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Abstract 24	

Motivation: Long-read nanopore sequencing technology is of particular significance for 25	

taxonomic identification at or below the species level. For many environmental samples, the total 26	

extractable DNA is far below the current input requirements of nanopore sequencing, preventing 27	

“sample to sequence” metagenomics from low-biomass or recalcitrant samples. 28	

Results: Here we address this problem by employing carrier sequencing, a method to sequence 29	

low-input DNA by preparing the target DNA with a genomic carrier to achieve ideal library 30	

preparation and sequencing stoichiometry without amplification. We then use CarrierSeq, a 31	

sequence analysis workflow to identify the low-input target reads from the genomic carrier. We 32	

tested CarrierSeq experimentally by sequencing from a combination of 0.2 ng Bacillus subtilis 33	

ATCC 6633 DNA in a background of 1 µg Enterobacteria phage λ DNA. After filtering of carrier, 34	

low quality, and low complexity reads, we detected target reads (B. subtilis), contamination reads, 35	

and “high quality noise reads” (HQNRs) not mapping to the carrier, target or known lab 36	

contaminants. These reads appear to be artifacts of the nanopore sequencing process as they are 37	

associated with specific channels (pores). By treating reads as a Poisson arrival process, we 38	

implement a statistical test to reject data from channels dominated by HQNRs while retaining 39	

target reads.  40	

Availability:  CarrierSeq is an open-source bash script with supporting python scripts which 41	

leverage a variety of bioinformatics software packages on macOS and Ubuntu. Supplemental 42	

documentation is available from Github - https://github.com/amojarro/carrierseq. In addition, we 43	

have compiled all required dependencies in a Docker image available from - 44	

https://hub.docker.com/r/mojarro/carrierseq. 45	

 46	
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1 Introduction 47	

Environmental metagenomic sequencing poses a number of challenges. First, complex soil 48	

matrices and tough-to-lyse organisms can frustrate the extraction of deoxyribonucleic acid (DNA) 49	

and ribonucleic acid (RNA) (Lever et al., 2015). Second, low-biomass samples require further 50	

extraction and concentration steps which increase the likelihood of contamination (Barton et al., 51	

2006). Third, whole genome amplification may bias population results (Sabina and Leamon, 2015) 52	

while targeted amplification (e.g., 16S rRNA amplicon) may decrease taxonomic resolution 53	

(Poretsky et al., 2014). To address these challenges, we have developed extraction protocols 54	

compatible with low-biomass recalcitrant samples and difficult to lyse organisms (Mojarro, 55	

Ruvkun, et al., 2017). These protocols, developed using tough-to-lyse spores of Bacillus subtilis, 56	

allow us to achieve at least 5% extraction yield from a 50 mg sample containing 2 x 105 cells/g of 57	

soil without centrifugation (Carr et al., 2017). Furthermore, in order to avoid possible amplification 58	

biases and additional points of contamination, we have experimented with utilizing a genomic 59	

carrier (Enterobacteria phage λ) to shuttle low-input amounts of target DNA (B. subtilis) through 60	

library preparation and sequencing with ideal stoichiometry (Mojarro, Hachey, et al., 2017). This 61	

approach has allowed us to detect down to 0.2 ng of B. subtilis DNA prepared with 1 µg of Lambda 62	

DNA using the Oxford Nanopore Technologies (ONT) MinION sequencer (supplementary data, 63	

https://www.ncbi.nlm.nih.gov/bioproject/398368). Here we present CarrierSeq, a sequence 64	

analysis workflow developed to identify target reads from a low-input sequencing run employing 65	

a genomic carrier. 66	

 67	

 68	
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2 Methods 70	

CarrierSeq implements bwa-mem (Li, 2013) to first map all reads to the genomic carrier then 71	

extracts unmapped reads by using samtools (Li et al., 2009) and seqtk (Li, 2012). Thereafter, 72	

the user can define a quality score threshold and CarrierSeq proceeds to discard low-complexity 73	

reads (Morgulis et al., 2006) with fqtrim (Pertea, 2015). This set of unmapped and filtered reads 74	

are labeled “reads of interest” (ROI) and should theoretically comprise target reads and likely 75	

contamination. However, ROIs also include “high-quality noise reads” (HQNRs), defined as reads 76	

that satisfy quality score and complexity filters yet do not match to any database and dis-77	

proportionately originate from specific channels. By treating reads as a Poisson arrival process, 78	

CarrierSeq models the expected ROIs channel distribution and rejects data from channels 79	

exceeding a reads/channels threshold (xcrit) (Figure 1). 80	

 81	

 82	

 83	

Fig. 1. CarrierSeq workflow. Starting from all reads, CarrierSeq identifies unmapped reads then 84	

applies a quality score and complexity filter to discard low-quality reads. Afterwards, CarrierSeq 85	

applies a Poisson distribution test to sort likely high-quality noise reads (HQNRs) from target 86	

reads. 87	
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2.1 Quality Score Filter 88	

The default per-read quality score threshold (Q9) was determined through receiver operating 89	

characteristic curve (ROC) analysis (Fawcett, 2006) of carrier sequencing runs of B. subtilis and 90	

Lambda DNA (Figure 2). This threshold is best suited for Lambda carriers that are 99% library by 91	

mass and essentially function as a pseudo “lambda burn-in” experiment (Nanoporetech.com, 92	

2017). Therefore, the user is encouraged to define their own threshold based on their libraries’ 93	

quality control metrics (e.g., carrier to target ratio, quality distribution, sequencing accuracy 94	

achieved, and basecaller confidence). 95	

 96	

 97	

 98	

Fig. 2. Receiver operating characteristic curve. Q9 provides a good threshold which discards 99	

the majority of low-quality and noise reads (0.76 True Positive Rate and 0.03 False Positive Rate) 100	

for carrier runs that are 99% Lambda DNA by mass. A perfect quality score threshold would plot 101	

in the top left of the ROC curve. 102	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2017. ; https://doi.org/10.1101/175281doi: bioRxiv preprint 

https://doi.org/10.1101/175281
http://creativecommons.org/licenses/by-nc/4.0/


	 6	

2.2 Poisson Distribution Sorting 103	

Assuming that sequencing is a stochastic process, CarrierSeq is able to identify channels producing 104	

spurious reads by calculating the expected Poisson distribution of reads/channel. Given total ROIs 105	

and number of active sequencing channels, CarrierSeq will determine the arrival rate (λ = reads of 106	

interest/active channels). CarrierSeq then calculates an xcrit threshold (xcrit = poisson.ppf (1 – p-107	

value), λ)) and sorts ROIs into target reads (reads/channel ≤ xcrit) or HQNRs (reads/channel > xcrit) 108	

(supplementary data). 109	

 110	

2.3 Implementation 111	

Reads to be analyzed must be compiled into a single fastq file and the carrier reference genome 112	

must be in fasta format. Run CarrierSeq with:  113	

 114	

./carrierseq.sh –i <input.fastq> –r <reference.fasta> –o <output_directory> 115	

 116	

3 Results & Discussion 117	

From experimenting with low-input carrier sequencing and CarrierSeq we observed that the 118	

abundance of HQNRs may vary per run, perhaps due to sub-optimal library preparation, delays in 119	

initializing sequencing, or other sequencing conditions. In addition, target DNA purity and lysis 120	

carryover (e.g., proteins) may conceivably contribute to HQNR abundance. Possibly due to pore 121	

blockages from unknown macromolecules that result in erroneous reads. While the cause or 122	

significance of HQNRs have yet to be determined, future work will focus on developing a method 123	

to identify HQNRs on a per-read basis. In contrast, the current approach discards entire HQNR-124	

associated channels at the risk of discarding target reads. Moreover, some reads in non-HQNR-125	

associated channels may also be artifacts. The ability to identify HQNRs on a per-read basis is 126	
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especially important for metagenomic studies of novel microbial communities where HQNRs may 127	

complicate the identification of an unknown organism, or in a life detection application (Carr et 128	

al., 2017) where artefactual reads not mapping to known life could represent a false-positive. 129	

 130	

4 Summary 131	

CarrierSeq was developed to analyze low-input carrier sequencing data and identify target reads. 132	

We have since deployed CarrierSeq to test the limits of detection of ONT's MinION sequencer 133	

from 0.2 ng down to 2 pg of low-input carrier sequencing. CarrierSeq may be a particularly 134	

valuable tool for in-situ metagenomic studies where limited sample availability (e.g., low biomass 135	

environmental samples) and laboratory resources (i.e., field deployments) may benefit from 136	

sequencing with a genomic carrier. 137	

 138	
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