shows	that	the	mixed	effects	approach	does	no	worse	than	the	conventional	
approach,	although	there	is	shrinkage	of	the	effect	size	estimates	in	the	nlme_lm	method,	
and	in	some	situations	performs	better.	
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Simulation	4:	Exploring	experimental	design	
Estimated	genetic	effect	sizes	and	test-level	p-values	for	each	simulation	are	plotted	in	
Figure	5	and	the	results	of	a	power	calculation	are	plotted	in	Figure	6.		As	seen	previously,	
there	is	a	shrinkage	effect	in	the	estimates	of	the	effect	size	using	nlme_lm.	As	expected,	
beta	estimates	are	more	precise,	and	p-values	are	smaller	when	more	cell	lines	are	
simulated	and	when	the	effect	size	is	bigger.		With	the	10-point	triplicate	dose	response	
curves,	the	methods	perform	equivalently	well	but	with	the	7-point	single	replicate	dose	
response	curve	differences	are	observed.		For	instance	when	the	effect	size	is	smaller,	and	
the	additive	noise	is	increased,	the	nlme	methods	are	more	powerful	than	the	nls_lm	
method.		This	is	manifested	by	the	separation	of	the	methods	in	the	power	calculation	
(Figure	6)	and	the	differences	in	p-values	in	Figure	5.		The	power	calculation	also	shows	that	
in	general	the	best	way	to	increase	power	is	to	examine	more	cell	lines.		

Discussion	
	
Correlating	genomic	features	to	drug	sensitivity	measures	such	as	IC50	values	across	a	panel	
of	cancer	cell-lines	is	a	core	activity	carried	out	by	pharmacogenomics	researchers	within	
both	academic	and	industrial	settings.	There	is	a	lack	of	literature	within	this	field	on	the	
design	of	dose-response	experiments	but	an	interest	in	exploring	new	metrics	and	analytical	
methods	for	such	experiments	(16,18,20,21).	The	aim	of	this	study	was	to	show	how	
simulation	studies	can	be	used	to	aid	in	the	design	of	dose-response	experiments	and	assist	
in	the	choice	of	analysis	method	to	be	applied.		
	
Simulation	studies	are	encouraged	by	the	statistical	community	to	assist	with	understanding	
the	data	generation	process	and	the	limitations	of	the	planned	analysis	methods	used	to	
analyse	real	data	(cite	the	statistical	rethinking	book).	Here	we	set-up	a	simulation	protocol	
to	generate	noisy	dose-response	data	for	a	population	of	cell	lines	whose	sensitivity	to	drug	
is	dependent	on	mutation	status.	The	simulation	protocols	considered	here	explored	
varying	degrees	of	the	following:		i)	number	of	doses	and	noise	in	the	dose-response	curves;	
ii)	number	of	technical	and	biological	replicates;	iii)	proportion	and	effect	size	of	drug	
sensitive	cell	lines	within	a	cell	population;		and	v)	population	mean	and	variance	of	IC50	
values.		
	
We	considered	3	different	analysis	methods	with	increasing	technical	complexity.	The	first	
and	simplest	approach,	defined	as	nls_lm,	involves	estimating	an	IC50	value	for	each	cell	
line	one	at	a	time	and	then	assessing	whether	the	pIC50	(pIC50	=	log10(IC50))	values	
correlate	to	cell-line	mutation	status	using	ANOVA.	The	second,	defined	as	nlme_lm,	is	
similar	to	the	first	except	that	IC50	values	are	estimated	using	the	non-linear	mixed	effects	
method	i.e.	pooling	all	dose-response	data	together	to	first	estimate	the	population	IC50	
mean	and	variance	values	before	estimating	each	individual	cell	lines	IC50	value	(cite	Vis	et	
al.).	Finally,	the	third	and	most	technically	complex	method,	defined	as	nlme_gene,	involves	
exploring	the	correlation	between	IC50	values	and	cell-line	mutation	status	by	including	
mutation	status	as	a	covariate	within	the	mixed-effects	framework.		
	
From	the	simulation	studies	conducted	here	we	found	that	only	under	certain	conditions	did	
the	most	complex	method,	nlme_gene,	give	us	an	improvement	in	statistical	power	over	the	
simplest	method,	nls_lm.	These	cases	were	when	there	were	fewer	data	points	in	the	dose	
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response	curve	and	the	numbers	of	cell-lines	were	high.	We	found	that	in	situations	when	
the	numbers	of	cell-lines	were	low,	regardless	of	the	number	of	data	points,	the	simplest	
approach	had	just	as	low	power	as	the	most	complex	approach.	We	also	saw	a	shrinkage	of	
the	genetic	effect	size	in	the	nlme_lm	approach,	a	phenomenon	that	has	been	described	
previously	in	the	context	of	pharmacokinetic	studies	(22).		Overall,	the	nlme_gene	method	
was	shown	to	have	increased	power	when	looking	across	all	designs	without	exhibiting	the	
shrinkage	effect.	This	result	makes	intuitive	sense	since	the	complex	method,	nlme_gene,	
uses	more	information	to	estimate	measurement	uncertainty	than	the	simple	method,	
nls_lm.		
	
The	simulation	methodology	and	software	described	here	will	enable	scientists	within	the	
pharmacogenomics	field	to	assess	the	power	of	different	experimental	designs	and	analysis	
methods.	This	should	enable	the	community	to	design	better	and	more	cost-effective	
experiments	which	will	hopefully	improve	the	outcome	of	analyses.		
	
The	main	limitations	of	this	study	are	as	follows.	First	we	only	considered	variation	in	the	
IC50	value	across	cell-lines	which	may	not	always	be	the	case	since	others	have	shown	that	
both	the	steepness	and	the	maximum	cell	death	within	a	dose-response	curve	can	vary	
across	cell-lines	under	a	single	drug	(21).	Second,	we	have	only	considered	genotype	as	a	
discrete	covariate	(i.e.	mutation	status)	and	thus	have	not	considered	continuous	genomic	
covariates	such	as	gene	expression.	Thirdly,	we	used	fixed	values	of	noise	for	all	cell	lines	
which	is	not	likely	to	be	the	case	as	the	smoothness	of	the	dose-response	curve	could	be	cell	
line	specific.	Finally,	we	have	not	considered	that	there	could	be	a	correlation	structure	in	
the	IC50	values	across	the	cell	line	panel	i.e.	cell-line	sensitivity	can	vary	by	tissue	(19).		All	of	
these	limitations	can	be	handled	by	increasing	the	complexity	of	the	simulation	protocol.	
However	in	doing	so	makes	the	analysis	of	the	results	more	complex	too.		

Conclusion	
	
In	summary	the	analysis	and	methodology	highlight	the	value	of	conducting	simulation	
studies	within	the	field	of	pharmacogenomics.	Within	the	specific	case	study	relating	
genotype	to	cell-line	response	data	we	found	that	more	complex	methods	using	the	mixed-
effects	model	framework,	that	are	not	currently	routinely	used,	can	increase	the	statistical	
power	over	the	current	methods.	We	hope	this	encourages	the	pharmacogenomics	
community	to	conduct	more	simulation	studies	but	also	build	on	the	work	described	here.		
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Figures	
	
Figure	1	

	
Figure	1:	Simulated	10-point	triplicate	dose	response	curves	from	Simulation	1	for	a	pIC50	
value	of	0	with	different	amounts	of	proportional	(sd_prop)	and	additive	(sd_add)	variance.	
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Figure	2A/B/C/D	
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Figure	2:	Correlation	plot	of	actual	vs	estimated	pIC50	values	from	Simulation	1	applying	the	
nls	(2A/C)	and	nlme	(2B/D)	methods	across	a	range	of	values	of	additive	(sd_add)	and	
proportional	(sd_prop)	variance	for	two	types	of	dose	response	curve,	7	point	single	
repliicate	(2A/B)	and	10	point	triplicate	(2C/D.	Blue	dotted	line	is	identity	line,	red	solid	line	
is	linear	fit,	green	dashed	vertical	lines	represent	minimum	and	maximum	concentration	of	
the	dose	response	curve.	
	

Figure	3A/B/C/D	
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Figure	3:	Estimated	values	of	the	genetic	covariate	(beta)	for	Simulation	2	are	plotted	on	the	
y-axis	in	A	and	B,	where	A	represents	results	for	the	7-point	dose	response	curve	and	B	
represents	results	for	the	10-point	dose	response	curve.		In	C	and	D	the	negative	log10	of	
the	test-level	p-values	are	plotted	on	the	y-axis	for	the	7-point	and	10-point	dose	response	
curves	respectively.		The	x-axis	represents	the	average	pIC50.		Each	panel	represents	a	
different	set	of	simulation	parameters.	
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Figure	4A/B/C/D	
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Figure	4:	Estimated	values	of	the	genetic	covariate	(beta)	for	Simulation	3	are	plotted	on	the	
y-axis	in	A	and	B,	where	A	represents	results	for	the	7-point	dose	response	curve	and	B	
represents	results	for	the	10-point	dose	response	curve.		In	C	and	D	the	negative	log10	of	
the	test-level	p-values	are	plotted	on	the	y-axis	for	the	7-point	and	10-point	dose	response	
curves	respectively.		The	x-axis	represents	the	value	of	the	genetic	coefficient,	beta.		Each	
panel	represents	a	different	set	of	simulation	parameters.	
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Figure	5A/B/C/D	
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Figure	5:	Estimated	values	of	the	genetic	covariate	(beta)	for	Simulation	4	are	plotted	on	the	
y-axis	in	A	and	B,	where	A	represents	results	for	the	7-point	dose	response	curve	and	B	
represents	results	for	the	10-point	dose	response	curve.		In	C	and	D	the	negative	log10	of	
the	test-level	p-values	are	plotted	on	the	y-axis	for	the	7-point	and	10-point	dose	response	
curves	respectively.		The	x-axis	represents	the	number	of	cell	lines	simulated.		Each	panel	
represents	a	different	set	of	simulation	parameters.	
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Figure	6	

	
Figure	6:	Power	calculations	for	simulation	4.		The	y-axis	represents	the	proportion	of	times	
that	the	test	p-value	fell	below	an	arbitrary	cut	off	of	0.05	whereas	the	x-axis	represents	the	
number	of	cell	lines	simulated.		A	represents	results	for	the	7-point	dose	response	curve	and	
B	represents	results	for	the	10-point	dose	response	curve.		Each	panel	represents	a	different	
set	of	simulation	parameters.	
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