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Abstract

In this study, we present novel schemes for the reconstruction of cellular morphology 1

and the inference of forces in the early C. elegans embryo. We have developed and 2

bench-marked a morphological reconstruction scheme that transforms live-imaging of 3

cellular membranes into a point cloud of smoothed surface patches, which facilitates 4

accurate estimation of membrane curvatures and the angles between membranes. 5

Assuming an isotropic and homogeneous distribution of tensions along a membrane, we 6

infer a pattern of forces that are 7% deviated from force balance at edges, and 10% 7

deviated from the Young-Laplace relation at membrane faces. We have also 8

demonstrated the stability of our scheme by sensitivity analysis of the coefficient 9

matrices involved and the reproducibility of our image-analysis and force inference 10

pipeline. 11

Introduction 12

The emergence of morphology during organismal development, morphogenesis, consists 13

of an interplay between biochemical signaling and mechanical forces. Despite our 14

acquisition of an ever growing list of participating molecular factors, the collective 15

nature of morphogenetic processes precludes a straightforward genotype-to-phenotype 16

map. Furthermore, an abundance of in vitro studies have reported on the role of 17

mechanotransduction in guiding cellular differentiation, suggesting that the map 18

between chemical factors and physical forces is bidirectional. Understanding details of 19

this map will constitute an advance in our conceptual understanding of morphogenesis. 20

Towards this end, single-molecule studies have provided a biophysical basis to the 21

roles that biopolymers, adhesion molecules, and molecular motors play in 22

morphogenesis. As such, morphogenetic processes involve the concerted and regulated 23

action of a collective of adhesion and cytoskeletal proteins that prevents a 24

straightforward understanding of the nature of forces given a list of participating 25

molecules. The same molecules, in different regulatory states, can give rise to distinct 26
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morphogenetic phenomena. While central to the research agenda, the molecular 27

approach faces difficulties in light of the complexity of regulation involved, and suggests 28

taking a phenomenological and physical approach to morphogenesis. 29

Live fluorescence-based imaging facilitates pursuing a phenomenological approach to 30

morphogenesis by giving us the ability to be quantitative about the geometry of cellular 31

shapes and flows, and the dynamics of the cytoskeleton. However, given the complexity 32

of a cell’s material properties, it is challenging to infer mechanical stresses from 33

observed patterns of deformations and flows. In short, we lack the tools necessary to 34

accurately and robustly measure the forces that determine cellular geometries and drive 35

cellular flows in embryos. Recently, a set of image-analysis based indirect force inference 36

schemes have begun to produce relative maps of forces in quasi two-dimensional 37

epithelial tissues [1–7]. Force inference schemes are based on the assumption of force 38

balance, are independent of the underlying material properties, and are constructed 39

from the geometry of the tissue alone. The assumption of force balance is justified in 40

settings where the timescales associated with cellular motion are large compared to the 41

relaxation timescales observed following laser ablation events. The inferred cell-cell 42

contact forces have been shown to correlate well with the average line density of 43

molecular motor distributions [6]. It is worth noting that while the emergence of 44

FRET-based reporters is exciting, connecting molecular-scale forces to the macroscopic 45

forces that drive morphogenetic movements is a challenge [8]. 46

The worm, C. elegans, embryo is an interesting setting within which to extend and 47

apply image analysis based indirect force inference techniques. Juxtaposing Drosophila 48

and Xenpus embryos, worm embryo’s undergo crucial cellular differentiation and 49

morphogenetic processes with a small number of cells. Famously, the cell lineage of the 50

worm is invariant, and is a consequence of both mosaic and regulative mechanisms. 51

What mechanisms impart the high degree of invariance in the worm’s cell lineage? 52

Manifestly, an answer to this question must take into account the biochemical and 53

biophysical mechanisms at play in the embryo. Ironically, our biophysical understanding 54

lags far behind our understanding of the biochemical dynamics alive in the worm. 55

Recent advances in the live-imaging of the C. elegans embryo gives unprecedented 56

resolution to the complete 3D geometry and dynamics of the small number of cells as 57

they make some of the most important and early decisions in the life of the worm. In 58

this study, we present novel schemes for the reconstruction of cellular morphology and 59

the inference of forces in the early C. elegans embryo. In particular, we present details 60

of 1) an image analysis protocol that allows accurate reconstruction of the geometry of 61

the membranes and junctions that facilitates 2) a scheme that gives access to the 62

relative membrane tensions and cellular pressures over time in the C. elegans embryo. 63

The enhanced accuracy of our morphological reconstruction was essential for inferring 64

the desired tensions and pressures. Assuming an isotropic and homogeneous distribution 65

of tensions along a membrane, we infer a pattern of forces that are 7% away from force 66

balance at edges, and 10% away from the Young-Laplace relation at faces. 67

Furthermore, we present a sensitivity analysis that demonstrates the stability of our 68

scheme. Lastly, we confirm that the reproducibility in the image-analysis pipeline is on 69

the order of 5%. The quantitative assessment of the methodology presented in this 70

study suggests improvements that we comment upon in our discussions section, and will 71

guide future projects. 72
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Figure 1. Schematic for Young-Laplace Force Balance on Membrane
The schematic depicts a small membrane patch, where normal pressure force on the membrane
is balanced locally by the surface tension. Under isotropic tensions, the Young-Laplace relation,
Pi − Pj = 2HkTk, is characterized completely by the mean curvature Hk = κ1+κ2

2
. The two

principle curvatures κ1,2 = −n · dt̂1,2
ds

, where n is the normal.

Methods 73

Force balance relations 74

We assume that the mechanical state of cells in the early worm embryo is dominated by 75

intracellular pressures and intercellular membrane tensions. For each cell, indexed c, we 76

define a pressure Pc. For each membrane, indexed m, we define a tension Tm. From a 77

single frame from a movie of worm development we infer the unknown parameters 78

(P1, ..., Pnc
, T1, ..., Tnm

) where nc is the number of cells and nm is the number of 79

membranes. Furthermore, we ignore dissipative forces associated with the dynamics of 80

the embryo underpinning our neglect of velocity data. 81

The Young-Laplace relation: We use the Young-Laplace relation on each 82

membrane that relates the jump in pressure across a membrane to the product of its 83

mean curvature and tension. The use of the Young-Laplace relation rests on the 84

assumption that the membrane is fluid. We neglect inhomogeneities and anisotropies in 85

tensions along a membrane, which is tantamount to assuming the variation of tensions 86

along each membrane is negligible compared to the average tension. The following 87

relation 88

Pi − Pj = 2 ·Hk · Tk (1)

holds for each membrane face k (with adjacent cells i and j) where Pi and Pj are the 89

pressures of cells i and j, respectively. Hk and Tk correspond to the mean curvature 90

and the tension of face k, respectively (See Fig (1)). We have nm Young-Laplace 91

relations wherein the mean curvature Hk is obtained by taking the average of the mean 92

curvatures of all points on the membrane. More details of calculating the mean 93

curvatures are given in the Image Analysis Protocol section. 94

Junctional force balance: Curvilinear junctions are formed by the intersection 95

between three membrane faces. At any point along these curvilinear junctions, we 96

assume that the tension from the three intersecting membranes, should balance each 97

other (See Fig (2)). Mathematically, the tensions Ti, Tj and Tk are related by 98

Tit̂i + Tj t̂j + Tkt̂k = ~0 where t̂i, t̂j , and t̂k are the unit vectors normal to the junction, 99

and tangent to the membrane surfaces i,j, and k respectively. The vector equation can 100
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Figure 2. Schematic for Tension Balance at Edge Junction
The three membrane faces, illustrated as curved planes, intersect at the edge junction. The
surface tensions act perpendicular to the edge junction under isotropic tensions. The dihedral
angle of intersections between the faces prescribe the relation in Eq. (2) and (3).

be rewritten as 101

Ti + Tj cos θij + Tk cos θik = 0 (2)

Tj sin θij − Tk sin θik = 0 (3)

where θij (θik) is the dihedral angle between t̂i and t̂j (t̂i and t̂k), respectively. In 102

principle, this relation holds at every point along the junction as the local tensions and 103

angles vary along the junction. In this work, we define only one tension value for each 104

membrane, so we only have one equation for each junction with constant Ti, Tj and Tk 105

values and θij and θik are taken as the averages along the junction. 106

Solving the system of equations: We define the vector
x = (P0, P1, ..., Pnc

, T1, ..., Tnm
)T where P0 is the constant pressure value exterior to the

embryo, P1, ...Pnc
are the pressure values for the cells and T1, ..., Tnm

are the tension
values for the membranes. We can solve the linear system

Mx = b.

for the pressure and tension values where the size of M is 107

(nm + 2× nj + 2)× (nm + nc + 1). The first nm rows of M correspond to the force 108

balance relations along the membrane by Eq. (1) and the next 2× nj rows correspond 109

to the force balances along the junctions by Eq. (2) and (3). The two additional rows 110

come from two equations 1) fixing the exterior pressure, P0 = Pb, and 2) setting the 111

scale of tension values. In this work, we scale the average tension value to be 1 – the 112

equation for setting the scale for the tension is Σnm
i=1Ti = nm. Finally, we have 113

b = (0, ..., 0, Pb, nm)T . Notice the relation between the tension and pressure from the 114

Laplace’s Equation depends on the length scale of the image since they hold different 115

units. In practice, we can set the tension scale and length scale, which effectively 116

determines the pressure scale. Based on the inequality nm + nc + 1 ≤ nm + 2× nj + 2 117

(can be proved by induction from a single cell, where 1 + 1 + 1 ≤ 1 + 2× 0 + 2 holds), 118

the system is overdetermined and we can only solve x in the sense of minimization of 119

the error ||Mx− b||2, which is equivalent to x = M̃b where M̃ = (MTM)−1MT is the 120

pseudoinverse of M. 121

Imaging 122

Nematode strain BV24 ([ltIs44 [pie-1p-mCherry::PH(PLC1delta1) + unc-119(+)]; 123

zuIs178 [(his-72 1kb::HIS-72::GFP); unc-119(+)] V]) was used for membrane imaging. 124
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ltIS44 is an integrated transgene which expresses membrane-localized mCherry; zuIS178 125

is an integrated transgene that expresses histone-GFP fusion, which was not imaged in 126

this study. Worms were raised under standard conditions at 20◦C on NGM media 127

seeded with E. coli OP50. The embryo was transferred to rectangular coverslips (VWR, 128

48393-241) and then placed into an imaging chamber (Applied Scientific 129

Instrumentation, I-3078-2450) as previously described1. The embryo was imaged with 130

dual-view inverted selective-plane illumination microscopy (diSPIM)2, although only 131

one view was selected for analysis. The illumination wavelength was 561 nm 132

(Crystalaser, CL-561-050), mCherry fluorescence was collected via the 0.8 NA detection 133

objective (Nikon 40×, 3.5 mm working distance, water immersion lens) transmitted 134

through dichroic mirrors (Chroma, ZT405/488/561rpc), filtered through a notch 135

emission filters (Semrock, NF03-561E-25) to reject the 561-nm pump light, and imaged 136

with 200-mm tube lenses (Applied Scientific Instrumentation, C60-TUBE B) onto 137

scientific-grade, complementary, metal-oxide semiconductor (sCMOS) cameras (PCO, 138

Edge). The resulting image pixel size was 6.5 µm/40 = 162.5 nm. We recorded 80 139

planes per volume for the embryo, 5 ms per plane, spacing planes every 0.5 µm. 140

Volumes were recorded at a temporal resolution of 1 min from 4-cell stage until hatching 141

(i.e., 13 hours post fertilization). 142

Morphological reconstruction of the embryo 143

The coefficient matrix M involves the averaged mean curvatures Hk over each k-th 144

membrane surface and the averaged dihedral angle θ’s between intersecting membranes 145

along the curvilinear junctions. Before we compute the averaged curvatures and angles, 146

we need to reconstruct these parameters locally at each membrane and junction point. 147

But these parameters, especially the curvatures κm, which involve the second-order 148

derivatives of position vectors along the membrane surfaces, are sensitive to noise. 149

Noise can arise during the creation of the gray-scale image due to noise inherent to 150

fluorescence imaging. Instead of working with the gray-scale image, we work with the 151

probability map generated by the pixel classification scheme of the machine learning 152

image analysis software (Ilastik). We show two samples of the grayscale image and the 153

probability map in Figure 3 (A, B and E), where the first two rows in panel A, E and B 154

show the the cross-sectional image of the 7-cell-embryo and 12-cell-embryo, together 155

with 3D image of the 7-cell-embryo, respectively. The third rows in panel A and E show 156

a cross section of the segmented one-voxel-thick membrane structure. We can observe 157

that the reconstructed membranes are artificially distorted or flattened due to their 158

restriction on the voxel mesh. The distortion can result in an unreliable estimate of the 159

normal vectors and in an inaccurate computation of the curvatures along the 160

membrane’s surface. Moreover, the junctions reconstructed by taking the intersection of 161

three adjacent membrane surfaces are also distorted and can disrupt the computation of 162

the tangent vectors of the junctions and the angles between intersecting membranes 163

along junctions. See the first row of panel D in Figure 3 of the disorganized tangent 164

vectors. 165

To deal with this artifact, we smooth the membrane surfaces based on a principal 166

component analysis (PCA) of the membrane points obtained by the watershed 167

transformation. The smoothed membrane surfaces are reconstructed on a 168

three-dimensional point cloud, a collection of mesh-free points. The outcome of this 169

protocol can be seen in the fourth row of panel A and the second row of panel D from 170

Figure 3, compared with their unsmoothed counterparts above. The details of this 171

method are discussed in the section, Point cloud normal estimates and smoothing. 172

Based on the smoothed membrane surfaces and junctions, we compute the curvatures 173

and the angles between intersecting membranes, detailed in The curvatures of the 174

membrane surfaces and The angles between membranes along the junctions, respectively. 175
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Figure 3. Workflow of Embryo Reconstruction
(The cross section is taken near the top where only 5 cells are shown. Figure 3 (Panel A and B in
the first two rows) shows the cross-sectional and three-dimensional image of the a 7-cell-embryo
sample of the grayscale image and the probability map. A) Progression of the a cross section
from the middle of the embryo. In the probability map, the yellow and green indicate high and
low probabilities respectively. (B) Visualization of the black & white image and probability
map, with a cross section (left) and the whole embryo (right). (C) Plot of all the edge junctions
in the embryo. The effect of smoothing can be seen clearly here. (D) Depiction of an edge
junction along with the tangent vectors of the adjacent membrane faces. The sparser watershed
edge junction is replaced by a denser and less noisy point cloud representation. (E) Plot of
the edge junction located on the bottom of the embryo, with the face tangent vectors. Angles
between faces remain mostly unchanged.
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Point cloud normal estimates and smoothing: The surface normal vectors are
required to compute the curvatures and the angles between the intersecting membrane
surfaces. We estimate the surface normal by the method from [9,10], which smooths the
surface locally and estimates the normal simultaneously. Given that the surface is
sufficiently smooth, the surface normal at a point p can be obtained by finding the unit
vector ||η|| = 1, which minimizes

∑K
k=1((xk − p) · η)2, where xk’s are the K-nearest

neighboring points of p (see KS in the Parameter Table in SI). It is equivalent to the
normal estimate method from principal component analysis (PCA). In order to smooth
the surface, a shift t is introduced in [9, 10] along the unknown normal direction η, and
the constrained least square problem can be reformulated to: Find t and η that
minimize

min
η,t

K∑
k=1

((xk − (p + tη)) · η)2 where ||η|| = 1.

at the shifted position p̃ = p + tη. After computing the surface normal vectors at every 176

point along the surface, there is no guarantee that their orientation will be consistent. 177

We follow the procedure in [9–11] to propagate the consistent direction of the normal 178

vectors along the Euclidean minimum spanning tree that connects the points. 179

Estimating membrane curvatures: We calculate the mean curvature κm(p) at 180

each membrane point p = (xp, yp, zp) by first parametrizing the membrane patch 181

including the K-nearest neighboring points xk = (xk, yk, zk)’s based on the normal 182

estimate η and smoothing from the last section. At each point, we define a local 183

u− v − z cartesian coordinate system where u and v span the tangent plane and z is 184

along the normal direction η. Then we parametrize the surface patch by 185

r(u, v) = ut1 + vt2 + z(u, v)η, where ti’s are the unit tangent vectors. z(u, v) can be 186

approximated by fitting the the local surface by a second order Taylor expansion about 187

p, minimizing 188

min
a,b,c,d,e

KS∑
k=1

[
−z̃k + ax̃k + bỹk +

c

2
x̃2k + dx̃kỹk +

e

2
ỹ2k

]2
. (4)

where z̃k’s are the projections of (xk − xp)’s along η, and x̃k’s and ỹk’s are their 189

projections in the tangent plane. Then the curvatures can be computed from the shape 190

operator Wp, which is a 2× 2 matrix (also called Weingarten matrix) where the 191

components can be calculated by differentiating r(u, v) up to the second order. See 192

more details in the SI. The local mean curvature κm is calculated by taking the average 193

of the two eigenvalues of the matrix (principal curvatures). We also further update the 194

normal η → η − a√
a2+b2+1

t1 − b√
a2+b2+1

t2 accordingly. 195

Estimating the angles between membranes: On the points along the 196

membrane junctions, we define the local angles between the three intersecting 197

membranes in the plane normal to the tangent direction (normal plane, see the blue 198

plane in Figure 4). We need to 1) reconstruct the junction, 2) estimate the normal 199

plane and 3) compute the angles. 200

To reconstruct the junction for each of the three intersecting membranes we sample 201

the points into a temporary point cloud within a distance threshold dT (see the 202

parameter table in SI) from the other two membranes. On the temporary point cloud, 203

we update the position of each point by the average of the position vectors of the 204

K-nearest neighboring points (see KJ in the parameter table in SI). This update turns 205

the temporary bold point cloud into a thinned junction curve. 206

To estimate the normal plane along the thinned junction curve, we define the
tangent vector on each point along the junction curve approximated by

m̂ =
n̂1 × n̂2 + n̂2 × n̂3 + n̂3 × n̂1

||n̂1 × n̂2 + n̂2 × n̂3 + n̂3 × n̂1||
.
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Figure 4. Schematic for Junction Tangent and Angle Computation The black curved
line represents the edge junction and the black arrows tagged by n̂i, n̂j, and n̂k represent the
normal vector of each membrane face. The red vector m̂ is the approximation to the edge
tangent vector. The blue plane represents the perpendicular plane to the red vector m̂. The
blue vectors are the projected normals which lie in the plane normal to m̂ and thus are coplanar.
On the right, it is shown that the angle of intersections can be calculated from the tangent
vectors t̂i, t̂j, and t̂k from each membrane face normal to the edge junction.

where n̂1, n̂2, and n̂3 are the surface normals evaluated on the three closest points from
the three membranes. We then define the adjusted normals n̂′1, n̂′2, and n̂′3 by

n̂′i = n̂i − m̂ · n̂i

and the adjusted normals are in the normal plane, as shown in Figure 4. Based on the
adjusted normals, we can compute surface tangents t̂i orthogonal to the junction curve
by

t̂i = m̂× n̂′i

for membrane face i. The angles θij and θik from Eq. (2) and (3) are finally computed 207

by taking the differences between t̂i’s. 208

Results 209

In-silico validation of the scheme 210

Our model assumes that the mechanical state of cells in the early worm embryo is 211

dominated by intracellular pressures and intercellular membrane tensions, which are 212

isotropic and uniform on each membrane face. Before we implement the workflow to the 213

worm embryo, we test it against an in-silico two-cell systems where the above 214

assumptions are fully satisfied. In detail, the configuration of a two-cell system can be 215

fully determined by the tensions from the three membrane faces and pressures from the 216

two cells. We generate a family of synthetic membrane images where the radii of the 217

two cells (R1 = 5× L and R2 = 4× L) and the radius of closed circular junction 218

(d = 3× L) are fixed (L is the length scale). See the left panel in Figure 5 for the 219

schematics. By changing the ratio of pressures (P2/P1) between the two cells and the 220

ratio between tensions accordingly, we can maintain the radii of the two cells while 221

changing the mean curvature of the interfacial membrane (H3). For this family of 222

configurations with different P2/P1’s, we synthesize 3D images with probability maps of 223

membrane faces with different spatial resolutions. We choose L = 10, 20, 40 to 224

effectively change the resolutions. L = 10 corresponds to approximately 45 voxel 225

numbers across the cell diameter while L = 40 corresponds to approximately 182 voxel 226
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Figure 5. Schematics of a two-cell system and error in tension inferences
On the left, the system depicts the cross-sectional slice of two cells (with pressures P1 and P2)
with constant mean curvatures H1 = 1/R1 and H2 = 1/R2 on the major membrane faces 1
and 2 (with tensions T1 and T2) separated by the interfacial membrane face 3 (with tension
T3) with constant mean curvature H3. Note that all three membranes are patches of spherical
membranes as they have constant mean curvatures. d denotes the radius of the circular junction
between the 3 membrane faces and the θ’s denote the angles between the 3 membranes along
the circular junction. On the right, we measure the total error between the true tension and
the inferred tension: Σ3

i=1|Ti − Ti,true|.

numbers across the cell diameter. Based on the probability maps, we reconstruct the 227

cell membranes into a point cloud and extract the curvatures of the three membranes 228

1/R1, 1/R2 and H3 and the angles θ12,θ13 and θ23 between the three membranes along 229

the circular junction. The reconstruction of the curvatures of the two major membranes 230

1/R1 and 1/R2 are reliable regardless of the different resolutions used (see errors 231

between the reconstructed and true curvature in Fig S1,A ), while the curvature 232

reconstruction of the interfacial membrane H3 is improved by increasing the resolution 233

(see Fig S1,B ). Notice as P2/P1 approximates to 1, the curvature of the interfacial 234

membrane H3 approaches to 0, and this is why the relative errors elevate as P2/P1 235

decreases in Figure 5B. The reconstruction of angles θ12,θ13 and θ23 is also improved by 236

increasing L (see Figure S1,C for the total error 1
2πΣ|θ − θtrue| ). With respect to our 237

force inference scheme, we show that the total relative error (Σ3
i=1|Ti − Ti,true|) between 238

the measured tensions and the true tensions is below 0.2 in all cases and decreases when 239

the resolution increases (See the right panel in Figure 5). We also show that the relative 240

residuals of equations from the Young-Laplace relation and the force balance along the 241

junction (normalized as described in the results Quantitative assessment of errors) are 242

below 0.02 and 2× 10−5, respectively (See Figure S1,E and F). 243

Morphological reconstruction of worm embryos 244

See Figure 6 for the reconstructed mean curvatures Hk’s of the membrane faces and 245

averaged dihedral angles along the curvilinear junctions θ’s using the workflow 246

Morphological reconstruction of the embryo. We obtain the average mean curvature Hk 247

on each membrane face k by taking the average of local mean curvatures, κm, on each 248

membrane face. See Figure 6 (A) for the heat map of κm on an exterior membrane face. 249

Since the local mean curvature at a point p is obtained by fitting the neighboring 250

membrane points by a paraboloid (see Eq. 4 in The curvatures of the membrane 251

surfaces), the result changes with KC , the number of nearest neighboring points used. 252

However, the averaged mean curvature Hk is not sensitive to the choice of KC . See 253

Figure 6 (B) for the distributions of mean curvatures κm using KC = 50, 800 and 3200. 254

Taking from here, we fix KC = 50 for each membrane to calculate the κm’s and the 255

associated Hk’s. See Figure 6 (D-F) and 6 (G-I) for the averaged mean curvature Hk’s 256

on the exterior membranes and interior membranes in different views. See Movie 1 and 257
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Figure 6. The reconstruction of curvatures and angles
(D-F) show the average mean curvatures Hk’s on the exterior membranes and (G-I) show the
average mean curvatures on the interior membranes by rotating the anterior-posterior axis in
different angles. See movie 1 and 2 for the average mean curvatures for both 7-cell-embryo
and 12-cell-embryo. The average mean curvature Hk’s on each membrane face is calculated by
taking the average of mean curvatures κm(p) over all points on the same membrane face. A
shows an example of mean curvature distributed on a single membrane face and B shows the
distribution of mean curvatures changes by using different number of nearest neighboring points
KC , but the overall averaged mean curvature is not sensitive to the choice of KC . From here,
we always use KC = 50 (also see the parameter table) to calculate the average mean curvatures
Hk’s on each membrane face. We calculate the three average angles θ’s along each junctions by
taking the average of three angles over all points on the same junction. C shows an example of
the angle variations along one junction.
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Figure 7. Inferred Forces
Depiction of the inferred tensions and pressures at the 7 cell stage. (A-C) depict relative
tensions on the outer membranes. (D-F) depict the relative tensions on the inner membrane
and the relative pressures in the cells (represented as colored circular region in the middle of
each cell). (G-I) depict the pressures in the cells labeled by their names. For presentation, all
pressure values are rescaled to match the same scale as the relative tension. The three rows
depict the embryo viewed at different angles, where the embryo is rotated around an axis along
its anterior to the posterior.
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2 for more details of Hk’s in both the 7-cell-embryo and 12-cell-embryo. Note that the 258

curvature we obtain is in units of voxel sizes, and later we directly use the 259

non-dimensional curvature to infer relative pressures. Similarly, we calculate the 260

averaged dihedral angles between membranes along the curvilinear junction from the 261

local dihedral angle computations following The angles between membranes along the 262

curvilinear junctions. See Figure 6 (C) for the angle variations along one junction 263

intersected between two exterior membranes and one interior membrane. With respect 264

to our proposed force inference scheme we obtain all the parameters needed in the 265

coefficient matrix M to infer forces in both 7-cell-embryo and 12-cell-embryo. 266

Force inference on the embryo 267

We infer the average tensions on the membrane faces and pressures in cells according to 268

the model in Force balance relations. The pressure in each cell and the average tensions 269

on each membrane are shown in Figure 7 from three different views. The pressures are 270

shown both in the second column (panel D-F) together with the tension map of the 271

inner membranes as well as in the third column (panel G-I) where each cell is labeled by 272

its name. The ABar cell on the anterior of the embryo sustains the highest level of 273

pressure while the ABpl cell on the posterior sustain the lowest level of pressure. 274

Interestingly, the P2 cell, which is about to divide at this stage in the movie, shows a 275

relatively low level of pressure. A global monotonic gradient of pressure from the right 276

anterior side to the left posterior side of the entire embryo can be discerned. In contrast, 277

we cannot identify a global transition of tensions among the inner membranes from the 278

anterior to the posterior side of the embryo, and the distribution of tensions on the inner 279

membranes are heterogeneous. However, one can see that most of the inner membranes 280

(panel D-F) present higher level of tensions than the outer membranes (panel A-C). We 281

conjecture that this is likely a consequence of outer membranes only comprising 282

approximately half the cytoskeleton activity that inner membranes posses. See Movie 3 283

and 4 for more details of inferred forces in both 7-cell-embryo and 12-cell-embryo. 284

Based on the inferred tension and pressure, we can further reconstruct the averaged
mechanical state (the full stress tensor) of each cell according to

σ =
1

V

∫
V

(r− r0)⊗T(r) dS

where V and r0 are the volume and the centroid of the cell, respectively, and T(r) is the
traction at location r. See Figure 8. Physically speaking, the cell’s stress tensor,σ, is
obtained by integrating the traction T(r), force per area, acting on every point, r, on
the cell membranes averaged by volume. The three orthogonal principal axes of the
stress tensor point in the directions that the cell is shear-free, and the eigenvalues
quantify the uniaxial tension along each principle direction. In Figure 8, we plot the
principle axes of stress tensors on each cell, where the lengths of the axes show the
relative magnitude of the tensile stress in the corresponding direction. One can see that
the ABpl and ABpr cells are exposed to high levels of stress and stress anisotropy. See
Movie 5 and 6 for more details of the stresses in both 7-cell-embryo and 12-cell-embryo.
Similarly we can also reconstruct the shape tensor of each cell to quantify its relative
size compared to other cells and its shape anisotropy. The shape tensor is computed by
rescaling the moment of inertia tensor by volume:

τ =
1

V

∫
V

(r− r0)⊗ (r− r0) dS.

The three orthogonal principal axes of the shape tensor resemble the principal axes of 285

an ellipsoid and the ratios between the eigenvalues quantify the shape anisotropy of the 286
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cell. In summary, here we have inferred forces in both 7-cell-embryo and 12-cell-embryo 287

and have visualized their mechanical state accordingly. 288

Quantitative assessment of errors 289

Here we present a sensitivity and reproducibility analysis of the proposed schemes. 290

Errors in the inferred forces from the equilibrium solution arise from four main sources. 291

First, noise can be introduced due to photon noise during image acquisition. Second, 292

noise can be introduced via our segmentation protocol. Third, errors might be accrued 293

by our modeling assumption were they to inaccurately represent the mechanical state of 294

the embryo. Fourth, our method solves an overdetermined system, and as such not 295

every balance relation can be fully satisfied. Below, we will first assess and discuss the 296

errors of our inferred forces for the balance relations due to the overdetermined system. 297

Then in Sensitivity analysis and reproducibility of protocol, we will discuss the 298

robustness of our method to noise from the first two steps. The error due to the 299

assumption of our model can be tested via a correlation study of the average myosin 300

distributions along each membrane with our predicted membrane tension, which will be 301

conducted in a future study. 302

We quantify the relative errors on the membranes and junctions separately. On each 303

membrane, the absolute error is defined as the residual of the Young-Laplace relation 304

(1). The relative error is obtained by (Pi − Pj − 2 ·Hk · Tk)/(|Pi|+ |Pj |+ |2 ·Hk · Tk|) - 305

the residual of equation (1) divided by the magnitude sum of each term. A scatter-plot 306

of the left and right hand side of equation (1) is reproduced in Figure 9 (A). The two 307

clusters in the scatter plot correspond to the force balance equations on the outer 308

(Figure 9 (B)) and inner membranes (Figure 9 (C)). The clustering can be explained by 309

the fact that the outer membranes have higher mean curvatures on average than the 310

inner membranes. The colors of the points visualize the magnitude of the relative errors, 311

which is also plotted in the same color code on the outer and inner membranes below. 312

We note that the largest errors are concentrated on the anterior outer and inner 313

membranes. The average relative error for the outer membranes is 11.2% and for the 314

inner membranes is 9.12%. 315

On each junction, the force balance is described by equations (2) and (3) in the two 316

orthogonal directions. We define the absolute force balance error by the magnitude of 317

the residual vector from the two equations. The relative error is then obtained by 318

rescaling the absolute error by the average total forces among all the junctions, where 319

the total force on each junction is the summation of the three inferred tensions. We plot 320

the errors among all the junctions both in the histogram (Figure 9 (D)) and in the heat 321

map (Figure 9 (E)). We note that the largest error occurs on the shortest outer junction. 322

The average relative error over the junctions is 7.21%. 323

Sensitivity analysis and reproducibility of protocol 324

Here we perform sensitivity analysis to estimate the reliability of the results subject to 325

noise. Under small perturbation of the coefficient matrix M + δM and b + δb, we can 326

look at the spectrum (i.e., the set of eigenvalues λi’s, i = 1, 2, ..., nm + nc + 1) of the 327

pseudoinverse M̃ = (MTM)−1MT to estimate the sensitivity of x + δx to δM and δb. 328

Large λi > 1 indicates δx is sensitive to the perturbations. We perform the sensitivity 329

analysis to the M̃ of a 7-cell embryo and a 12-cell embryo and both of them show most 330

of the eigenvalues are smaller than 1. (See the spectrum distribution in Figure 10) 331

Interestingly, the eigenvector corresponding to the largest eigenvalue is in the direction 332

of constant value for all pressures and zero for all tensions. Since we are looking at the 333

pressure difference from the exterior pressure, this perturbation mode does not 334

contaminate the result. To check the reproducibility of our workflow, we have 335
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Figure 8. Depiction of average mechanical state and shape tensors
Plot of the shape and stress tensors at the 7 cell stage. The copper gradient lines represent
cell connectivity, while the color ranging from black to copper corresponds the depth in z-axis.
The tensors (all of which are symmetric) are represented by their 3 orthogonal eigenvectors
plotted as blue line segments. The length of the segments correspond to the magnitude of the
eigenvalue. Compressive forces in the stress tensors are plotted as red lines, and are circled in
red for clarity.
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Figure 9. Error Plots for Inferred Forces
Plot of the force balance errors on the faces (A-C) and edge junctions (D-E). In A, we depict
errors in Eq. (1) by plotting 2TkHk against ∆P for each face in the scatter plot. The two
clusters correspond to the inner and outer membranes, with their respective average percent
errors in the box. Errors for the faces are portrayed as a heat map on the embryo, with outer
membranes in B and inner membranes in C. In D, we plot the percent error equations (2) and
(3) as a histogram, with the average percent errors in the box. The percent errors of edges are
portrayed as a heat map on the edge junctions (E), where the heat map corresponds to the
heat map in the histogram (D).
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Figure 10. The sensitivity analysis and reproducibility
Plot of the error in the reprocessing at the 7 cell stage (top row). In the scatter plots, the
original value are plotted against the reprocessed values, for the inferred pressure, tension, mean
curvature, and mean angles. The percent error for each value is boxed. The eigenvalues of M̃
are plotted on a log scale histogram (bottom row) with the 7 cell stage on the left and 12 cell
stage on the right.

16/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 11, 2017. ; https://doi.org/10.1101/175166doi: bioRxiv preprint 

https://doi.org/10.1101/175166


reconstructed a grayscale image of the membranes from the smoothed point cloud based 336

on which we calculate M by 1) generating a black-and-white image by rounding-off the 337

positions of the point cloud to the nearest voxels and 2) diffuse the membrane voxels 338

3-voxel-distance away followed by a linear decrease of the intensity value. This 339

effectively generates an image with the same intensity profile away from the membrane 340

points as the original data. We run our workflow on the regenerated data and find the 341

relative error between the result from the original and the regenerated data for the 342

7-cell-embryo below 5%. See the inferred pressure and tension using reprocessed data in 343

Figure 10 vs forces using the original data. 344

Discussion 345

In this study we have presented a morphological reconstruction scheme that forms the 346

basis of a force inference method for analyzing the geometric and mechanical features of 347

worm embryonic development. The novel morphological reconstruction scheme 348

presented here has uses beyond facilitating force inference schemes. In particular, 349

accurate membrane recognition permits quantitative measurements of signaling 350

dynamics present at the membrane. Furthermore, the high resolution reconstruction of 351

cellular geometries can form the basis of higher resolution force inference schemes that 352

allow for inhomogeneities and anisotropies in membrane tensions. Additionally, our 353

scheme facilitates the measurements of in toto velocity data that would be of interest to 354

study during the processes of gastrulation and cell sorting in the worm. Furthermore, 355

the pipeline developed here can be ported over for analysis of 3-dimensional live-imaging 356

data more broadly. Foe example, the method could form the basis of an analysis of 357

nuclear shape using a membrane or nuclear marker. 358

The rigorous assessment of the accuracy, reproducibility, and sensitivity of our force 359

inference scheme highlights its strengths and weaknesses. The assessment also suggests 360

improvements to the scheme that we are currently pursuing. More broadly speaking, we 361

anticipate that force inference schemes will compliment the molecular tools under 362

development to give us insight into morphogenesis. While FRET-based reporters, for 363

example, give access to molecular level forces, connecting them to the processes of cell 364

shape change and cell movement will require a model for how the two very different 365

scales are connected. Force inference schemes on the other hand give insight into the 366

forces that control gross cell shape and cell movement features but lack molecular 367

insights. We anticipate that it will be combination of the aforementioned tools that will 368

drive progress in the field. 369

Supporting Information 370

Some details in the reconstruction of the morphology 371

We start the morphological reconstruction by using standard machine learning image 372

analysis software (Ilastik) to generate a probability map, evaluating the likelihood of a 373

voxel point to be on the membrane or in the cytoplasm (or the perivitelline space 374

exterior to the embryo), trained by grayscale images of the plasma membranes at 375

different time points. We take the data into MATLAB and threshold the membrane 376

probability map by ph (see the parameter table for the values), considering values below 377

ph as 0. We then dilate the probability map on each voxel with a ball of radius rh, 378

removing small regions on the membrane that is preconsidered as cytoplasmic regions 379

by (Ilastik) followed by an erosion of the 0−value voxel points with balls of radii rh. In 380

addition, we have identified and removed connected membrane regions with size fewer 381

than Vmin voxels. We then perform a watershed transformation on the probability map 382
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to obtain a classification of the voxels into cells, separated by a one voxel thick 383

representation of the membrane. The membrane can be segmented by dilating adjacent 384

cells one voxel and retrieving their intersection. The edges can then be retrieved by 385

dilating adjacent membrane faces one voxel and selecting the intersection. At last, the 386

pipeline described above give rises to a data structure with cells, membrane faces and 387

edge junctions and their connectivities. 388

Some mathematical concepts relevant to the geometry of 389

membranes 390

A membrane is topologically a surface embedded in the three-dimensional Euclidean 391

space (R3). The mean curvature at a point p on the surface S is an invariant describing 392

how the surface is bent in the R3. Here we summarize only relevant concepts from 393

differential geometry, to clarify our procedure in computing the mean curvature in our 394

work. Mean curvature is the mean between two principal normal curvatures. In the 395

following, we explain the concept of curvature, the normal curvature, the principal 396

curvatures and finally the mean curvature. We describe how to compute the mean 397

curvature in the end. 398

Curvature of a curve vs normal curvature of a surface 399

Given a curve r(s) embedded in R3 where s is the arc length along the curve, at a point 400

p along the curve, the unit tangent vector is given as r′(s)|s=p. Then r′′(s) is the rate of 401

the change of unit tangent vector along s. We define the principal normal by 402

ns(s) =
r′′(s)

||r′′(s)||
. (5)

The curvature of r(s) is defined as 403

κ(s) = ||r′′(s)||. (6)

It is the rate of the change of tangent along the principal normal - r′′(s) = κ(s)ns(s). 404

Now, given a curve r(s) = r(u(s), v(s)) on a surface r(u, v), we can decompose r′′(s) by 405

r′′(s) = κn(s)n(s) + κg(s)n(s)× r′(s), (7)

where n(s) is the surface normal, orthogonal to tangent vectors on the surface in all 406

directions. κn(s) is called the normal curvature and κg(s) is called the geodesic 407

curvature. What is interesting is that κn(s) = r′′(s) · n(s) = −r′(s) · n′(s), only depends 408

r′(s) and n′(s), respectively the unit tangent vector and the rate of the change of the 409

surface normal. It measures how is the surface bent, a property of the surface, instead 410

of a curve on the surface. Notice that n′(s) and r′(s) are both in the tangent plane of 411

the surface S at p, defined as TpS. The explanation is in the following subsection. 412

The Weingarten map and the principal curvatures 413

The Weingarten map Wp is a unique linear map in TpS and can be determined by 414

− nu = Wp(ru, rv)
T ,−nv = Wp(ru, rv)

T . (8)

So we also realize −n′(s) = Wpr
′(s) and κn = r′(s) ·Wpr

′(s). Notice −nu and −nv are 415

in TpS since −nu · n = 0 and −nv · n = 0. Given {ru, rv} as the basis, Wp is a 2× 2 416

matrix. Since it is symmetric (shown later), there is always a pair of real eigenvalues κ1 417

and κ2 with the corresponding basis t̂1 and t̂2 that satisfies 418

Wp(t̂i) = κit̂i, i = 1, 2 (9)
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Notice κi is the normal curvature in the direction of t̂i. The pair of the normal 419

curvatures are called the principal curvatures of the surface at p. The mean 420

κm = κ1+κ2

2 is mean curvature, and the product κg = κ1κ2 is the Gaussian curvature. 421

They are both invariants of Wp. 422

The calculation of the mean curvature 423

We need to solve Wp and its eigenvalue pairs to compute the mean curvature κ1+κ2

2 . It 424

can be solved by [FIIF
−1
I ] where 425

FI =

(
E F
F G

)
=

(
ru · ru ru · rv
ru · rv rv · rv

)
, FII =

(
L M
M N

)
=

(
−nu · ru −nu · rv
−nv · ru −nv · rv

)
.

(10)
This can be shown by solving the linear map Wp determined by 426

− nu = Wp(ru, rv)
T ,−nv = Wp(ru, rv)

T . (11)

FI and FII are the matrix of the first and second fundamental form of the surface, 427

respectively. 428

Parameter Table 429

Parameter Value Description

ph 0.5
The membrane probability map threshold used
in the reconstruction of the embryo.

rh 3 (5)
The radius of the ball used in the morphological
processes for the reconstruction of the embryo.

Vmin 2000 (500)
The threshold for the minimum number of con-
nected components used in the reconstruction
of the embryo.

KS 50
The number of nearest neighboring points used
for membrane smoothing.

KC
50 (800,
3200)

The number of nearest neighboring points used
for curvature computation on the membrane.

dT 8
The distance threshold in voxels from the other
membranes from which a temporary junction
point cloud is sampled.

KJ 240
The number of nearest neighboring points used
to thin the temporary junction point cloud.

430
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