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ABSTRACT  

Genome-wide transcriptional profiling provides a global view of cellular state and how this state 

changes under different treatments (e.g. drugs) or conditions (e.g. healthy and diseased). Here, we 

present ProTINA (Protein Target Inference by Network Analysis), a network perturbation analysis 

method for inferring protein targets of compounds from gene transcriptional profiles. ProTINA uses a 

dynamic model of the cell-type specific protein-gene transcriptional regulation to infer network 

perturbations from steady state and time-series differential gene expression profiles. A candidate 

protein target is scored based on the gene network’s dysregulation, including enhancement and 

attenuation of transcriptional regulatory activity of the protein on its downstream genes, caused by 

drug treatments. For benchmark datasets from three drug treatment studies, ProTINA was able to 

provide highly accurate protein target predictions and to reveal the mechanism of action of 

compounds with high sensitivity and specificity. Further, an application of ProTINA to gene expression 

profiles of influenza A viral infection led to new insights of the early events in the infection. 

INTRODUCTION 

The identification of the molecular targets of pharmacologically relevant compounds is vital for 

understanding the mechanism of action (MoA) of drugs, as well as for exploring off-target effects. 

While the definition of a target can be quite arbitrary, the term generally refers to a molecule whose 

interaction with the compound is connected to the compound’s effects (1). In this study, transcription 

factors (TFs) and their protein interaction partners represent the target molecules, while differential 

gene expression profiles represent the effects. Among existing technologies for protein target 

discovery (e.g., biochemical affinity purification, RNAi knockdown or gene knockout experiments) (2), 

gene expression profiling has received much recent attention due to its relative ease of 

implementation as well as the availability of large-scale public databases and well-established 

experimental protocols and data analytical methods. A complication when using gene expression 

profiling for target discovery is that the data give only indirect indications of the drug’s action. As 

illustrated in Fig. 1a, the interaction between a compound and its protein target(s) is expected to result 
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in the differential expression of downstream genes that are regulated by the protein target(s). But, the 

expression of the protein targets themselves may not – and often do not – change (3). Consequently, 

target discovery using gene expression profiles requires computational methods to identify the 

(upstream) targets from the (downstream) effects. 

Existing computational strategies for compound target identification using gene expression profiles 

can generally be classified into two groups: comparative analysis and network-based analysis (4). 

Comparative analysis methods use the gene expression profiles as drug signatures. Here, the 

similarity between the differential gene expression of a drug treatment and those of reference 

compounds or experiments with known targets, implies a closeness in the molecular targets and the 

MoA (commonly referred to as “guilt by association”). A notable example of such an approach is the 

Connectivity Map (5), which provides gene expression profiles of human cell lines treated by ~5000 

small molecule compounds as queryable signatures for evaluating drug-drug similarities (6). The 

obvious drawback of comparative analysis methods is their dependence on an extensive and 

accurate target annotation of the reference gene expression profiles. 

In network-based analysis, one adopts a system-oriented view by using cellular networks, such as 

a gene regulatory network (GRN) and/or a protein-protein interaction network (PIN). A number of 

network-based analytical methods relied on dynamic models of the GRN to infer network 

perturbations caused by drug treatment (7-9). Several network-based analytical methods used 

statistical analysis to score drug targets based on the differential expression of genes that are 

connected to or regulated by these targets (10-12). Numerous graph-based analyses have also been 

applied to the gene expression data of drug treatments for target prioritization (3,13,14). More recent 

methods used a combination of different types of cellular networks. Notably, a method called 

Detecting Mechanism of Action by Network Dysregulation (DeMAND) combined the GRN and PIN 

information to create a molecular interaction network, where the drug targets were scored based on 

drug-induced alterations in the joint gene expression distribution between two connected genes in the 

network (15). While recent strategies still have some limitations – for example DeMAND could not be 

used to predict the direction of the drug’s effects (e.g. enhancement or attenuation) – the benefit of 

integrating different biological networks in the analysis of gene expression is clear. As expected, the 

performance of any network-based analysis would depend on the fidelity of the underlying network.  

In this work, we developed ProTINA (Protein Target Inference by Network Analysis), a network 

perturbation analysis method for protein target identification using gene transcriptional profiles. The 

analysis involves two key steps: (a) the creation of a model of tissue or cell type-specific protein-gene 

regulatory network (PGRN), and (b) the calculation of protein target scores based on the 

enhancement or attenuation of the protein-gene regulations. ProTINA leverages on the availability of 

comprehensive maps of protein-protein and protein-DNA interactions for the construction of the 

PGRN graph, and employs ridge regression to infer the protein-gene regulatory activity from 

differential gene expression profiles. We demonstrated the superiority of ProTINA over the state-of-

the-art method DeMAND and differential gene expression analysis (DE), in predicting the protein 

targets of drugs. Besides protein targets of compounds, we presented the application of ProTINA to 

study host-pathogen interactions, specifically for elucidating the targets of influenza A viral proteins.  
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MATERIAL AND METHODS 

Gene expression data 

We applied ProTINA to three datasets of drug treatments from NCI-DREAM drug synergy challenge 

(16), genotoxicity study (17) and chromosome drug targeting study (18), and to gene expression data 

of human lung cancer cell Calu-3 from influenza A viral infection studies (19-22). For NCI-DREAM 

drug synergy challenge, we obtained the raw Affymetrix Human Genome U219 microarray data from 

Gene Expression Omnibus (GEO) database (23) (accession number: GSE51068). The raw data were 

first normalized and transformed into log2-scaled expressions using justRMA function in the affy 

package of Bioconductor (24). Then, the log2 fold change (log2FC) differential expressions and their 

statistical significance (Benjamini-Hochberg adjusted p-values) were calculated using a linear fit 

model and empirical Bayes method in the limma package of Bionconductor. Three samples from the 

drug treatment using the low dose of Aclacinomycin A were dropped because all of the log2FC 

expressions were close to 1 and thus not statistically significant. The probe sets were mapped to 

gene symbols using hgu219.db annotation package (Entrez Gene database as of 27th September 

2015). In the case of multiple probe sets mapping to a gene symbol, we assigned the log2FC from the 

probe set with the smallest average adjusted p-value over the samples.  

The raw microarray data from genotoxicity study (17) in human HepG2 cell line were obtained from 

GEO (accession numbers: GSE28878 using Affymetrix GeneChip Human Genome U133 Plus 2.0 

array and GSE58235 using Affymetrix HT Human Genome U133+ PM array). As with the drug 

synergy data, the microarray data were first normalized using justRMA, and the log2FCs and their 

adjusted p-values were calculated using limma in Bioconductor. Because the data came from different 

microarray platforms, the gene symbols were matched separately for each platform using 

hgu133plus2.db annotation package (Entrez database of 27th September 2015) and HT_HG-

U133_Plus_PM annotation file in Affymetrix, respectively. Likewise, in the case of multiple probe sets 

matching a gene symbol, the probe set with the smallest average adjusted p-value across all samples 

was chosen.  

The raw data from the chromosome-targeting study using mouse pancreatic alpha and beta cells 

(18) were also obtained from GEO database (ascension number: GSE36379). Again, the raw data 

were normalized using justRMA, and the log2FCs and their adjusted p-values were calculated by 

limma. The probes were mapped to the corresponding gene symbols using moe430a.db package 

(Entrez Gene database as of 27th September 2015) in Bioconductor. In the case of multiple probe sets 

mapping to a gene symbol, we selected the probe set with the smallest average adjusted p-value 

among the samples.  

For influenza A infection analysis, we obtained the raw microarray data of four influenza studies 

(19-22) from GEO database (ascension numbers: GSE40844, GSE37571, GSE33142, 

andGSE28166). The raw data were background-corrected and normalized using normexp and 

quantile methods in limma package of Bioconductor. The log2FCs and their adjusted p-values were 

again calculated by limma. The probes were mapped to the corresponding gene symbols using 

hgug4112a.db package (Entrez Gene database as of 27th September 2015). Like before, for genes 
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with multiple probe sets, we chose the logFC value corresponding to the probe set with the smallest 

average adjusted p-value. 

 

Protein target identification using ProTINA  

Protein-gene network. In ProTINA, the PGRN is a bipartite graph with weighted, directed edges 

pointing from a protein to a gene (see Fig. 1a). The edges in the PGRN describe the regulation of 

gene expression by TFs and their protein partners. The PGRN is constructed by combining two types 

of networks, namely the TF-gene network and PIN. For the construction of human cell type-specific 

PGRNs, we relied on the Regulatory Circuit resource that provides 394 cell type and tissue-specific 

TF-gene interactions (25). More specifically, for the analysis of the NCI-DREAM drug synergy, 

genotoxic compound study, and influenza A viral infection study data sets, we used the TF-gene 

networks of human lymphoma cells, pleomorphic hepatocellular carcinoma cells, and epithelium lung 

cancer cells, respectively. We included only TF-gene interactions with a Regulatory Circuit confidence 

score greater than 0.1. The confidence score indicates the normalized promoter activity level in a 

given cell type (0: not active, 1: maximally active) [25]. For the analysis of mouse pancreatic cell 

dataset, we obtained the mouse pancreatic TF-gene interactions from CellNet (26). In the construction 

of the PGRNs, any TF-gene interactions involving unmeasured genes were excluded. In summary, 

the TF-gene network for human lymphoma, hepatocellular carcinoma cell, and epithelium lung cancer 

cell lines included 31,392 edges pointing from 515 TFs to 5,153 genes, 3,868 edges pointing from 

413 TFs to 953 genes, and 42,145 edges pointing from 515 TFs to 7,125 genes, respectively. The 

mouse pancreatic PGRN included 2,922 edges, involving 95 TFs and 588 genes. 

For human PIN, we combined the protein-protein interactions from two databases, namely Enrichr 

(27) and STRING (28). For mouse pancreatic cells, we obtained mouse (Mus musculus) PIN from the 

STRING database (28). For each TF, we identified its protein partners, defined as proteins that are 

within a network distance of 2 from the TF in the PIN. When using the STRING database, we included 

all direct protein partners of TFs, and proteins with a network distance of 2 from TFs with a confidence 

score reported on STRING larger than 0.5. For human lymphoma, hepatocytes, and lung cancer cells, 

we identified 11,090 protein partners for a subset of 499 TFs (out of 515 TFs), 10,834 protein partners 

for a subset of 403 TFs (out of 413 TFs), and 6,175 protein partners for a subset of 504TFs (out of 

515 TFs), respectively. For mouse pancreatic cells, we found 6,620 protein partners for a subset of 89 

TFs (out of 95 TFs).  

Finally, in the construction of the PGRNs, we assigned a directed edge from a TF or from a protein 

partner of a TF, to every gene regulated by the TF. In summary, the cell type-specific PGRN for 

human lymphoma cells included 21,488,617 regulatory edges among 11,161 TFs/proteins and 5,153 

genes. For hepatocellular carcinoma cells, the PGRN comprised 3,726,393 edges among 10,893 

TFs/proteins and 953 genes. For human lung cancer cells, the PGRN comprised 30,656,861 edges 

among 11346 TFs/proteins and 7,125 genes. For mouse pancreatic cells, the PGRN consisted of 

1,417,972 edges among 6,661 TFs/proteins and 588 genes. While increasing the size of the PGRN, 

for example by including lesser confident TF-gene and protein-protein interactions or by including 
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proteins with a network distance from TFs larger than 2, would allow the scoring of a higher number of 

proteins, such strategy often lowers the accuracy of the protein target predictions.  

 

Gene transcription model. The edges in the PGRN have weights, whose magnitudes represent the 

strength of the gene regulation and whose signs indicate the direction or the mode of the regulation: 

positive for gene activation and negative for gene repression. The weights are inferred from the gene 

expression dataset by adapting a procedure described in our previous method DeltaNet (9,29). The 

inference of the edge weights is based on an ordinary differential equation (ODE) model of the mRNA 

production of a gene:  

1

( )
( ) ( )kj

n
ak

k j k k
j

d r t
u r t d r t

d t =

= −∏      (1) 

where rk(t) is the mRNA concentration of gene k at time t, uk and dk denotes the mRNA transcription 

and degradation rate constants respectively, and akj denotes the gene regulatory influence (or edge 

weight) of  the j-th protein on the k-th gene.  

While the regulatory edges in the model above usually describe TF-gene interactions, in ProTINA, 

we further accounted for the (indirect) regulation of a gene by proteins that interact with the TFs. For 

this purpose, we considered a modified ODE model: 
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where a positive (negative) bkjq describes the activation (repression) of the k-th gene by a protein q 

through its interaction with the TF protein j. The variables nTF and nP denote the numbers of TFs and 

their protein partners, respectively. The multiplication of two variables rj and rq implies that the 

regulation of gene k by protein q requires the TF protein j (a non-zero rj). The model in Equation (2) 

can be simplified into: 
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where *
kja  denotes the overall regulatory influence of each protein j, including TFs and their protein 

partners, on the expression of gene k. Note that the model in Equation (3) is mathematically 

equivalent to that in Equation (1). 

By taking the pseudo-steady state assumption, the above model equation can be linearized using 

a logarithmic transformation (see derivation in ref. 9). The inference of the weights from the gene 

expression dataset involved the following linear regression problem: 

*

1

TF Pn n

ki kj ji ki
j

c a c p
+

=
= +∑       (4) 
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where cki denotes the log2 fold-change (log2FC) expression for gene k in sample i. The variable pki 

represents the part of log2FC of gene k expression in sample i that cannot be accounted for by the 

log2FC of its protein regulators. In other words, pki indicates the perturbations to the expression of 

gene k. As detailed below, ProTINA relies on the magnitude and directions of such network 

perturbations (dysregulations) to identify proteins with altered gene regulatory activity.  

The dynamical information contained in time-series gene expression profiles could greatly improve 

the inference of the edge weights above. As previously described in ref. 29, such information could be 

accounted for by adding the following linear constraint on the linear regression problem: 

*

1

TF Pn n

ki kj ji
j

s a s
+

=
= ∑        (5) 

where ski is the time derivatives (slope) of the log2FC of gene k in sample i. The slopes of the log2FC 

at each sampling time point were computed using a second-order accurate finite difference 

approximation (30). In summary, the estimation of edge weights in ProTINA involved the following 

linear regression problem:  

kk k R kC = A C + P      (6) 

kk k RS = A S       (7) 

where Ck and Sk are the 1× m vectors of log2FC expressions and time-derivatives of gene k across m 

samples, the subscript Rk refers to the set of (nTF,k+nP,k) protein regulators of gene k in the cell type-

specific PGRN, kRC  and kRS  denote the (nTF+nP,k)× m matrices of log2FCs and their slopes across m 

samples, Ak is the 1× (nTF+nP)  vector of weights for edges in the PGRN pointing to gene k, and Pk is 

the 1× m vector of dysregulation impacts of gene k over m samples.  

In ProTINA, the vectors Ak and Pk for each gene k in Equations (6) and (7) were estimated by ridge 

regression. The ridge regression provides a solution to an underdetermined linear regression problem 

of the standard form: y = Xβ + ε, using a penalized least square objective function: 

2 2

2 2
min + 

β
β λ β−y X  

where λ is a shrinkage parameter for the L2-norm penalty. Equations (6) and (7) are rewritten into the 

standard linear regression problem with y = [Ck  Sk]
T, X = [ [ kRC kRS ]T,  [Im   0]T ], β = [Ak  Pk]

T. Before 

applying the ridge regression, we normalized the vectors of log2FCs and slopes to have a unit norm. 

Self-loops were excluded in the regression, and thus the diagonal entries of Ak were set to 0. In the 

applications of ProTINA, we employed 10-fold cross validations to determine the optimal λ, one that 

gives the minimum average prediction error. Here, we used the GLMNET package (31) for both the 

MATLAB and R versions of ProTINA.  

Protein target scoring. In ProTINA, each candidate protein target is assigned a score based on the 

deviation of the expression of its downstream genes. More specifically, we computed the residuals of 

the linear regression problem in Equations (6) for each gene k, i.e. 

= −
kk k k Rr C A C      (9) 
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where rk is the 1× m vector of residuals for m samples. For each drug treatment, there often exist 

multiple gene expression profiles, taken at different time points or different doses. Correspondingly, 

we evaluated the z-score zlk for each drug treatment l and for each gene k, according to 

σ
= lk

lk

k l

r
z

n
      (9) 

where lkr  denotes the average residual of gene k among the drug treatment samples, σk denotes the 

sample standard deviation of the residuals in all samples besides the drug treatment, and nl denotes 

the number of samples from the drug treatment. A positive (negative) z-score indicates that the 

expression of gene k in the particular sample was higher (lower) than expected based on the 

expression of its regulators. The greater the magnitude of the z-score, the more significant is the gene 

dysregulation.  

The target score of a TF or protein for a drug is calculated by combining the z-scores of the target 

genes in the PGRN, as follows: (ref. 32) 

1

2

1

=

=

=∑

∑

D

D

n

kj kik
ji n

kk

w z
s

w
     (10) 

where zki denotes the z-score of gene k and sji denotes the score of the TF/protein j in the drug 

treatment sample i. The weighting coefficients wkj are set equal to the edge weights akj divided by the 

maximum magnitude of akj across all j. In other words, the weight wkj reflects the fraction of the 

regulation of gene k expression that could be attributed to protein j. When wkj (or akj) and zki have the 

same signs, wkjzki thus takes a positive value. As illustrated in Fig. 1c, a positive wkjzki implies an 

enhanced regulatory activity of protein j on gene k, since the activation (inhibition) of gene k 

expression by protein j is stronger in this sample than expected by the PGRN model. In contrast, a 

negative wkjzki indicates an attenuation of the regulatory influence of protein j on gene k, since the 

activation (inhibition) of gene k expression by protein j is weaker than predicted by the PGRN model. 

Consequently, a highly positive (negative) score sji is an overall indicator of strongly enhanced 

(attenuated) regulatory activity of protein j by the drug treatment in sample i (see Fig. 1d). The protein 

targets in each drug treatment sample are ranked in decreasing magnitude of the scores sji. 

 

DeMAND and differential expression analysis 

For DeMAND analysis, we employed the public R subroutines available from the website: 

http://califano.c2b2.columbia.edu/demand. Following the procedure detailed in the original publication 

(15), we computed the RMA (Robust Multi-array Average) normalized gene expression values as 

inputs to the analysis. In DeMAND analysis, we used the same cell type-specific PGRNs as those in 

ProTINA. For each candidate protein target, DeMAND evaluated the p-value of the deviations in the 

gene expression relationship between the protein target and each of the genes connected to this 

protein in the PGRN. The drug targets were ranked in increasing magnitude of the combined p-values.  

In differential expression (DE) analysis, we calculated the log2FC differential expression of each 

protein in the PGRN, as described in section Gene expression data above. Here, we used the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2017. ; https://doi.org/10.1101/175364doi: bioRxiv preprint 

https://doi.org/10.1101/175364
http://creativecommons.org/licenses/by-nc-nd/4.0/


log2FC values directly as the target scores. Correspondingly, we ranked the candidate protein targets 

in decreasing magnitude of the log2FC gene expression values.  

 

Performance assessment 

For comparing the performance of different methods, we computed the area under the receiver 

operating characteristic curve (AUROC), i.e. the area under the plot of true positive rate against false 

positive rate, following the procedure adopted in DREAM challenges (33,34). For each method and 

each drug treatment, we generated a ranked list of protein targets according to decreasing 

magnitudes of the protein scores in ProTINA, increasing p-values of network dysregulation from 

DeMAND, and increasing magnitudes of log2FC gene expression from DE analysis.  

 

Gene set enrichment analysis 

For influenza A virus study, we performed a gene set enrichment analysis (GSEA) of the protein 

target predictions from ProTINA, DeMAND and DE analysis for the KEGG biological pathways (35), 

using the R package GAGE (Generally Applicable Gene-set/pathway Enrichment analysis) with 

Kolmogorov-Smirnov tests (36). In the case of ProTINA and DeMAND, target proteins with zero score 

were excluded from the GSEA. 

 

Reference protein targets 

The reference protein targets of compounds in drug treatment studies were compiled from 5 different 

public databases of chemical-protein interactions: DrugBank (37), Therapeutic Target Database (TTD) 

(38), MATADOR (39), Comparative Toxicogenomics Database (CTD) (40), and STITCH (41). 

DrugBank and TTD provided information on the mechanism of drug actions as well as the proteins 

that have physical binding interactions with drugs. Meanwhile, MATADOR, CTD, and STITCH gave 

interactions between proteins and chemical compounds, curated from text mining and experimental 

evidences. When retrieving the protein targets of drugs from these databases, we collected proteins 

that directly bind to the queried drugs. The reference targets for each dataset in this study are 

provided in Supplementary material 1. Meanwhile, the reference protein targets for influenza A virus 

study were obtained from ref.42, where 1,292 host proteins that likely physically bind to viral proteins 

of influenza type A/WSN/33 in human embryonic kidney cells (HEK293) were identified by whole-

genome co-immunoprecipitation assays.  

 

RESULTS 

New protein target prediction strategy 

ProTINA takes advantage of the availability of comprehensive protein-protein and protein-DNA 

interaction databases to construct, when possible, a tissue or cell type-specific PGRN. The method 

considers a PGRN with weighted directed edges (see Fig. 1a), describing direct and indirect gene 
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transcriptional regulation by TFs and their protein partners. The edge weights are determined by 

applying ridge regression using the gene expression data based on a kinetic model of the gene 

transcriptional process (see Fig. 1b and Material and Methods). Here, a positive weight indicates a 

gene activation, while a negative weight implies a gene repression. Because of the underlying kinetic 

model, ProTINA is able to incorporate dynamical gene expression data, a common type of data from 

drug treatment studies (5,16-18). The scoring of drug targets is based on the enhancement or 

attenuation of protein-gene regulatory interactions caused by the drug treatment. A drug-induced 

gene regulatory enhancement occurs when the expression of genes that are positively (negatively) 

regulated by a candidate target, becomes higher (lower) in drug treated samples than what is 

predicted by the PGRN model (see Fig. 1c). A drug-induced attenuation describes the opposite 

scenario, where the expression of positively (negatively) regulated genes of a target is lower (higher) 

than expected from the model. For any given differential gene expression sample, a candidate protein 

target is scored based on the overall enhancement and/or attenuation of its regulatory influence on 

the downstream genes (see Fig. 1d and Material and Methods). Thus, a protein target with a more 

positive (negative) score is considered a more likely target of the drug, in which the drug treatment 

enhances (attenuates) the gene regulatory activity. 

Prediction of known targets of drugs 

We tested ProTINA’s performance in predicting drug targets using gene expression data from three 

drug treatment studies employing human and mouse cell lines. The first dataset came from the NCI-

DREAM drug synergy study using human diffuse large B cell lymphoma OCI-LY3 (16), the second 

from the compound genotoxicity study using human liver cancer cells HepG2 (17), and the third from 

the chromatin-targeting compound study using mouse pancreatic cells (18). We compared ProTINA to 

the state-of-the-art network-based analytical method DeMAND (15), and to the traditional differential 

expression analysis (DE). For the analysis of datasets from human cell lines, we constructed cell-type 

specific PGRNs by combining human PIN from STRING (28) and Enrichr database (27) and human 

cell-type specific protein-DNA networks from Regulatory Circuit resource (25). Meanwhile, for the 

construction of mouse pancreatic cell type-specific PGRN, we used mouse (Mus musculus) PIN from 

STRING (28) and mouse protein-DNA interactions from CellNet (26) (see details in Material and 

Methods). 

In assessing the performance of ProTINA and the other methods, we compared the ranked list of 

protein target predictions for each compound with the reference drug targets compiled from the 

literature (see Material and Methods and Supplementary material 1). Fig. 2 (also see 

Supplementary Table S1-3) summarizes the AUROCs of the target predictions from ProTINA, 

DeMAND, and DE analysis, showing ProTINA significantly outperforming DeMAND and DE analysis 

for all three datasets. Here, the drug target predictions from DE analysis had the poorest AUROCs 

with an overall average below 0.664 (AUROC range: 0.393 – 0.982). Meanwhile, the target 

predictions of DeMAND were slightly better than the DE analysis, averaging at 0.743 (AUROC range: 

0.405 – 0.989) for the three datasets. Meanwhile, ProTINA gave the highest average AUROCs 

among the methods with an average of 0.825 (AUROC range: 0.425 – 0.991). 
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Mechanism of action of drugs 

Besides high AUROCs, ProTINA also provided accurate and specific indications on the MoA of the 

compounds. In the NCI-DREAM synergy study, roughly half of the compounds are known to cause 

DNA damages, including DNA topoisomerase inhibitors (camptothecin, doxorubicin and etoposide), 

DNA crosslinker (mitomycin C), oxidative DNA damaging agent (methothrexate), and histone 

deacetylase (HDAC) inhibitors (trichostatin A). In demonstrating ProTINA’s ability to reveal the 

compound MoA, we focused on the canonical p53 DNA damage response pathway (15), as illustrated 

in Fig. 3. Here, the activation of p53 in response to DNA damage is expected to induce the 

transcription of Cyclin Dependent Kinase Inhibitor 1A (CDKN1A) and Growth Arrest and DNA 

Damage Inducible Alpha (GADD45A) (43,44). In turn, CDKN1A and GADD45A – through their 

interactions with Proliferating Cell Nuclear Antigen (PCNA) – regulate the DNA replication and repair 

process (45). GADD45A also inhibits the catalytic activity of Aurora Kinase A (AURKA) (46), leading to 

a lowered activation of Polo-like Kinase 1 (PLK1) and Cyclin B1 (CCNB1) in a phosphorylation 

cascade (47,48). As shown in Fig. 4a, except for trichostatin A, the six proteins in the canonical p53 

pathway above were ranked highly by ProTINA among the genotoxic compounds in the study 

(median rank <500), consistent with their known MoA. Note that the same six proteins were ranked 

much lower among the non-DNA damaging compounds (median rank >500), signifying a high 

specificity of ProTINA predictions (see also Supplementary Figure S1). Equally important, ProTINA 

was able to accurately identify the direction of the drug-induced alterations caused by the DNA 

damaging compounds. The signs of protein target scores from ProTINA indicated drug-induced 

enhancement (positive scores) of CDKN1A, PCNA, and GADD45A, and attenuation (negative scores) 

of CCNB1, AURKA, and PLK1 (see Supplementary Table S4), consistent with the expected 

response of these proteins to DNA damage in Fig. 3. 

As illustrated in Fig. 4a, DeMAND and DE analysis also performed reasonably well in predicting 

the compounds’ MoA. But, the directions of the perturbations predicted by DE analysis were not 

always consistent with the expected response to DNA damage (see Supplementary Table S5-6). 

Meanwhile, DeMAND did not provide any information on the directions of the drug perturbations. In 

addition, the protein target scores of ProtTINA provided a clearer demarcation between the genotoxic 

and the non-genotoxic agents among the compounds in the dataset, than DeMAND and DE analysis 

(see Supplementary Figure S1). Besides the canonical p53 response pathway, we further looked at 

the ranking of proteins involved in the overall DNA damage repair (DDR) and its associated pathways 

(49) (see Supplementary material 2). As depicted in Fig. 4b, ProTINA ranked these proteins much 

higher than DeMAND and DE analysis, with DE performing the poorest among the methods 

considered.  

In comparison to DeMAND and DE analysis, ProTINA was further able to detect a specific MoA of 

mitomycin C, whose DNA crosslinking activity is expected to prompt a particular DNA repair process 

called the fanconi anemia pathway (50). The fanconi anemia pathway relies on a specific protein 

complex to ubiquitinate Fanconi Anemia Group D2 Protein (FANCD2) and Fanconi Anemia Group I 

Protein (FANCI), as well as two homologous recombination (HR) repair proteins, namely Breast 
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Cancer Type 1 Susceptibility Protein (BRCA1) and RAD51 Recombinase (RAD51) (51). In ProTINA 

analysis, the average rank of FANCD2, FANCI, BRCA1, and RAD51 was within top 100 for mitomycin 

C, while the average rank of those proteins was much greater than 100 for the other DNA damaging 

agents (see Supplementary Table S7). However, the specific activation of the fanconi anemia 

pathway by mitomycin C was not detected by DeMAND or DE analysis. Thus, ProTINA provided more 

sensitive and specific indications for the mechanism of action of compounds than DeMAND and DE.   

 

Application of ProTINA for predicting pathogen-host interactions 

We applied ProTINA to time-course gene expression profiles of human lung cancer cells (Calu-3) 

under influenza A virus infection, with the goal of identifying host factors that interact with the viral 

proteins. The gene expression data came from four studies of influenza A viruses, including 

A/Netherlands/602/2009 (H1N1), A/CA/04/2009 (H1N1), and A/Vietnam/1203/2004 (H5N1) (19-22). 

We employed ProTINA to compute the overall protein target scores using the gene expression data of 

Calu-3 from the four studies above, by averaging the scores from the early phase of the influenza 

infection between 0 to 12 hours. We checked the target predictions of ProTINA against the findings 

from a genome-wide co-immunoprecipitation analysis of host and viral protein interactions (42). More 

specifically, the aforementioned study reported 1,292 host proteins that co-immunoprecipitated with 

viral proteins of influenza A/WSN/33 using human embryonic kidney cells (HEK293). Despite the 

discrepancy in the cell types and influenza viral strains between the co-immunoprecipitation analysis 

and the gene expression profiling, influenza A viruses share similar features and common protein 

interactions (52,53). Besides ProTINA, we also evaluated the accuracy of viral target predictions from 

DeMAND and DE for the same dataset.  

Fig. 5 gives the receiver operating characteristic (ROC) curves of the target predictions from 

ProTINA, DeMAND and DE analysis. ProTINA outperformed the two other methods, providing the 

highest AUROC (ProTINA: 0.758 vs. Demand: 0.687 and DE: 0.647). We further performed a gene 

set enrichment analysis (GSEA) for the target predictions from each of the methods (see Material 

and Methods) to elucidate the key pathways involved in the viral infection and the accompanying 

host response. The results of the GSEA are summarized in Fig. 6. Both DeMAND and DE target 

predictions were enriched for only a few pathways (q-value < 0.01), while ProTINA prediction had a 

much higher number of overrepresented pathways.  

The common enriched pathways among ProTINA, DeMAND and DE (top of Fig. 6) included 

known mechanisms related to viral entry, replication and assembly, including endocytosis (54), 

protein processing in endoplasmic reticulum (55), ubiquitin mediated proteolysis (56,57) and RIG-I-

like receptor signaling pathway (58,59). Both ProTINA and DE analysis indicated the modulation of 

host cell cycle (60), mRNA surveillance (61) and DNA damage response (62). Only ProTINA 

prediction was significantly enriched for focal adhesion and actin cytoskeleton, which have been 

shown to regulate influenza virus entry at the early stage of infection (63). In addition, ProTINA target 

predictions were also enriched for a broad set of host response pathways to viral infection, including 

host defense mechanism (e.g., T- and B-cell receptor pathways, phagocytosis, leukocyte migration, 

chemokine signaling pathways), DNA damage repair (e.g., nucleotide excision repair, p53 signaling 
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pathway, homologous recombination) and apoptosis. As several influenza proteins are known to 

interfere with interferon production (which in turn regulates several cytokines) (58,59), these findings 

suggest that, overall, ProTINA provided a broader picture of the early events in the influenza A viral 

infection, than DeMAND and DE analysis.  

 

DISCUSSION 

ProTINA is a novel and highly effective network-based analytical method for inferring the protein 

targets of compounds from gene expression profiling data. The target scoring is based on quantifying 

perturbations in the protein-gene regulatory network, specifically enhancement or attenuation of gene 

regulatory interactions, caused by the compound treatment. ProTINA combines information of TF-

gene and protein-protein interactions and data of differential gene expressions to create a tissue or 

cell type-specific PGRN model. In the applications to three benchmark drug treatment datasets using 

human and mouse cell lines, ProTINA significantly outperformed the state-of-the-art algorithm 

DeMAND, which also relies on network dysregulation scoring, and the standard DE analysis. The 

target predictions of ProTINA also provide indications for the MoA of compounds, including the 

directions of the network perturbations, with high sensitivity and specificity.  

Both ProTINA and DeMAND score the protein targets of compounds based on gene regulatory 

network perturbations. In particular, DeMAND calculates protein dysregulation scores (p-values) for a 

given gene regulatory network, by statistical comparison between samples from drug treatment and 

from control experiments. Thus, DeMAND requires only few samples to generate its prediction 

(provided that the network can be defined a priori). On the other hand, ProTINA makes use of 

available differential gene expression profiles from a study or a cell line (i.e., not only for a particular 

drug), to assign the edge weights of the PGRN by ridge regression. Importantly, in the regression 

analysis, the PGRN model used in ProTINA accounts for the network perturbations. The ability of 

ProTINA to incorporate data from other drug treatments or conditions in the scoring of protein targets 

makes this method particularly suited to take advantage of extensive and still growing number of gene 

transcriptional profiles from publicly accessible databases such as GEO. 

Besides its intended use to predict targets of compounds, we also demonstrated that the analysis 

of network perturbations using ProTINA could provide insights into the mechanism of diseases. In the 

application to gene expression profiles of Calu-3 cells from influenza A infection studies, ProTINA 

again outperformed DeMAND and DE analysis in identifying host factors that bind with viral proteins. 

Furthermore, the GSEA of ProTINA target predictions revealed the spectrum of cellular processes 

involved in the early phase of influenza A infection, including pathways involved in viral entry, 

replication and assembly, and those related to cellular response to viral infection. Among the 

pathways with the highest significance (lowest q-value) was focal adhesion, which has been shown to 

regulate influenza viral entry as well as replication (63). Meanwhile, the target predictions of DeMAND 

and DE analysis had fewer enriched pathways, and thus were less informative than the target 

analysis by ProTINA.   
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AVAILABILITY 

MATLAB and R versions of ProTINA can be downloaded from Github repository 

(https://github.com/CABSEL/ProTINA). 
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Supplementary Data are available at NAR online. 
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Figure 1. Protein target prediction by ProTINA. (a) The protein-gene network describes direct and 

indirect regulations of gene expression by transcription factors (TF) and their protein partners (P), 

respectively. A drug interaction with a protein is expected to cause differential expression of the 

downstream genes in the PGN.  (b) Based on a kinetic model of gene transcriptional process, 

PROTINA infers the weights of the protein-gene regulatory edges, denoted by akj, using gene 

expression data. The variable akj describes the regulation of protein j on gene k, where the magnitude 

and sign of akj indicate the strength and mode (+akj: activation, -akj: repression) of the regulatory 

interaction, respectively. (c) A candidate protein target is scored based on the deviations in the 

expression of downstream genes from the PGN model prediction (Pj: log2FC expression of protein j, 

Gk: log2FC expression of gene k). The colored dots in the plots illustrate the log2FC data of a 

particular drug treatment, while the lines show the predicted expression of gene k by the (linear) PGN 

model. The variable zk denotes the z-score of the deviation of the expression of gene k from the PGN 

model prediction. A drug-induced enhancement of protein-gene regulatory interactions is indicated by 

a positive (negative) zk in the expression of genes that are activated (repressed) by the protein (i.e. 

akjzk > 0). Vice versa, a drug-induced attenuation is indicated by a negative (positive) zk in the 

expression of genes that are activated (repressed) by the protein (i.e. akjzk < 0). (d) The score of a 

candidate protein target is determined by combining the z-scores of the set of regulatory edges 

associated with the protein in the PGN. A positive (negative) score indicates a drug-induced 

enhancement (attenuation). The larger the magnitude of the score, the more consistent is the drug 

induced perturbations (enhancement/attenuation) on the protein-gene regulatory edges. 
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Figure 2. Prediction of known targets of drugs. AUROCs of protein target predictions from ProTINA, 

DeMAND and DE methods for the NCI-DREAM drug synergy (human B-cell lymphoma), the 

compound genotoxicity (human HepG2) and the chromatin targeting study (mouse pancreatic cell) 

datasets (*: p-value < 0.01, **: p-value <0.001 by paired t-test). 
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Figure 3. Canonical p53 DNA damage response pathway. In response to DNA damage, GADD45A, 

CDKN1A, PCNA are activated, while AURKA, CCNB1, and PLK1 proteins are inhibited (15). 
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Figure 4. Mechanism of action of compounds based on target predictions by ProTINA. (a) The rank 

distribution of the canonical p53 DNA damage response proteins in the drug target predictions of 

PROTINA, DeMAND and DE for the NCI-DREAM drug synergy dataset. (B) The rank distribution of 

proteins involved in the core DNA-damage repair (DDR) and DDR-associated pathways (49) in the 

target predictions of PROTINA, DeMAND, and DE for the DNA damaging compounds in the NCI-

DREAM drug synergy study (**: p-value <0.001 by Wilcoxon signed rank tests). 
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Figure 5. Prediction of targets of influenza A virus. The receiver operative characteristic curves give 

the true positive rate versus the false positive rate relationship of the protein target predictions from 

ProTINA, DeMAND, and DE against proteins that co-immunoprecipitate with influenza A viral proteins. 

The AUROCs for ProTINA, DeMAND and DE analysis are 0.758, 0.687 and 0.647, respectively. 
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Figure 6. Gene set enrichment analysis for KEGG pathways for the influenza A protein target 

predictions from ProTINA, DeMAND, and DE. The size and color of dots correspond to –log 10 scale 

of the q-values. Only pathways with q-value < 0.01 are shown.  
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