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ABSTRACT Flowering time is a key adaptive trait in plants and is tightly controlled by a complex regulatory network that
responds to seasonal signals. In a rapidly changing climate, understanding the genetic basis of flowering time variation is
important for both agriculture and ecology. Genetic mapping has revealed many genetic variants affecting flowering time, but
the effects on the gene regulatory networks in population-scale are still largely unknown. We dissected flowering time networks
using multi-layered Swedish population data from Arabidopsis thaliana, consisting of flowering time and transcriptome collected
under constant 10◦C growth temperature in addition to full genome sequence data. Our analysis identified multiple alleles of
the key flowering time gene FLOWERING LOCUS C (FLC) as the primary determinant of the network underlying flowering time
variation under our condition. Genetic variation of FLC affects multiple-pathways through known flowering-time genes including
FLOWERING LOCUS T (FT), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). We demonstrated that
an extremely simple single-locus model of FLC involving allelic variation and expression explains almost a half of flowering time
variation, with 60% of the effect being mediated through FLC expression. Furthermore, the accuracy of the model fitted at 10◦C
is almost unchanged at 16◦C.
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Introduction

Timing of reproduction is a key adaptive strategy in plants. To
decide when to flower, plants integrate a number of seasonal
signals like day length, temperature, and humidity (SIMPSON
and DEAN 2002; KIM et al. 2009; ANDRES and COUPLAND 2012).
Understanding the mechanisms controlling flowering time, and
the genetic architecture of variation for this trait is essential for
agriculture as well as for predicting how plants will respond to
climate change. It is also a model for selection on a complex,
adaptive trait. The regulation of flowering is one of the best-
studied developmental transitions in plants. In A. thaliana, a com-
plex network including more than one hundred genes in several
major pathways has been described: the photoperiod, ambient
temperature, autonomous, integrator, gibberellin and vernal-
ization pathways combine to regulate flowering (SIMPSON and
DEAN 2002; KIM et al. 2009; WELLMER and RIECHMANN 2010;
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SRIKANTH and SCHMID 2011; ANDRES and COUPLAND 2012).
Many mathematical and statistical models of flowering time
regulation have been proposed based on genetic data (WELCH
et al. 2003; SATAKE and IWASA 2012; SATAKE et al. 2013; LI et al.
2014b; WANG et al. 2014; LEAL VALENTIM et al. 2015), as well as
time-course data of expression levels of known flowering time
genes (SCHMID et al. 2003). In contrast, relatively little has been
done in terms of modeling the pathways that lead to natural
variation for flowering time. SATAKE et al. (2013) investigated the
dynamics of the vernalization pathway and its variation using
two individuals of A. halleri using expression levels of marker
genes, but variation in the flowering network on a population
scale is still poorly understood. In this study, we present a model
of flowering time network variation in a population of A. thaliana.
Our primary goal was to investigate how gene expression data
combined with genetic variation data might help us understand
the regulatory networks that connect genotypes to phenotype.
To build the model, we take advantage of a multi-layered data
set of A. thaliana from Sweden that contains genotypes (LONG
et al. 2013), RNA-seq transcriptome data (DUBIN et al. 2015), as
well as flowering time phenotypes (SASAKI et al. 2015) for 132
individuals.
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Figure 1 Correlation between flowering time and gene expression levels in the Swedish population. (A) The significance of the GO
enrichment for flowering time genes (and implied FDR; see Methods) as function of the significance threshold for the flowering-
expression correlation. (B) Outline of the flowering pathways in A. thaliana (reviewed in, e.g., KIM et al. 2009; WELLMER and RIECH-
MANN 2010; SRIKANTH and SCHMID 2011). FLC represses the floral integrator genes FD, FT, and SOC1. FT is induced by the pho-
toperiod pathway through CONSTANS (CO), which is induced by CRYPTOCROMEs (CRYs); the FT protein is a mobile flowering
signal that works with FD to induce SOC1 and floral meristem genes including APETALA1 (AP1), FRUITFUL (FUL), and SEPA-
LATA (SPL3). AGL24 and SOC1 regulate each other in positive feedback loops and induce transcription of LFY. The gibberellin
pathway promotes flowering by inducing SOC1 and the floral meristem-identity gene LEAFY (LFY). (C) A correlation network
based on measured expression level. Nodes show flowering time (yellow) and the genes in Table 1 (blue, or orange for the a pri-
ori gene set). Edges show significant correlations between nodes (p-value < 0.01 with Bonferroni correction) in pink or blue (for
positive and negative correlations, respectively).

Results

The correlation between gene expression and flowering time

We began by asking whether gene expression, as measured in
whole plants (above ground only) at a few weeks of age (the
nine-leaf stage) was correlated with eventual flowering of the
same genotype (in 10◦C, long day conditions) across 132 inbred
lines (Table S1). Using a significance threshold corresponding to
an FDR of 5%, 38 out of 20,285 genes (0.2%) showed significant
correlation with flowering time (see Methods and Table 1). Of
these, 9 were annotated as being related to a flowering time
phenotypes, and 5 were also part of a more conservative list of a
priori candidates (SRIKANTH and SCHMID 2011). This represents
a highly significant enrichment, which persists at higher FDR
cut-offs (Figure 1A). The correlations also generally remain after
a standard correction for population structure using a linear
mixed model (Table 1; see Methods).

The top three genes (Table 1) were all a priori flowering time
genes: FLOWERING LOCUS C (FLC; MICHAELS and AMASINO
1999; SHELDON et al. 1999) in the vernalization pathway, FLOW-
ERING LOCUS T (FT; KARDAILSKY et al. 1999; KOBAYASHI
et al. 1999) and SUPPRESSOR OF OVEREXPRESSION OF CON-
STANS 1 (SOC1; SAMACH et al. 2000) in the ”integrator” pathway
(Table 1; Figure 1B). In agreement with previous work, FLC ex-

pression was clearly most strongly correlated: the explained vari-
ance , r2 = 0.40, is strikingly similar to what was seen by LEMPE
et al. (2005) using a different sample under environmental condi-
tions. The expression of the integrator loci FT and SOC1 is less
strongly correlated with flowering, which is interesting given
that these loci are supposed to act downstream of FLC, and are
in this sense closer to the phenotype (Figure 1B; SCHMID et al.
2003; WELLMER and RIECHMANN 2010).

The correlation network connecting the genes in Table 1
with flowering (see Methods) was consistent with the known
flowering-time pathways (Figure 1C). The integrator pathway
connected FT and SOC1 with another strong a priori candi-
date, AGL24, a known inducer of SOC1 (YU et al. 2002, 2004;
MICHAELS et al. 2003). The photoperiod pathway was not con-
nected with the integrator pathway, but included CRY2 (TOTH
et al. 2001) as a hub gene in a network containing 19 other genes.
The vernalization pathway, via FLC, cleary plays a central role,
connecting the integrator pathway and the photoperiod path-
ways via FT and CRY2.

The genetic basis of flowering-associated expression varia-
tion
A network based on expression correlation is inherently undi-
rected and tells us little about causation, however some insight

2 Sasaki et al.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 11, 2017. ; https://doi.org/10.1101/175430doi: bioRxiv preprint 

https://doi.org/10.1101/175430
http://creativecommons.org/licenses/by/4.0/


Table 1 List of genes whose expression is significantly correlated with flowering time (10◦C)

Gene ID ρ r2 p-value (LM) p-value (LMM) Description a

AT5G10140 0.63 0.40 3.05E-16 9.30E-11 FLC*

AT1G65480 -0.54 0.29 2.64E-11 3.32E-08 FT*

AT2G45660 -0.47 0.22 1.35E-08 5.21E-05 SOC1*

AT2G41640 -0.42 0.17 7.03E-07 4.30E-05 Glycosyltransferase

AT3G57920 -0.39 0.15 3.28E-06 2.58E-02 SPL15

AT1G04400 -0.38 0.15 5.24E-06 1.39E-02 CRY2*

AT5G52310 -0.38 0.15 5.39E-06 6.72E-04 RD29A

AT1G69440 -0.38 0.15 5.53E-06 2.82E-03 AGO7

AT3G13100 -0.38 0.14 7.71E-06 1.99E-04 ATP-BINDING CASSETTE C7

AT1G23870 -0.38 0.14 8.98E-06 2.20E-03 TPS9

AT5G44630 -0.37 0.14 9.65E-06 2.83E-04 Terpenoid cyclases

AT3G09100 -0.37 0.14 9.74E-06 3.15E-03 protein coding

AT5G51720 0.37 0.14 9.90E-06 2.11E-01 AT-NEET

AT4G33040 -0.37 0.14 1.02E-05 1.14E-02 protein coding

AT3G04485 0.37 0.13 1.51E-05 9.65E-03 other RNA

AT1G77810 -0.37 0.13 1.62E-05 4.17E-04 Galactosyltransferase

AT2G13560 -0.36 0.13 1.70E-05 2.69E-02 NAD-ME1

AT3G08990 0.36 0.13 1.73E-05 6.09E-02 protein coding

AT1G17020 -0.36 0.13 1.78E-05 2.24E-04 SRG1

AT1G06160 0.36 0.13 2.26E-05 4.11E-02 ORA59

AT3G19860 -0.36 0.13 2.35E-05 5.81E-04 BHLH121

AT5G48400 -0.36 0.13 2.60E-05 6.83E-04 ATGLR1.2

AT3G19500 0.36 0.13 2.76E-05 6.12E-04 protein coding

AT3G05660 -0.36 0.13 2.80E-05 5.79E-02 AtRLP33

AT4G24540 -0.35 0.12 3.33E-05 1.38E-02 AGL24*

AT5G25120 -0.35 0.12 3.42E-05 5.08E-03 CYP71B11

AT3G18840 -0.35 0.12 4.03E-05 9.30E-03 TPR-like superfamily protein

AT2G18196 0.35 0.12 4.67E-05 2.06E-03 protein coding

AT5G46210 -0.35 0.12 4.78E-05 2.21E-03 ATCUL4

AT1G53165 -0.35 0.12 5.01E-05 2.32E-04 ATMAP4K ALPHA1

AT3G20250 -0.34 0.12 5.12E-05 1.19E-04 APUM5

AT5G44590 0.34 0.12 5.68E-05 2.67E-02 protein coding

AT3G55610 -0.34 0.12 6.47E-05 2.36E-04 P5CS2

AT4G18130 -0.34 0.12 6.63E-05 6.13E-04 PHYE

AT1G78050 -0.34 0.12 6.82E-05 1.22E-03 PGM

AT5G10490 -0.34 0.12 6.94E-05 4.42E-04 MSL2

AT5G58900 0.34 0.11 7.22E-05 1.37E-01 protein coding

AT2G46500 -0.34 0.11 7.92E-05 7.57E-04 ATPI4K
a Genes in bold have flowering-related mutant phenotypes; *denotes genes that are also part of a more conservative list of a priori candidate (SRIKANTH and SCHMID 2011).
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can be gained by identifying the genetic causes of the expression
variation (SCHADT et al. 2005). We used variance component
analysis (LIPPERT et al. 2014; MENG et al. 2016) to estimate the
effect on gene expression of the local genetic variation using a
30 kb window surrounding each gene. Based on permutation
tests (p-value < 0.05), almost one third of the genes in Table 1
had the property that genetic variation surrounding the gene
contributed significantly to the expression of that gene (i.e., they
are cis-regulated; see Figure 2 and Table S2). FLC stood out in
that not only was it strongly cis-regulated, but genetic variation
at the gene was also strongly associated with half of the other
genes in Table 1 (Figure 2; Table S2). Thus genetic variation at
FLC is causing the expression variation at these other loci, almost
certainly through its effect on FLC expression. In contrast, the
expression level of several genes highly correlated with flower-
ing time, including FT, SOC1, and CRY2 showed no evidence
of cis-regulation, but strong evidence for being regulated by ge-
netic variation at FLC. This result suggests that FLC is the key
determinant of flowering time under our conditions.
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Figure 2 Genetic effects on gene expression levels. Effects of
local genetic variation were estimated using a variance com-
ponent analysis and 30 kb windows surrounding each gene.
The bottom panel shows fraction of the gene expression varia-
tion (for each gene in Table 1) explained by local genetic vari-
ation surrounding each gene in Table 1; the top panel shows
frequency of strong associations (≥ 10%). The diagonal line
indicates the cis-regulation for each gene.

The genetic basis of flowering time and FLC expression varia-
tion

To gain further insight into the contribution of FLC to flowering
time variation, we carried out genome-wide association studies
(GWAS) for flowering time and FLC expression (Figure 3, S1).
In agreement with our previous results (SASAKI et al. 2015),
GWAS for flowering time identified a genome-wide significant
association with a single nucleotide polymorphism (SNP) in the
promoter region of FLC (Chr5: 3,180,721; p-value = 1.14E-08,
MAF = 0.62) in addition to weaker associations in two other a
priori candidates (Figure 3A). On the other hand, GWAS for FLC
expression did not identify any significant association (Figure
3B), even within the FLC locus itself —which is surprising given
the strong correlation with flowering time (Figure 3C) and the
evidence for cis-regulation obtained using variance-components
analysis (Figure 2).

The genetic architecture of flowering time variation

We are thus faced with a seemingly paradoxical result. How
can a SNP at FLC ( SNPFLC) predict flowering time but not FLC
expression, when FLC expression strongly predicts flowering
time (Figure 3C)? A simple answer would be variation at the
protein level, but there is no non-synonymous variation in this
gene (LI et al. 2014a), and indeed the variance component analy-
sis confirms that the genetic variation is cis-regulatory (Figure
2).

The obvious conclusion is that SNPFLC must be associated
with some aspect of FLC expression that is not captured by our
expression data, and that the expression variation we measure
must be partly caused by FLC variation not tagged by SNPFLC
(in addition to trans-acting genetic variation). The variance-
components analysis supports the latter explanation: To gain
insight into the former, we resorted to a statistical mediation anal-
ysis (BARON 1986; VALERI and VANDERWEELE 2013; PALMER
et al. 2017). A mediation analysis is a model-based attempt to dis-
sect mechanisms underlying an observed relationship between a
factor (A: exposure), an outcome (Y), and an intermediate factor
(M: mediator). The total effect of A on Y is decomposed into
an indirect effect mediated by M and a residual direct effect. In
the present context, we assumed that the SNPFLC (A) regulates
flowering time (Y) and that this effect is partly mediated through
the measured expression level (M). To consider the effect of pop-
ulation structure on both M and Y, we implemented a linear
mixed model that took genetic background into account instead
of using a standard generalized linear model (Figure 4A; see
also Methods and Supplemental Note).

SNPFLC explained 19% of flowering time variation in our
GWAS. According to the mediation model, only 59% of this
effect is mediated by the measured FLC expression level, with
the remaining 41% being the direct effect — which, per the ar-
gument given above, must correspond to unmeasured effects
on FLC regulation. In addition, FLC expression levels also af-
fected flowering independently of SNPFLC, presumably due to
a combination of cis-acting variation not captured by SNPFLC
and trans-acting genetic background effects not captured by the
kinship matrix. This effect explained 29% of flowering time
variation. In total, the full model including SNPFLC and FLC
expression explained a massive 48% of flowering time (Figure
4B).
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Figure 3 GWAS for flowering time (A) and the FLC expression (B). Gray horizontal lines indicate Bonferroni-correct 5% significance
thresholds and orange arrows in panel A show a priori flowering time genes (from SASAKI et al. (2015); the arrow in B shows the
SNP in the FLC region identified in A. (C) A scatter plot between flowering time and the expression level of FLC, and histograms of
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for each allele.

Prediction of flowering time using the FLC model
To investigate the limits of our model for prediction, we first
tested our model on flowering time and expression data gener-
ated for the same population, but at a higher growth temperature
that prevent vernalization (DUNCAN et al. 2015), namely 16◦C
(DUBIN et al. 2015; SASAKI et al. 2015). We predicted flowering
time using the FLC10◦C model with parameters estimated using
the 10◦C data (Figure 4B). The effect of population structure was
estimated using the 16◦C FLC expression levels (see Methods).

SNPFLC was significantly associated with flowering time in
these data as well (p-value = 3.31E-07; MAF = 0.72; Figure S2A-
B), but the global correlation of FLC expression with flowering
time decreased from R = 0.63 (at 10◦C; Table 1) to R=0.47 (p-
value=4.76E-12; Table S3). The correlation was observed in only
early flowering lines. Regardless of this, the efficiency of the
FLC10◦C model changed surprisingly little, and 43% of flowering
time variation was predicted by the model (Figure 5A-B, E). We
also tested the model on a different population for which flow-
ering data (at around 23◦C in a greenhouse) and FLC expression
data were available. In these data SNPFLC was not significantly
associated with flowering time, suggesting that that trans-acting
loci break the correlation under higher growth temperature (Fig-
ure S2C-D). However, FLC expression still showed a weak corre-
lation with flowering, and the model predicted 29% of flowering
time variation (Figure 5C-E).

Discussion

Our primary goal in this study was to explore how we might
use transcriptome data to elucidate the genetic architecture and
the regulatory network of a complex adaptive trait. Through

integration analysis, we identified an extremely simple network
structure that is determining flowering time in our condition
(constant 10◦C growth temperature in long day). Before dis-
cussing this in detail, it is worth noting that our overall results
are very different from ”typical” GWAS results in at least two
ways. First, we find large allelic effects, and there is little ”miss-
ing heritability” (MANOLIO et al. 2009) — the genetic variance
explained by kinship alone (the ”SNP heritability”) is consis-
tent with direct estimates of heritability derived by comparing
within and between line variances (ATWELL et al. 2010). Using a
variance component approach (SASAKI et al. 2015), we estimated
that alleles of the major flowering regulator FLC jointly explain
30% of the flowering time variation at 10◦C, with the rest of the
genome accounting for 56%. The existence of a major allelic
variation is similar to what has been seen for some other lo-
cally adaptive traits, e.g., skin and eye color in humans (BELEZA
et al. 2013), and is readily explained by selection maintaining
variation. The high SNP heritability is presumably due to a
combination of low environmental noise and high linkage dis-
equilibrium leading to efficient capture of background genetic
effects.

Second, SNPs detected in our GWAS are massively overrepre-
sented in experimentally verified regulatory pathways directly
related to flowering (Figure 3; SASAKI et al. 2015). This is very
unlike most human traits, which mostly seem to vary due to
pleiotropic mutations across the genome (BOYLE et al. 2017),
but more similar variation in adaptively varying traits like skin
and eye color (BELEZA et al. 2013). This agrees with the simple
evolutionary expectation that adaptive variation should be less
pleiotropic, whereas variation that is due to mutation-selection
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Figure 4 Network structure of flowering time regulation by FLC. (A) A mediation model of the flowering time regulation under the
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indirect effect size of SNPFLC are shown in blue. (B) Predicted flowering time by a FLC10◦C full model. X is genotype of SNPFLC, G
is FLC expression, Z is polygenic effects, and γ1 is a random effect corresponding to the genetic background.

balance can affect any gene.
Indeed, not only are the GWAS hits directly related to flow-

ering time, but the expression level associations are as well. (in
agreement with several previous A. thaliana studies, e.g., SUBRA-
MANIAN et al. (2005) and JIMENEZ-GOMEZ et al. (2010). Using
correlation between flowering time and transcriptome, we iden-
tified a gene list with a strong overrepresentation of known
candidates (Table 1). Interestingly, with striking exception of
FLC, there is no overlap between this list and the list of candi-
dates identified by GWAS (SASAKI et al. 2015), suggesting that
most of the genes on the former list are responding to genes on
the latter list. This is certainly true for the small cluster of FT and
SOC1 under negative regulation by FLC (Figure 1B; KIM et al.
2009; WELLMER and RIECHMANN 2010). While the expression
of all three genes is strongly correlated with flowering (and have
been used as markers, e.g., SATAKE et al. 2013; WANG et al. 2014;
LEAL VALENTIM et al. 2015), only FLC appears to be directly
causative, at least under this experimental condition. It is also
notable that, with the obvious exception of FLC, genes that do
harbor causative genetic variation do not show up as correlated
in expression (Table 1). For example, expression levels of VIN3,
a classical expression marker used in modeling (SATAKE et al.
2013), are not correlated with flowering despite VIN3 having
an apparent genetic effect (Fig 3A-B). Studies have shown that
VIN3 expression gradually increases during cold exposure, and
that the abundance after sufficient long periods of exposure does
not affect flowering time (WOLLENBERG and AMASINO 2012).
Thus the reason for the lack of correlation in our study could
be that the expression of VIN3 was already saturated at this
developmental stage (alternatively, genetic variation at VIN3
could act at the amino-acid level).

Our analysis confirms that FLC plays a major role in deter-
mining flowering behavior (SHINDO et al. 2005; LI et al. 2014a),

both in terms of being directly causative, and in terms of inte-
grating variation at other loci. Importantly, FLC remains difficult
to identify using standard, single-SNP, GWAS methods, the rea-
sons being the complex genetic architecture of the locus itself.
The situation is similar to that for the multi-allelic flowering
locus FRIGIDA (SHINDO et al. 2005; ATWELL et al. 2010), but
apparently much more complex (LI et al. 2014a). While SNPFLC
alone explained 19% of the phenotypic variation, local genetic
variation at FLC explains 28%, and our full FLC model (includ-
ing some trans-effects mediated by FLC) explains close to 50%. It
is also notable that our estimate of the amount of the heritability
that is attributable to expression is again much higher than in
human disease studies. (O’CONNOR et al. 2017). It may seem
paradoxical that our model, parametrized at 10◦C, also works
well at 16◦C — and even at 23◦C in a different population where
the cis-regulatory variation at FLC is different, whereas the list of
genes correlating with flowering time changed greatly between
10◦C and 16◦C (Table S3). The reason for this is not entirely
clear, but likely involves the strong and locally adapted genetic
background (LI et al. 2014a) which, to a significant extent, acts
through FLC (as genotype-environment interactions). In con-
clusion, our novel mediation analysis illustrates the complexity
of the genotype-phenotype map in even an extremely simple
network dominated by a single locus (Figure 4A), but raises
hope for more mechanistic (and genuinely predictive) models of
the flowering time network (e.g., ANGEL et al. 2015).

Materials and Methods

Correlation analysis

Data sets of 132 Swedish lines grown under constant 10◦C were
used for the analysis (LONG et al. 2013); DUBIN et al. (2015);
SASAKI et al. (2015); Table S1). Correlation coefficient (ρ) was
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Figure 5 Prediction of flowering time by the FLC10◦C model. The data sets of the Swedish population (n=153; A, B) and global
populations (n=101; C, D) were collected under 16◦C and an ambient temperature in a greenhouse, respectively. (A, C) Scatter
plots between flowering time and the expression level of FLC, and histograms showing distributions of the genotype SNPFLC. Blue
and red show reference and non-reference allele, respectively. Dot lines showed regression lines for each allele. (B, D) Scatter plots
between observed and predicted flowering time by the FLC10◦C full model. Dot lines show 95% confidence intervals. (E) Prediction
of flowering time variation.

calculated between flowering time and expression levels for
20,285 genes for which more than 10% lines showed detectable
expression levels. Also r2 and p-value were calculated by a
general linear regression model using lm() function in R (www.r-
project.org). Next, we calculated rho and the p-values for all
pairs of gene and flowering time in Table 1. Using the signif-
icance, a correlation network was visualized using Cytoscape
(SHANNON et al. 2003) with threshold p-value < 0.01 with bon-
ferroni correction (741 tests for 38 genes + flowering time).

GO analysis
Enrichment of known flowering time genes was estimated us-
ing BiNGO as a plugin of Cytoscape (MAERE et al. 2005), and
Benjamini and Hochberg False Discovery Rate correction (BEN-
JAMINI 1995) was used for the multiple testing correction. GO as
”regulation of flower development” defined in the latest GO term
in the Arabidopsis Information Resource (TAIR; BERARDINI et al.
2015) was used for the analysis as flowering time genes. FDR

was calculated based on the GO list as described in SASAKI et al.
(2015).

Linear mixed model (LMM)

All association studies were performed using LIMIX (LIPPERT
et al. 2014). The following linear mixed model (LMM) was used

Y = Xβ + Zγ + εY

εY ∼ N (0, σ2
YIn)

where X is the genotype of the SNPFLC and β is the parameter
of the corresponding fixed effect, Z = (X1 . . . Xp) is all other
SNPs and γ ∼ N (0, σ2Ip) is the corresponding random vector
modeling the genomic background (KANG et al. 2008). Finally
In is the n× n identity matrix.

To study the effect of gene expression with correction for
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population structure, the following LMM was used

Y = Gθ + Zγ + εG

εG ∼ N (0, σ2
GIn)

where G is the gene expression level and θ is the parameter for
the corresponding fixed effect.

Variance component analysis

Cis-genetic effects of loci on an expression level Y was esti-
mated using local_vs_global_mm() function in mixmogam
(https://github.com/bvilhjal/mixmogam) with the model

Y = Ulocal + Uglobal + ψ

Ulocal ∼ N (0, σ2
localKlocal)

Uglobal ∼ N (0, σ2
globalKglobal)

ψ ∼ (0, σ2
e I)

Where Ulocal and Uglobal are random effects corresponding to
local and global relatedness, respectively, and ψ is noise. The
local region is defined as +/- 15Kbp coding region of each gene.
Significance of the variance component was estimated by per-
mutation tests (1000 times) with maintaining the chromosomal
order of all observations but shuffling the relative positions of
the two variables (Figure S3).

Mediation analysis

SAS macros published in VALERI and VANDERWEELE (2013)
were used for this analysis. We implemented a linear mixed
model to correct population structure to the model described in
Supplemental Note. r2 was calculated as described in NAKA-
GAWA and SCHIELZETH (2013).

Prediction of flowering time

Data sets for prediction are published flowering time and FLC
expression data that were collected under constant 16◦C growth
temperature (DUBIN et al. 2015; SASAKI et al. 2015) and an
ambient temperature around 23◦C in a greenhouse (SHINDO
et al. 2005; ATWELL et al. 2010). Lines included in the Swedish
genome project (LONG et al. 2013) and the 1001 project (THE
1001 GENOMES CONSORTIUM 2016) were used for the analysis
with the genotype (16◦C n=153; greenhouse n=101; Table S1).
The following model parameterized by the 10◦C data set was
used for prediction of flowering time Y including n individuals.

Y = Xβ + Gθ + Zγ

γ ∼ N (0, σ2In)

where X is the genotype of SNPFLC and G is the expression lev-
els of FLC under each condition. Based on the assumption that
effects of population structure on Y and G are proportional, we
estimate γ by fitting a null model G = Zγ + ψ by REML imple-
mented in EMMA (KANG et al. 2008). Flowering time variation
explained by the model was estimated by r2 of NAKAGAWA and
SCHIELZETH (2013). Significance of the variance component
was estimated by per- mutation tests (1000 times) with maintain-
ing the chromosomal order of all observations but shuffling the
relative positions of the two variables (Figure S3).
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