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Perceptual decisions are better when they take uncertainty into account. Uncertainty arises
not only from the properties of sensory input but also from cognitive sources, such as different
levels of attention. However, it is unknown whether humans appropriately adjust for such
cognitive sources of uncertainty during perceptual decision making. Here we show that human
categorization and confidence decisions take into account uncertainty related to attention. We
manipulated uncertainty in an orientation categorization task from trial to trial using only an
attentional cue. The categorization task was designed to disambiguate decision rules that did
or did not depend on attention. Using formal model comparison to evaluate decision behavior,
we found that category and confidence decision boundaries shifted as a function of attention
in an approximately Bayesian fashion. This means that the observer’s attentional state on
each trial contributed probabilistically to the decision computation. This responsiveness of an
observer’s decisions to attention-dependent uncertainty should improve perceptual decisions
in natural vision, in which attention is unevenly distributed across a scene.

Sensory representations are inherently noisy. In vision, stimulus factors such as low contrast, blur, and visual
noise can increase an observer’s uncertainty about a visual stimulus. Optimal perceptual decision-making
requires taking into account both the sensory measurements and their associated uncertainty1. When driving
on a foggy day, for example, you may be more uncertain about the distance between your car and the car
in front of you than you would be on a clear day, and try to keep further back. Humans often respond to
sensory uncertainty in this way2,3, adjusting their choice4 behavior as well as their confidence5. Confidence
is a metacognitive measure that reflects the observer’s degree of certainty about a perceptual decision6,7.

Uncertainty arises not only from the external world but also from one’s internal state. Attention is a key
internal state variable that governs the uncertainty of visual representations8,9; it modulates basic perceptual
properties like contrast sensitivity10,11 and spatial resolution12. Surprisingly, it has been suggested that,
unlike for external sources of uncertainty, people fail to take attention into account during perceptual decision-
making13–15, leading to inaccurate decisions and overconfidence—a risk in attentionally demanding situations
like driving a car.

However, this proposal has never been tested using a perceptual task designed to distinguish fixed from
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flexible decision rules, nor has it been subjected to formal model comparison. Critically, as we show in
the Supplementary Text, the standard signal detection tasks used previously cannot, in principle, test
the fixed decision rule proposal. In standard tasks, the absolute internal decision rule cannot be uniquely
recovered, making it impossible to distinguish between fixed and flexible decision rules (Figure S1a).

Testing whether observers take attention-dependent uncertainty into account for both choice and confidence
also requires a task in which such decision flexibility stands to improve categorization performance. This
condition is not met by traditional left versus right categorization tasks, in which the optimal choice boundary
is the same (halfway between the means of the left and right category distributions) regardless of the level of
uncertainty (Figure S1b). Optimal performance can be achieved simply by taking the difference between
the evidence for left and the evidence for right, with no need to take uncertainty into account. The same
principle applies to present versus absent detection tasks.

To overcome these limitations, we used a recently developed categorization task4,5, which we call the em-
bedded category task, specifically designed to test whether decision rules depend on uncertainty. In this
task, the optimal choice boundaries shift as uncertainty increases, which allowed us to determine whether
observers’ behavior tracked these shifts, along with analogous shifts in confidence boundaries. We combined
psychophysical experiments with modeling and found that, during perceptual categorization, people not only
take attention-dependent uncertainty into account but do so in an approximately Bayesian manner.

Results

Observers performed the embedded category task, in which they categorized drifting grating stimuli as drawn
from either a narrow distribution around horizontal (SD = 3◦, category 1) or a wide distribution around
horizontal (SD = 12◦, category 2) (Figure 1a)4. This task requires distinguishing a more specific from a
more general perceptual category, which is typical of object identification, e.g., distinguishing a beagle from
other dogs, an Eames chair from other chairs, or whiskey from other liquids, based on appearance alone.
Because the category distributions overlap, maximum accuracy on the task is ~80%.

We trained observers on the category distributions in category training trials, in which a single stimulus was
presented at the fovea, before the main experiment and in short, top-up blocks interleaved with the test
blocks (see Methods). Accuracy on category training trials in test sessions was 71.9% ± 4.0%, indicating
that observers knew the category distributions and could perform the task well.

Four stimuli were briefly presented on each trial, and a response cue indicated which stimulus to report.
Observers reported both their category choice (category 1 vs. 2) and their degree of confidence on a 4-
point scale using one of 8 buttons, ranging from high-confidence category 1 to high-confidence category 2
(Figure 1b). Using a single button press for choice and confidence prevented post-choice influences on the
confidence judgment16 and emphasized that confidence should reflect the observer’s perception rather than
a preceding motor response. We manipulated voluntary (i.e., endogenous) attention on a trial-to-trial basis
using a spatial cue that pointed to either one stimulus location (valid condition: the response cue matched
the cue, 66.7% of trials; and invalid condition: it did not match, 16.7% of trials) or all four locations (neutral
condition: 16.7% of trials) (Figure 1b). Twelve observers participated, with about 2000 trials per observer.

Cue validity increased categorization accuracy [one-way repeated-measures ANOVA, F (2, 11) = 95.88, p <
10−10], with higher accuracy following valid cues [two-tailed paired t-test, t(11) = 7.92, p < 10−5] and
lower accuracy following invalid cues [t(11) = 4.62, p < 10−3], relative to neutral cues (Figure 2a, left).
This pattern confirms that attention increased orientation sensitivity (e.g.,11,17). Attention also increased
confidence ratings [F (2, 11) = 13.35, p < 10−3] and decreased reaction time [F (2, 11) = 28.76, p < 10−6],
ruling out speed-accuracy tradeoffs as underlying the effect of attention on accuracy (Figure 2a).

Decision rules in this task are defined by how they map stimulus orientation and attention condition onto a
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Figure 1: Stimuli and task. (a) Stimulus orientation distributions for each category. (b) Trial sequence. Cue validity, the
likelihood that a precue to one quadrant would match the response cue, was 80%.

response. We therefore plotted behavior as a function of these two variables. Overall performance was a “W”-
shaped function of stimulus orientation (Figure 2b, left), reflecting the greater difficulty in categorizing a
stimulus when its orientation was near the optimal category boundaries (which were at about 5◦). Attention
increased the sensitivity of category and confidence responses to the stimulus orientation (Figure 2b).

To assess whether observers changed their category and confidence decision boundaries to account for
attention-dependent orientation uncertainty, we fit two main models. In one, the Bayesian model, deci-
sions take uncertainty into account, whereas in the other, the Fixed model, decisions are insensitive to
uncertainty. Both models assume that, for the stimulus of interest, the observer draws a noisy orientation
measurement from a normal distribution centered on the true stimulus value with SD (i.e., uncertainty)
dependent on attention. In the Bayesian model, decisions depend on the relative posterior probabilities
of the two categories, leading the observer to shift their decision boundaries in measurement space, based
on the attention condition4,5 (Figures 3a,b, S2). The Bayesian model maximizes accuracy and produces
confidence reports that are a function of the posterior probability of being correct. Note that observers
could take uncertainty into account in other ways, but here we began with a normative approach by using
a Bayesian model. In the Fixed model, observers use the same decision criteria, regardless of the attention
condition13,15,18–24 (i.e., they are fixed in measurement space, Figure 3a,b). We used Markov Chain Monte
Carlo sampling to fit the models to raw, trial-to-trial category and confidence responses from each observer
separately (Methods, Table S1).
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Figure 2: Behavioral data. n= 12 observers. Error bars show trial-weighted mean and SEM across observers. (a)
Accuracy, confidence ratings, and reaction time as a function of cue validity. Maximum accuracy is ~80% because the
stimulus distributions overlap. (b) As in a, but as a function of cue validity and stimulus orientation. Stimulus orientation
is binned to equate approximately the number of trials per bin. Figure S5 shows proportion category 1 choice data and
Figure S6 shows confidence and reaction time data in more detail.

Observers’ decisions took attention-dependent uncertainty into account. The Bayesian model captured the
data well (Figure 3c) and substantially outperformed the Fixed model (Figure 3c,d), which had systematic
deviations from the data. Although the fit depended on the full data set, note deviations of the Fixed fit from
the data near zero tilt and at large tilts in Figure 3c, including failure to reproduce the cross-over pattern of
the three attention condition curves that is present in the data and the Bayesian fit. To compare models, we
used an approximation of leave-one-out cross-validated log likelihood called PSIS-LOO (henceforth LOO)26.
Bayesian outperformed Fixed by LOO differences (median and 95% CI of bootstrapped mean differences
across observers) of 102 [45, 167]. This implies that the attentional state is available to the decision process
and is incorporated into probabilistic representations used to make the decision.

Although our main question was whether observers’ decisions took uncertainty into account, our methods
also allowed us to determine whether Bayesian computations were necessary to produce the behavioral data,
or whether heuristic strategies of accounting for uncertainty would suffice. We tested two models with
heuristic decision rules in which the decision boundaries vary as linear or quadratic functions of uncertainty,
approximating the Bayesian boundaries (Figure S3a). The Linear and Quadratic models both outperformed
the Fixed model (LOO differences of 124 [77, 177] and 129 [65, 198], respectively; Figure S3b,c). The best
model, quantitatively, was Quadratic, similar to previous findings with contrast-dependent uncertainty4,5.
Table S2 shows all pairwise comparisons of the models. Model recovery showed that our models were
meaningfully distinguishable (Figure S4). Decision rules therefore changed with attention without requiring
Bayesian computations.

We next asked whether category decision boundaries—regardless of confidence—shift to account for
attention-dependent uncertainty. Perhaps, for example, performance of the Bayesian model was superior
not because observers changed their categorization behavior, but because they rated their confidence based
on the attention condition, which they knew explicitly. Given the mixed findings on the relation between
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Figure 3: Model schematics, fits, and fit comparison. (a) Schematic of Bayesian (left) and Fixed (right) models, which were
fit separately for each observer. As attention decreases, uncertainty (the measurement noise SD) increases, and orientation
measurement likelihoods (blue and red curves) widen 25. In the Bayesian model, choice and confidence boundaries are
defined by posterior probability ratios and therefore change as a specific function of uncertainty. In the Fixed model,
boundaries do not depend on uncertainty. Colors indicate category and confidence response (color code in Figure 1b). (b)
Decision rules for Bayesian and Fixed models show the mappings from orientation measurement and uncertainty to category
and confidence responses. Horizontal lines indicate the uncertainty levels used in a; note that the regions intersecting with a
horizontal line match the regions in the corresponding plot in a. (c) Model fits to response as a function of orientation and
cue validity. Mean response is an 8-point scale ranging from “high confidence” category 1 to “high confidence” category 2,
with colors corresponding to those in Figure 1b; only the middle 6 responses are shown. Error bars show mean and SEM
across observers. Shaded regions are mean and SEM of model fits (Methods). Although mean response is shown here,
models were fit to raw trial-to-trial data. Stimulus orientation is binned to equate approximately the number of trials per
bin. (d) Model comparison. Black bars represent individual observer LOO differences of Bayesian from Fixed. Negative
values indicate that Bayesian had a higher (better) LOO score than Fixed. Blue line and shaded region show median and
95% confidence interval of bootstrapped mean differences across observers.

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 12, 2018. ; https://doi.org/10.1101/175075doi: bioRxiv preprint 

https://doi.org/10.1101/175075
http://creativecommons.org/licenses/by-nc-nd/4.0/


attention and confidence27–30, and the proposal that perceptual decisions do not account for attention13,
such a finding would not be trivial (see Discussion); but it would warrant a different interpretation than
if category decision boundaries also depended on attention. We fit the four models to the category choice
data only and again rejected the Fixed model (Figure S5a,b; Tables S3, S4). Therefore, category criteria,
independent of confidence criteria, varied as a function of attention-dependent uncertainty.

Finally, we directly tested for decision boundary shifts—the key difference between the Bayesian and Fixed
models—by estimating each observer’s category decision boundaries non-parametrically. To do so, we fit
the category choice data with a Free model in which the category decision boundaries varied freely and
independently for each attention condition. The estimated boundaries differed between valid and invalid
trials (Figures 4, S5c), with a mean difference of 7.5◦ (SD = 7.8◦) [two-tailed paired t-test, t(11) = 3.33,
p < 10−2]. Most observers showed a systematic outward shift of category decision boundaries from valid to
neutral to invalid conditions, confirming that their choices accounted for uncertainty.
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Figure 4: Free model analysis. Group mean MCMC parameter estimates (crosses) show systematic changes in the category
decision boundary across attention conditions. The same pattern can be seen for individual observers: each gray line
corresponds to a different observer, with connected points representing the estimates for valid, neutral, and invalid attention
conditions. Each point represents a pair of parameter estimates: uncertainty and category decision boundary for a specific
attention condition.

Discussion

Using an embedded category task designed to distinguish fixed from flexible decision rules, we found that
human perceptual decision-making can take into account uncertainty due to spatial attention. These find-
ings indicate flexible decision behavior that is responsive to attention—an internal factor that affects the
uncertainty of stimulus representations.

Our findings of flexible decision boundaries run counter to a previous proposal that observers use a fixed
decision rule under varying attentional conditions13–15,18. This idea originated from a more general “unified
criterion” proposal22,23, which asserts that in a display with multiple stimuli, observers adopt a single, fixed
decision boundary (the “unified criterion”) for all items19–24. The unified criterion proposal implies a rigid,
suboptimal mechanism for perceptual decision-making in real-world complex scenes, in which uncertainty
can vary due to a variety of factors.

Although the unified criterion proposal has served as a parsimonious explanation for experimental find-
ings13–15,18–24, it is impossible to infer decision boundaries from behavior in the signal detection theory
(SDT) tasks used previously31. In theory, it is always possible to explain behavioral data from such tasks
with a fixed decision rule, as long as the means and variances of the internal measurement distributions are
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free to vary (Supplementary Text Section S1).

This issue is particularly thorny for attention studies: SDT works with arbitrary, internal units of “evidence”
for one choice or another, and attention could change the means, the variances, or both properties of the
internal evidence distributions10,11,32. As a result, the decision boundaries are underconstrained: a fixed
decision boundary could be mistaken for a flexible one, and vice versa (Figure 5). A related point has been
made by a study showing that, in a perceptual averaging task, confidence data that appear to be generated
by a fixed decision rule can also be explained by a Bayesian decision rule with small underestimations of the
internal measurement noise33. These considerations underscore the importance of doing model comparison
even for relatively simple decision models. It may be, then, that decision boundaries did change with
attention in previous studies, but these changes were not inferred for methodological reasons.
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Figure 5: Limitations of standard SDT tasks. SDT tasks such as the detection task illustrated here cannot distinguish
fixed from flexible decision rules when the means and variances of internal measurement distributions can also vary across
conditions. (a) Fixed and (b) flexible decision rules give the same behavioral data (perceptual sensitivity, d′, and criterion,
c) in the two depicted scenarios, in which attention affects the measurement distributions differently (compare the invalid
distributions in a and b). An experimenter could not infer from the behavioral data which scenario actually occurred.

Alternatively, it may be that decision boundaries truly did not change in previous studies, and task differences
underlie our differing results. Studies supporting the unified criterion proposal employed either detection
or orthogonal discrimination13,15,18–24, which is often used as a proxy for detection10,34. In these tasks,
the stimuli are low contrast relative to either a blank screen or a noisy background, and performance is
limited by low signal-to-noise ratio. In our categorization task, in contrast, performance is limited by the
difficulty of discriminating categories of orientations. Maximum performance depends on the degree of
overlap of the category-conditioned stimulus distributions, but variations in performance are determined by
the precision of orientation representations, just as in a left vs. right fine discrimination task. Therefore it
may be that observers adjust decision boundaries defined with respect to precise features (e.g., what is the
exact orientation?) but not boundaries defined with respect to signal strength (e.g., is anything present at
all?).

Other task differences could play a role as well. Some previous experiments matched perceptual sensitivity d′
for different attention conditions by changing stimulus contrast; in these experiments, attention and physical
stimulus properties varied together13,15. For the metacognitive report, our study asked for confidence rather
than visibility13; these subjective measures are known to differ35. Finally, one study15 using a signal
detection approach suggested that observers do not fully take into account an instructed prior, and take it
into account less when attention is low. The question of how attention affects the use of a prior is different
from the question asked in the current study, as incorporating a prior requires a cognitive step beyond
accounting for uncertainty in the perceptual representation. In the future, it will be interesting to examine
how decision boundaries relate to explicit priors using tasks in which absolute decision boundaries can be
uniquely inferred.
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Despite the fact that attention has a large influence on visual perception8, only a handful of studies have
examined the influence of attention on confidence. Their findings have been mixed. Two studies found
that voluntary attention increased confidence27,28; one found that voluntary but not involuntary attention
increased confidence30; and another found no effect of voluntary attention on confidence29. This last result
has been attributed to response speed pressures27,30. Three other studies suggested an inverse relation
between attention and confidence, though these used rather different attention manipulations and measures.
One study reported higher confidence for uncued compared to cued error trials36; one found higher confidence
for stimuli with incongruent compared to congruent flankers37; and a third found that lower fMRI BOLD
activation in the dorsal attention network correlated with higher confidence18. Our results, based on an
experimental manipulation of spatial attention with no response speed pressure, support a positive relation
between spatial attention and confidence and further reveal that it is approximately Bayesian.

The mechanisms for decision adjustment under attention-dependent uncertainty could be mediated by effec-
tive contrast10,38,39. Alternatively, attention-dependent decision-making may rely on higher-order monitor-
ing of attentional state. For example, the observer could consciously adjust a decision depending on whether
he or she was paying attention. Future studies will be required to distinguish between these more bottom-up
or top-down mechanisms.

Our finding that human observers incorporate attention-dependent uncertainty into perceptual catego-
rization and confidence reports in a statistically appropriate fashion points to the question of what other
kinds of internal states can be incorporated into perceptual decision-making. There is no indication, for
example, that direct stimulation of sensory cortical areas leads to adjustments of confidence and visibility
reports18,40,41, suggesting that the system is not responsive to every change to internal noise. It may
be that the system is more responsive to states that are internally generated or that have consistent
behavioral relevance. Attention is typically spread unevenly across multiple objects in a visual scene, so
the ability to account for attention likely improves perceptual decisions in natural vision. It remains to
be seen whether the perceptual decision-making system is responsive to other cognitive or motivational states.
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Methods

1 Experiment

1.1 Observers

Twelve observers (7 female, 5 male), aged 18–25 years, participated in the experiment. These observers came
from an original set of 28 observers who completed at least one session. The remaining observers did not
complete the main experiment, either because they were not invited to continue following the pre-screening
staircase sessions (15 observers, Section 1.3.7) or because they chose to stop participating before all sessions
were completed (one observer). Observers received $10 per 40–60 minute session, plus a completion bonus of
$25. The experiments were approved by the University Committee on Activities Involving Human Subjects
of New York University. Informed consent was given by each observer before the experiment. All observers
were naïve to the purpose of the experiment. No observers were fellow scientists.

1.2 Apparatus and stimuli

1.2.1 Apparatus

Observers were seated in a dark room, at a viewing distance of 57 cm from the screen, with their chin
in a chinrest. Stimuli were presented on a gamma-corrected 100 Hz, 21-inch display (Model Sony GDM-
5402). The display was connected to a 2010 iMac running OS X 10.6.8 using MATLAB (Mathworks) with
Psychophysics Toolbox 342–44.

1.2.2 Stimuli

The background was mid-level gray (60 cd/m2). Stimuli consisted of drifting Gabors with a spatial frequency
of 0.8 cycles per degree, a speed of 6 cycles/s, a Gaussian envelope with a SD of 0.8 degrees of visual angle
(dva), and a randomized starting phase. In category training, the stimuli were positioned at fixation, and
the central fixation cross was a black “+” subtending 1.2 dva in diameter. In all other blocks, one stimulus
was positioned in each of the four quadrants of the screen, at 45, 135, 225, and 315 degrees, 5 dva from
fixation, and the fixation cross was a black “×” with each arm pointing to a quadrant. One or more of the
arms turned white to provide a precue or response cue (Figure 1b). Stimulus contrast depended on the
block type.

1.2.3 Categories

Stimulus orientations si were drawn from Gaussian distributions with means µ1 = µ2 = 0◦, and standard
deviations σ1 = 3◦ (category 1) and σ2 = 12◦ (category 2). Because the category distributions overlapped,
maximum accuracy was ~80%.

1.2.4 Attention manipulation

During attention training and testing blocks, voluntary spatial attention was manipulated via a central precue
presented at the start of the trial. A response cue at the end of the trial indicated which of the four stimuli
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to report. On each trial, each of the four stimuli was drawn from one of the two category distributions. Each
stimulus was generated independently. In valid trials (66.7% of all trials), a single quadrant was precued
and the response cue matched the precue. In invalid trials (16.7%), a single quadrant was precued and the
response cue did not match the precue. Cue validity was therefore 80% when a single quadrant was precued.
In neutral trials (16.7%), all four quadrants were precued, and the response cue pointed to one of the four
quadrants with equal probability for each quadrant.

1.3 Procedure

Each observer completed seven sessions. Because our behavioral task involved multiple components—
orientation categorization, confidence reports, and attention—we trained observers on each component in a
stepwise fashion, as described below.

The first two sessions (“staircase sessions”) were used to pre-screen observers and find a stimulus con-
trast level that would achieve maximum separability in performance across the three attention conditions.
Each staircase session consisted of 3 category training blocks and 3 category/attention testing-with-staircase
blocks, in alternation. No confidence reports were collected in these sessions. The first category training
block was preceded by a category demo, and the first category/attention testing-with-staircase block was
preceded by a category/attention training block. Detailed instructions were provided in the first session.
Most blocks consisted of sets of trials, in between which the observer was informed of their progress (e.g.,
“You have completed three quarters of Testing Block 2 of 3”) and allowed to rest. The staircase sessions
also served as practice on the categorization and attention components of the task, so that observers knew
them well by the time they started the main experiment. During these sessions, stimulus contrast was 35%
for training blocks, and varied during the testing-with-staircase blocks.

The final five sessions (“test sessions”) comprised the main experiment. Each test session consisted of 3
category training blocks and 3 confidence/attention testing blocks, in alternation. The first category training
block was preceded by a category demo, and the first confidence/attention testing block was preceded by a
confidence/attention training block. During these sessions, stimulus contrast was fixed to an observer-specific
value in all blocks.

Combining all test sessions, 9 observers completed 15 confidence/attention testing blocks (2160 trials), 2
observers completed 14 testing blocks (2016 trials), and 1 observer completed 12 testing blocks (1728 trials).
Accuracy on category training trials was 70.8% ± 4.0% (mean ± 1 SD) in staircase sessions and 71.9% ±
4.0% in test sessions, indicating that observers learned the category distributions well (recall that maximum
accuracy on the task is ~80%).

1.3.1 Eye tracking

Eye tracking (Eyelink 1000) was used to monitor fixation online. In all blocks, trials were only initiated
when the observer was fixating. In testing blocks, trials in which observers broke fixation due to blinks or
eye movements were aborted and repeated later in the experiment.

1.3.2 Instructions

First staircase session. Before the first category training block, we provided observers with a printed graphic
similar to Figure 1a, explained how the stimuli were generated from distributions, and explained the cat-
egory training procedure. We also explained that trials would only proceed when the observer maintained
fixation. Before the category/attention training block, we explained the attention task using an onscreen
graphic that explained the cuing procedure and a printed graphic that illustrated cue validity. We also
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explained the requirement to maintain fixation from the precue until the response cue and the consequences
of breaking fixation. Before the first category/attention testing-with-staircase block, we explained that the
stimulus presentation time would be shorter and that the contrast of the stimuli would vary.

First test session. Before the confidence/attention training block, we explained two changes to the experi-
ment. First, we told observers that they would be reporting category choice and confidence simultaneously.
We provided a printed graphic similar to the buttons shown in Figure 1b, showing the eight buttons repre-
senting category choice and confidence level, the latter on a 4-point scale. The confidence levels were labeled
as “very high,” “somewhat high,” “somewhat low,” and “very low.” All printed graphics were visible to
observers throughout the experiment. Second, we told observers that contrast would be fixed (rather than
variable) for the remainder of the experiment, in all blocks.

1.3.3 Category demo

We showed observers 25 randomly drawn exemplar stimuli from each category (50 exemplars in the first
staircase session). Stimulus contrast was 35% in staircase sessions and observer-specific in test sessions.

1.3.4 Category training

To ensure that observers knew the stimulus distributions well, we gave them extensive category training with
trial-to-trial correctness feedback and foveal stimulus presentation to reduce orientation uncertainty. Each
trial proceeded as follows: Observers fixated on a central cross for 1 s. Category 1 or category 2 was selected
with equal probability. The stimulus orientation was drawn from the corresponding stimulus distribution
and displayed as a drifting Gabor. The stimulus appeared at fixation for 300 ms, replacing the fixation cross.
Observers were asked to report category 1 or category 2 by pressing a button with their left or right index
finger, respectively. Observers were able to respond immediately after the offset of the stimulus, at which
point correctness feedback was displayed for 1.1 s, e.g., “You said Category 1. Correct!” The fixation cross
then reappeared. In staircase sessions, the stimulus contrast was 35%. In test sessions, the contrast matched
the observer-specific levels chosen for testing blocks, in order to minimize obvious changes between training
and testing blocks. Each category training block had 2 sets of 36 trials (72 total). At the end of the block,
observers were shown the percentage of trials that they had correctly categorized.

1.3.5 Category/attention training

To familiarize observers with the attention task before the testing-with-staircase blocks, they completed
category/attention training. Observers performed the attention task, reporting only category choice. To
prevent observers from forming a simple mapping of orientation measurement and attention condition onto
the probability of category 1 (which might have biased behavior towards the Bayesian model), we withheld
trial-to-trial feedback on this and all other types of attention blocks. The precue indicating which location(s)
to attend to appeared for 300 ms, followed by a 300 ms period in which a standard fixation cross was shown.
Then the four drifting Gabor stimuli were displayed for 300 ms. After another 300 ms period with a fixation
cross, the response cue appeared, indicating which stimulus to report. The response cue remained on the
screen until the observer pressed one of the two choice response buttons, with no time pressure. Observers
were free to blink or rest briefly between trials, with a minimum intertrial interval of 800 ms. All attention
conditions were randomly intermixed. The stimulus contrast was 35%, as in staircase session category
training. The block had 36 trials in the first session and 30 trials in subsequent sessions. At the end of the
block, observers were shown the percentage of trials they had correctly categorized.
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1.3.6 Category/attention testing-with-staircase

The purpose of this block was to determine the stimulus contrast for each observer that would be used
in the test sessions. The trial procedure was identical to that of category/attention training, except that
stimulus presentation time was 80 ms (instead of 300 ms) and stimulus contrast varied. We used an adaptive
staircase procedure to determine the stimulus contrast on each trial and estimate psychometric functions
for performance accuracy as a function of log contrast. Separate staircases were used for valid, neutral, and
invalid conditions. We used Luigi Acerbi’s MATLAB (https://github.com/lacerbi/psybayes) implementation
of the PSI method by Kontsevich and Tyler45, extended to include the lapse rate46. The method generates a
posterior distribution over three parameters of the psychometric function: threshold µ, slope σ, and lapse rate
λ. On each trial, it selects a stimulus intensity that maximizes the expected information gain by completion
of the trial. µ (log contrast units) ranged from −6.5 to 0 and had a Gaussian prior distribution with mean
−2 and SD 1.2. log σ ranged from −3 to 0, and had a uniform prior distribution across the range. λ ranged
from 0.15 (because the maximum accuracy in the task was slightly below 1 − 0.15) to 0.5, and had a Beta
prior distribution with shape parameters α = 20 and β = 39. Each block had 4 sets of 36 trials (144 total).
At the end of the block, observers were shown the percentage of trials that they had correctly categorized.

1.3.7 Observer pre-screening and contrast selection

Simulations we conducted before starting the study showed that without a sufficiently large noise (related
to accuracy) difference between valid and invalid trials, our models would be indistinguishable. Therefore,
we used a pre-screening process to select observers with a robust attention effect to participate in the
main experiment. We also determined the stimulus contrast at which each observer’s attention effect was
maximal. This procedure increased the probability that uncertainty would depend on attention in the main
experiment, which was critical for answering our central question about decision behavior. Note that the
pre-screening procedure only concerned the overall accuracy difference between valid and invalid trials, which
is independent of how attention affects the decision rule.

After each observer’s final staircase session, we plotted and visually inspected the mean and SD of the
posterior over the 3 (valid, neutral, and invalid) estimated psychometric functions (an example is shown in
Figure S7). An observer was considered eligible for the remainder of the study if there existed a contrast
that satisfied two conditions. 1) Invalid accuracy was above chance: The mean minus the SD of the posterior
over invalid psychometric functions was above 0.5. 2) Valid accuracy was different from invalid accuracy:
The mean minus the SD of the posterior over valid psychometric functions was greater than the mean plus
1 SD of the posterior over invalid psychometric functions. For example, note that there is a range of values
in Figure S7 for which the purple shading does not overlap with the chance line or with the green shading.
Within the range of suitable contrasts, we selected the contrast for which the separation between valid,
neutral, and invalid performance appeared to be maximal. Observers for which no suitable contrast could
be found were not invited to participate in the main experiment. Selected contrasts ranged from 4% to 60%
across observers.

1.3.8 Confidence/attention training

To familiarize observers with the button mappings for choice and confidence, they completed confi-
dence/attention training. The trial procedure was identical to category/attention training, except observers
reported their confidence on each trial in addition to their category choice. Observers were not instructed
to use the full range of confidence reports, as that might have biased them away from reporting what felt
most natural. Instead, they were simply asked to be “as accurate as possible in reporting their confidence”
on each trial. Feedback about their choice and confidence report was presented for 1.2 s after each trial, e.g.
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“You said category 2 with HIGH confidence.” The stimulus contrast was specific to each observer, based on
the staircase sessions. There were 30 trials per block.

1.3.9 Confidence/attention testing

These were the main experimental blocks. The trial procedure (Figure 1b) was the same as in confi-
dence/attention training blocks, but with no trial-to-trial feedback whatsoever. Each block had 4 sets of 36
trials (144 total). At the end of each block, observers were required to take a break of at least 30 s. During
the break, they were shown the percentage of trials that they had correctly categorized. Observers were also
shown a list of the top 10 block scores (across all observers, indicated by initials). This was intended to
motivate observers to perform well, and to reassure them that their scores were normal, since it is rare to
score above 75% on a block.

2 Modeling

The modeling procedures were similar to those used by Adler and Ma5. Several modeling choices were
adopted based on model comparisons performed for that study. These included: having orientation-
dependent measurement noise; allowing all decision boundaries to be free parameters in the Bayesian model;
including decision noise in the Bayesian model; and modeling three types of lapse rates.

2.1 Measurement noise

We used free parameters to characterize σ, the standard deviation (SD) of orientation measurement noise,
for all three attention conditions: σvalid, σneutral, and σinvalid.

We assumed additive orientation-dependent noise in the form of a rectified 2-cycle sinusoid, accounting for the
finding that measurement noise is higher at noncardinal orientations47. For a given trial i, the measurement
noise SD comes out to

σi = σattention condition + ψ
∣∣∣sin πs90

∣∣∣. (1)

The second term of this equation is a constant that depends on the stimulus orientation s, with ψ a free
parameter that determines the degree of orientation dependence.

2.2 Response probability

We coded all responses as r ∈ {1, 2, . . . , 8}, with each value indicating category and confidence. A value
of 1 mapped to high confidence category 1, and a value of 8 mapped to high confidence category 2, as in
Figure 1b. The probability of a single trial i is equal to the probability mass of the internal measurement
distribution p(x | si) = N (x; si, σ2

i ) in a range corresponding to the observer’s response ri. Because we only
use a small range of orientations, we can safely approximate measurement noise as a normal distribution,
rather than a von Mises distribution. We find the boundaries (bri−1(σi), bri

(σi)) in measurement space, as
defined by the fitting modelm and parameters θ, and then compute the probability mass of the measurement
distribution between the boundaries:
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pm,θ(ri | si, σi) =
∫ −bri−1

−bri

N (x; si, σ2
i ) dx+

∫ bri

bri−1

N (x; si, σ2
i ) dx, (2)

where b0 = 0◦ and b8 =∞◦.

To obtain the log likelihood of the dataset, given a model with parameters θ, we compute the sum of the log
probability for every trial i, where t is the total number of trials:

log p(data | θ) =
t∑
i=1

log p(ri | θ) =
t∑
i=1

log pθ(ri | si, σi). (3)

2.3 Model specification

2.3.1 Bayesian

Derivation of d. The log posterior ratio d is equivalent to the log likelihood ratio plus an additive term
representing the prior probability over category:

d = log p(C = 1 | x)
p(C = 2 | x) = log p(x | C = 1)

p(x | C = 2) + log p(C = 1)
p(C = 2) . (4)

To get d, we need to find the expressions for the orientation measurement likelihood p(x | C). The observer
knows that the measurement x is caused by the stimulus s, but has no knowledge of s. Therefore, the optimal
observer marginalizes over s:

p(x | C) =
∫
p(x | s)p(s | C) ds. (5)

We substitute the expressions for the noise distribution and the stimulus distribution, and evaluate the
integral:

p(x | C) =
∫
N (s;x, σ2)N (s;µC , σ2

C) ds = N (x;µC , σ2 + σ2
C). (6)

Plugging in the category-specific µC and σC , and substituting these expressions back into equation (4), we
get:

d = 1
2 log σ

2 + σ2
2

σ2 + σ2
1
− σ2

2 − σ2
1

2(σ2 + σ2
1)(σ2 + σ2

2)x
2 + log p(C = 1)

p(C = 2) . (7)

The 8 possible category and confidence responses are determined by comparing the log posterior ratio d
to a set of decision boundaries k = (k0, k1, . . . , k8). k4 is equal to the observer’s believed log prior ratio
log p(C=1)

p(C=2) , which functions as the boundary on d between the 4 category 1 responses and the 4 category
2 responses and is fit to capture possible category bias. k4 is the only boundary parameter in models of
category choice only (and not confidence). k0 is fixed at −∞ and k8 is fixed at ∞. The observer chooses
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category 1 when d is positive. Thus there were 7 free boundary parameters: k1, k2, k3, k4, k5, k6, k7.

The posterior probability of category 1 can be written as as p(C = 1 | x) = 1
1+exp(−d) .

Decision boundaries. In the Bayesian models with d noise, we assume that, for each trial, there is an added
Gaussian noise term on d, ηd ∼ p(ηd), where p(ηd) = N (0, σ2

d), and σd is a free parameter. We pre-computed
101 evenly spaced draws of ηd and their corresponding probability densities p(ηd). We used equation (7)
to compute a lookup table containing the values of d as a function of x, σ, and ηd. We then used linear
interpolation to find sets of measurement boundaries b(σ) corresponding to each draw of ηd 48. We then
computed 101 response probabilities for each trial (as described in Section 2.2), one for each draw of ηd,
and computed the weighted average according to p(ηd). This gave the values of pm,θ(ri | si, σi) for each trial
i, which are needed in order to compute the total log likelihood of the dataset under the model.

In the Bayesian choice model without d noise, we translate the decision boundary k4 from a log prior ratio
to a measurement boundary corresponding to the fitted noise levels σ. To do this, we use k4 as the left-hand
side of equation (7) and solve for x at the fitted levels of σ. We used this model only for the purpose of
obtaining estimates of the category decision boundary parameters, and not for model comparison.

2.3.2 Fixed

In the Fixed model, the observer compares the measurement to a set of boundaries that are not dependent
on σ. We fit free parameters k and use measurement boundaries br = kr.

2.3.3 Linear and Quadratic

In the Linear and Quadratic models, the observer compares the measurement to a set of boundaries that
are linear or quadratic functions of σ. We fit free parameters k and m and use measurement boundaries
br(σ) = kr +mrσ (Linear) or br(σ) = kr +mrσ

2 (Quadratic).

2.3.4 Free

To estimate the category boundaries with minimal assumptions, we fit a Free model in which the observer
compares the orientation measurement to a set of boundaries that vary nonparametrically (i.e., free of a
parametric relationship with σ) across attention conditions. As with the Bayesian choice model without
d noise (Section 2.3.1), we used this model only for the purpose of obtaining estimates of the category
decision boundary parameters and did not fit confidence. We fit free parameters k4,valid, k4,neutral, k4,invalid,
and used measurement boundaries b4,attention condition = k4,attention condition.

2.4 Model fitting

Rather than find a maximum likelihood estimate of the parameters, we sampled from the posterior distribu-
tion over parameters, p(θ | data); this has the advantage of maintaining a measure of uncertainty about the
parameters, which can be used both for model comparison and for plotting model fits. To sample from the
posterior, we use an expression for the unnormalized log posterior

log p(θ | data) = log p(data | θ) + log p(θ), (8)
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where log p(data | θ) is given in equation (3). We assumed a factorized prior over each parameter j:

log p(θ) =
n∑
j=1

log p(θj), (9)

where j is the parameter index and n is the number of parameters. We took uniform (or, for parameters
that were standard deviations, log-uniform) priors over reasonable, sufficiently large ranges48, which we
chose before fitting any models.

We sampled from the probability distribution using a Markov Chain Monte Carlo (MCMC) method, slice
sampling49. For each model and dataset combination, we ran between 4 and 10 parallel chains with random
starting points. For each chain, we took 100,000 to 1,000,000 total samples (depending on model computa-
tional time) from the posterior distribution over parameters. We discarded the first third of the samples and
kept 6,667 of the remaining samples, evenly spaced to reduce autocorrelation. All samples with log posteriors
more than 40 below the maximum log posterior were discarded. Marginal probability distributions of the
sample log likelihoods were visually checked for convergence across chains. In total we had 120 model and
dataset combinations, with a median of 40,002 kept samples (interquartile range = 13,334).

2.5 Model comparison

2.5.1 Metric choice

To compare model fits while accounting for the complexity of each model, we computed an approximation of
leave-one-out cross-validation. Leave-one-out cross-validation is the most thorough way to cross-validate but
is very computationally intensive; it requires fitting the model t times, where t is the number of trials. The
Pareto smoothed importance sampling approximation of leave-one-out cross-validation (PSIS-LOO, referred
to here simply as LOO) takes into account the model’s uncertainty landscape by using samples from the full
posterior of θ 26. LOO is currently the most accurate approximation of leave-one-out cross-validation50.

2.5.2 Metric aggregation

In all figures where we present model comparison results (Figures 3d, S3c, S5b), we aggregate LOO
scores by the following procedure: Choose a reference model (e.g. Fixed). Subtract all LOO scores from the
corresponding observer’s score for that model; this converts all scores to a LOO “difference from reference”
score, with lower (more negative) indicating a better score and higher (more positive) indicating a worse
score. Repeat the following standard bootstrap procedure 10,000 times: Choose randomly, with replacement,
a group of datasets equal to the total number of unique datasets, and take the mean of their “difference
from reference” scores for each model. Blue lines and shaded regions in model comparison plots indicate the
median and 95% CI on the distribution of these bootstrapped mean “difference from reference” scores.
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Supplementary Text

S1 Theoretical motivations for using the embedded category task

The goal of the current study was to test whether category and confidence decision rules account for attention-
dependent uncertainty. The embedded category task4 can answer this question, whereas standard signal
detection theory51 (SDT) detection and coarse discrimination (e.g., ±45◦) tasks are unable to do so. There
are two key theoretical advantages of the embedded category task over the SDT tasks: 1) the ability to infer
absolute decision boundaries, and 2) the incentive to shift the category boundary when uncertainty changes.

S1.1 Inference of absolute decision boundaries

A decision rule can be thought of as a boundary defined on the observer’s internal measurement space. Here
we were interested in the absolute location of that boundary b. The “unified criterion” discussed previously
also refers to an absolute boundary22,23.

The embedded category task can be used to infer absolute decision boundaries from behavioral data, because
the measurement axis represents known feature values – specifically, orientation values. Making a category
or confidence decision can be thought of as comparing the observed stimulus orientation to an internal
reference orientation, which is the decision boundary. As experimenters, we know the means of the internal
measurement distributions (specific orientations), so we can infer the absolute decision boundary on the
orientation axis.

In SDT detection and coarse discrimination tasks, in contrast, absolute decision boundaries cannot be
inferred, because the measurement axis represents values that we, as experimenters, do not know. In a
detection task, the measurement value is thought of as the strength of the internal signal, or the “amount
of evidence” that the external signal is present. In a coarse discrimination task, the measurement value
is thought of as the amount of evidence for choice 1 (e.g., −45◦) versus choice 2 (e.g., +45◦). We don’t
know the means of the internal measurement distributions in real values; we don’t even know what the units
are. Consequently, the behavioral SDT measures d′ (perceptual sensitivity) and c (criterion) are defined
in a normalized space – d′ and c are z-scored measures of the distance between the two internal category
distributions and the location of the observer’s decision boundary, respectively. So they are relative measures.

As a result, an absolute decision boundary b is unrecoverable from behavioral data. This fact can be shown
mathematically. The standard formulae for d′ and c are

d′ = Z(H)− Z(F ) (S1)

c = −1
2(Z(H) + Z(F )), (S2)

where Z is the inverse of the normal cumulative distribution function (i.e., z-score), H is the proportion of
hits, and F is the proportion of false alarms. Note this formula gives c with respect to the unbiased criterion.
If we let the mean of the noise distribution be 0 and the mean of the signal distribution be µ, then
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d′ = µ

σ
(S3)

c =
b− µ

2
σ

. (S4)

Here we have two equations with three unknowns. Any combination of d′ and c is therefore consistent with
an infinite set of combinations of the µ, σ, and b parameters; thus b cannot be uniquely determined. The
intuition here is that the SDT axis can be rescaled without changing d′ and c (Figure S1a). The same issue
applies not only to d′ and c but to any other relative behavioral measure, such as hit rate or false alarm
rate. Kontsevich et al.31 raised this concern about Gorea and Sagi’s23 proposal of a unified criterion for
simultaneously presented stimuli.
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Figure S1: Methodological limitations in standard signal detection tasks. (a) Rescaling the SDT axis by a factor a yields the
same values of d′ and c, but with a different set of parameters (the original parameters rescaled by a). This is because d′

and c are relative to the internal measurement distributions, not any absolute evidence metric. (b) In standard SDT tasks,
when the means of the internal measurement distributions are symmetric about the optimal category boundary, changing
the uncertainty does not change the optimal boundary. µ = mean, σ = standard deviation, b = decision boundary.

The non-uniqueness of SDT parameters creates a critical problem when asking whether b changes with
attention. Attention could change µ, σ, or both properties of the internal measurement distributions10,11,32.
Therefore, b cannot be compared, even in a relative fashion, across attention conditions; so fixed and flexible
decision rules cannot be distinguished (Figure 5).

Note that changes in confidence boundaries with uncertainty can be determined even for a standard SDT

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 12, 2018. ; https://doi.org/10.1101/175075doi: bioRxiv preprint 

https://doi.org/10.1101/175075
http://creativecommons.org/licenses/by-nc-nd/4.0/


task as long as a known stimulus dimension is manipulated simultaneously. For example, a left vs. right
fine discrimination task in which stimuli are drawn from orientation distributions with similar means can
be used to infer absolute confidence boundaries on an orientation axis5. In general, two-dimensional data
(e.g., orientation × uncertainty, or features of two separate stimuli) are required to distinguish different
confidence models52. As we shall see next, however, fine discrimination tasks are not able to assess how
category boundaries change with uncertainty.

S1.2 Incentive to shift the category boundary when uncertainty changes

In the embedded category task, the category distributions overlap in such a way that the optimal category
boundaries shift when the uncertainty in the measurement distributions changes (Figure 3a,b). Therefore,
observers have an incentive to shift their category decision rules when uncertainty changes, and we as
experimenters are able to assess whether they do so.

In standard SDT tasks, in contrast, the optimal category boundary does not depend on uncertainty σ if the
means of the internal measurement distributions remain symmetric about the boundary (Figure S1b). So if
attention does not change the means, or changes them symmetrically (as in a discrimination task), then the
optimal category boundary will not change. Observers therefore have no incentive to change their category
decision rules when uncertainty changes, making it impossible to test whether the category boundary is fixed
or flexible.

In summary, the embedded category task has two critical advantages over standard SDT tasks, which allow
an unambiguous determination of whether and how perceptual decisions take uncertainty into account.

S2 Modeling

S2.1 Lapse rates

In category and confidence models, we fit three different types of lapse rate. On each trial, there is some
fitted probability of:

• A “full lapse” in which the category report is random, and confidence report is chosen from a distri-
bution over the four levels defined by λ1, the probability of a “very low confidence” response, and λ4,
the probability of a “very high confidence” response, with linear interpolation for the two intermediate
levels.

• A “confidence lapse” λconfidence in which the category report is chosen normally, but the confidence
report is chosen from a uniform distribution over the four levels.

• A “repeat lapse” λrepeat in which the category and confidence response is simply repeated from the
previous trial.

In category choice models, we fit a standard category lapse rate λ, as well the above “repeat lapse” λrepeat.

S2.2 Parameterization

All parameters that defined the width of a distribution (σvalid, σneutral, σinvalid, σd) were sampled in log-space
and exponentiated during the computation of the log likelihood. See Table S1 for a complete list of model
parameters for category choice and confidence models and Table S3 for choice-only models.
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S2.3 Visualization of model fits

Model fits were plotted by bootstrapping synthetic group datasets with the following procedure: For each
model and observer, we generated 20 synthetic datasets, each using a different set of parameters sampled,
without replacement, from the posterior distribution of parameters. Each synthetic dataset was generated
using the same stimuli as the ones presented to the real observer. We randomly selected a number of
synthetic datasets equal to the number of observers to create a synthetic group dataset. For each synthetic
group dataset, we computed the mean response per orientation bin. We then repeated this 1,000 times and
computed the mean and standard deviation of the mean output per bin across all 1,000 synthetic group
datasets, which we then plotted as the shaded regions. Therefore, shaded regions represent the mean ±1
SEM of synthetic group datasets.

For plots with stimulus orientation on the horizontal axis (Figures 2b, 3c, S3b, S5a), orientation was
binned according to quantiles of the stimulus distributions so that each point consisted of roughly the same
number of trials. We took the overall stimulus distribution p(s) = 1

2 (p(s | C = 1) + p(s | C = 2)) and found
bin edges such that the probability mass of p(s) was the same in each bin. We then plotted the binned data
with linear spacing on the horizontal axis.

S2.4 Model comparison metric analysis

We determined that our results were not dependent on our choice of model comparison metric. We computed
AIC, BIC, AICc, WAIC53, and LOO for all models in the 2 model groupings (category choice-plus-confidence
and category choice-only), multiplying the non-LOO metrics by − 1

2 to match the scale of LOO. For AIC,
BIC, and AICc, we selected the MCMC sample with the highest log likelihood as our maximum-likelihood
parameter estimate. Then we computed Spearman’s rank correlation coefficient for every possible pairwise
comparison of model comparison metrics for all model and dataset combinations, producing 20 total values
(2 model groupings × 10 possible pairwise comparisons of model comparison metrics). All values were
greater than 0.998, indicating that, had we used an information criterion instead of LOO, we would not
have changed our conclusions. Furthermore, there are no model groupings in which the identities of the
lowest- and highest-ranked models are dependent on the choice of metric. The agreement of these metrics
strengthens our confidence in our conclusions.

S2.5 Model recovery analysis

We performed a model recovery analysis54 to test our ability to distinguish our choice and confidence
models. We generated synthetic datasets from each model, using the same sets of stimuli that were originally
randomly generated for each of the 12 observers. To ensure that the statistics of the generated responses
were similar to those of the observers, we generated responses to these stimuli from 8 of the randomly chosen
parameter estimates obtained via MCMC sampling (as described in Section 2.4) for each observer and
model. In total, we generated 384 datasets (4 generating models × 12 observers × 8 datasets). We then fit
all four models to every dataset, using maximum likelihood estimation (MLE) of parameters by an interior-
point constrained optimization (MATLAB’s fmincon), and computed AIC scores from the resulting fits. For
reasons of computational tractability, we used AIC instead of LOO as the model comparison metric. Because
AIC and LOO scores gave us near-identical model rankings for data from real subjects (Section 2.5.1), we
do not believe that the model recovery results are dependent on choice of metric.

We found that the true generating model was the best-fitting model, on average, in all cases (Figure S4).
Overall, AIC “selected” the correct model (i.e., AIC scores were lowest for the model that generated the
data) for 87.5% of the datasets, indicating that our models are distinguishable.
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Supplementary Figures
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Figure S2: The Bayesian mapping from orientation measurement and attention-dependent uncertainty to response. Colors
correspond to category and confidence response as in Figure 1b. (a) Blue and red curves show likelihood functions for the
category distributions under example levels of uncertainty. (b) The Bayesian model maps measurement and uncertainty
onto the decision variable, the log likelihood ratio (black curve). When the relative likelihood of category 1 is high, the
decision variable is large and positive; when the relative likelihood of category 2 is high, it is large and negative. Response is
determined by comparing the decision variable to boundaries that are fixed in log-likelihood-ratio space, but in measurement
space vary as a function of uncertainty.

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 12, 2018. ; https://doi.org/10.1101/175075doi: bioRxiv preprint 

https://doi.org/10.1101/175075
http://creativecommons.org/licenses/by-nc-nd/4.0/


b

a

valid
neutral
invalid

Fixed Bayesian Linear Quadratic

c O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
10

O
11

O
12

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
10

O
11

O
12

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
10

O
11

O
12

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
10

O
11

O
12

-13 -4 -2 0  2  4  13 
Stimulus (°)

M
ea

n 
re

sp
on

se

-13 -4 -2 0  2  4  13 -13 -4 -2 0  2  4  13 -13 -4 -2 0  2  4  13 

-20 -10 0 10 20
Measurement (°)

0

5

10U
nc

er
ta

in
ty

 (°
)

-20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20

-300

-200

-100

0

LO
O

Fi
xe

d

Figure S3: Category and confidence models. (a) Theoretical relation between orientation uncertainty and category and
confidence decision boundaries for all models. (b) Mean response as a function of orientation and cue validity, as in
Figure 3c. Stimulus orientation is binned to approximately equate the number of trials per bin. (c) Model comparison.
Black bars represent individual observer LOO score differences of each model from Fixed. Negative values indicate that
the corresponding model had a higher (better) LOO score than Fixed. Blue line and shaded region show median and 95%
confidence interval of bootstrapped mean LOO differences across observers.
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Figure S4: Model recovery analysis. Shade represents the difference between the mean AIC score (across synthetic datasets)
for each fitted model and for the one with the lowest mean AIC score. White squares indicate the model that had the
lowest mean AIC score when fitted to data generated from each model. The fact that all white squares lie on the diagonal
indicates that the true generating model was the best-fitting model, on average, in all cases.
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Figure S5: Category choice-only models. (a) Proportion of category 1 responses as a function of orientation and cue validity.
Error bars show mean and SEM across observers. Shaded regions are mean and SEM of model fits (Methods). Stimulus
orientation is binned to approximately equate the number of trials per bin. (b) LOO model comparison, as in Figure S3c.
(c) Mean MCMC orientation uncertainty and category choice boundary parameter estimates for a representative observer.
Estimates are plotted as a function of attention condition (valid, neutral, invalid; filled circles), along with their generating
functions (curves), for the four main models fit to the category choice data only, plus a Bayesian model with no noise
on the decision variable d and a nonparametric model in which choice boundaries are unconstrained (Free; parameter
estimates from this model are plotted in gray for all subjects in Figure 4). The Bayesian curve is to the left of the other
curves, because noise attributed to orientation uncertainty in the other models is partially attributed to decision noise in
the Bayesian model; when the decision noise parameter is removed (Bayesian, no d noise), the curve aligns with the others.
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Figure S6: RT and confidence data broken down by category and accuracy. RT did not depend strongly on category or
accuracy, though it was slightly longer for valid incorrect compared to valid correct trials. Confidence was higher overall for
correct compared to incorrect trials. Confidence was higher and RT slightly faster for category 2 incorrect trials compared
to category 1 incorrect trials, likely because there are more category 2 trials with high probability of being category 1 (which
would lead to a high confidence error) than category 1 trials with high probability of being category 2.
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Figure S7: Example plot used to determine per-observer stimulus contrast. Each curve shows the mean ±1 SD of the
posterior over psychometric functions for each attention condition. Error bars indicate the mean ±1 SD of the beta
distribution over correctness within log contrast bins. A dot indicates one correct or incorrect trial, located respectively at
the top or bottom of the plot, with vertical jitter. For this example observer, we selected a natural log contrast of -2.3
(i.e., a contrast of 10%).
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Supplementary Tables

Fixed Bayesian Linear Quadratic
Measurement noise σvalid, σneutral, σinvalid
Orientation-dependent noise ψ
Decision boundaries k1−7 k1−7, m1−7
d noise σd
Lapse rates λ1, λ4, λconfidence, λrepeat
Total number of parameters 15 16 22 22

Table S1: Parameters of category choice and confidence decision models.

15 pars. 16 pars. 22 pars.
Fixed Bayesian Linear

16 pars.
22 pars.
22 pars.

Bayesian
Linear

Quadratic

102 [45, 167]
124 [77, 177]
129 [65, 198]

21 [−3, 48]
27 [0, 53] 5 [−18, 28]

Table S2: Cross comparison of all category choice and confidence decision models. Cells indicate medians and 95% CI of
bootstrapped mean LOO score differences. A positive median indicates that the model in the corresponding row had a
higher score (better fit) than the model in the corresponding column.

Fixed Bayesian Bayesian,
no d noise* Linear Quadratic Free*

Measurement noise σvalid, σneutral, σinvalid
Orientation-dependent noise ψ
Decision boundaries k k, m kvalid, kneutral, kinvalid
d noise σd
Lapse rates λ, λrepeat
Total number of parameters 7 8 7 8 8 9

Table S3: Parameters of category choice-only decision models. * indicates models that were used only for obtaining
parameter estimates (Figures 4, S5c), and not for model comparison.

7 pars. 8 pars. 8 pars.
Fixed Bayesian Linear

8 pars.
8 pars.
8 pars.

Bayesian
Linear

Quadratic

9 [−2, 18]
11 [4, 19]
11 [5, 18]

2 [−3, 10]
2 [−2, 9] 0 [−2, 3]

Table S4: Cross comparison of all category choice-only decision models. Conventions as in Table S2.
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