
 1 

Making up your mind: Enhanced perceptual decision-making induced by stochastic 1 

resonance during non-invasive brain stimulation 2 

 3 

Stochastic resonance in perceptual decision-making 4 

 5 

 6 

Onno van der Groen¹,2*, Matthew F. Tang2, Nicole Wenderoth1, Jason B. Mattingley2,3 7 

 8 

 9 

¹ Neural Control of Movement Laboratory, Health Sciences and Technology, ETH Zurich, 10 

Zurich, 8057, Switzerland 11 
2 Queensland Brain Institute, The University of Queensland,  St Lucia, Queensland 4072, 12 

Australia 13 

• 3 School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia 14 

•  15 

 16 

 17 

* Correspondence should be addressed to: vandergroen@gmail.com 18 

 19 

Total number of words: 4271 20 

Number of figures: 4 21 

 22 

The authors declare no competing financial interests. 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

O.v.d.G was supported by the Swiss National Science Foundation (grant 165189 and 31 
320030_149561) and M.T and J.B.M were supported by the Australian Research Council 32 
(ARC) Centre of Excellence for Integrative Brain Function (ARC Centre Grant 33 
CE140100007). J.B.M was supported by an ARC Australian Laureate Fellowship 34 
(FL110100103).  35 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 13, 2017. ; https://doi.org/10.1101/175455doi: bioRxiv preprint 

https://doi.org/10.1101/175455


 2 

Summary: 36 

Perceptual decision-making relies on the gradual accumulation of noisy sensory evidence 37 

until a specified boundary is reached and an appropriate response is made. It might be 38 

assumed that adding noise to a stimulus, or to the neural systems involved in its processing, 39 

would interfere with the decision process. But it has been suggested that adding an optimal 40 

amount of noise can, under appropriate conditions, enhance the quality of subthreshold 41 

signals in nonlinear systems, a phenomenon known as stochastic resonance. Here we asked 42 

whether perceptual decisions obey these stochastic resonance principles by adding noise 43 

directly to the visual cortex using transcranial random noise stimulation (tRNS) while 44 

participants judged the direction of motion in foveally presented random-dot motion arrays. 45 

Consistent with the stochastic resonance account, we found that adding tRNS bilaterally to 46 

visual cortex enhanced decision-making when stimuli were just below, but not well below or 47 

above, perceptual threshold. We modelled the data under a drift diffusion framework to 48 

isolate the specific components of the multi-stage decision process that were influenced by 49 

the addition of neural noise. This modelling showed that tRNS increased drift rate, which 50 

indexes the rate of evidence accumulation, but had no effect on bound separation or non-51 

decision time. These results were specific to bilateral stimulation of visual cortex; control 52 

experiments involving unilateral stimulation of left and right visual areas showed no 53 

influence of random noise stimulation. Our study is the first to provide causal evidence that 54 

perceptual decision-making is susceptible to a stochastic resonance effect induced by tRNS, 55 

and that this effect arises from selective enhancement of the rate of evidence accumulation 56 

for sub-threshold sensory events. 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 
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 3 

Results and Discussion 70 

Noise is an intrinsic property of all biological systems [2]. Typically, noise is viewed as being 71 

detrimental for neuronal computations and the behaviors they regulate [2, 3], including 72 

decision-making [4]. A key limiting factor in decision-making arises from noisy 73 

representations of sensory evidence in the brain [5, 6]. On this view, noisy sensory 74 

information representations are not optimal, and this leads to errors in decisions. However, 75 

small amounts of noise added to a nonlinear system can increase the stimulus quality by 76 

increasing the signal-to-noise ratio (SNR)[7]. This phenomenon is known as stochastic 77 

resonance, and its expression has been demonstrated in different sensory modalities [8-10]. 78 

Stochastic resonance occurs when an optimal amount of noise is added to a sub-threshold 79 

signal, which makes the signal cross a decision threshold, and therefore enhances detection 80 

performance (Figure 1). 81 

 82 

 83 

Figure 1: Stochastic resonance occurs when an optimal level of noise is added to a subthreshold signal. In this 
example the signal alone (red sinusoid) remains below the perceptual threshold (dotted line). Adding an optimal 
amount of noise (grey line) periodically raises the stimulus above the system threshold. If the added noise is too 
weak, the threshold is not crossed. Conversely, if the noise is too strong the signal remains buried and cannot be 
discriminated from the noise[1].  
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In a typical stochastic resonance experiment, predefined noise intensities are added to a 84 

signal. Adding too little noise does not cause threshold crossings when the signal is well 85 

below the detection threshold, and performance remains unaffected. By contrast, when too 86 

much noise is added the signal gets buried in the noise and performance declines [11-14]. 87 

This results in an ‘inverted U’ relationship between noise intensity and detection 88 

performance, which is a key signature of the stochastic resonance effect [8-10]. At the 89 

neurophysiological level, it has been shown that adding an optimal amount of noise to a 90 

subthreshold signal pushes otherwise silent sensory neurons above the spiking threshold [10, 91 

15, 16]. A common way of adding noise in a stochastic resonance context is to add it directly 92 

to the sensory stimulus. In that case, the noise could increase peripheral receptor sensitivity 93 

[17], which does not permit investigation of whether central neural processes in decision-94 

making are sensitive to a stochastic resonance mechanism. Recently, we showed it is possible 95 

to induce a stochastic resonance effect in a simple detection task when noise is added to the 96 

cortex directly with tRNS [18]. In that study, participants had to detect a weak visual stimulus 97 

which was either sub- or suprathreshold. On each trial, tRNS with a predefined intensity was 98 

added to the visual cortex. We demonstrated that adding an optimal noise level with tRNS 99 

significantly enhanced detection performance for subthreshold, but not suprathreshold, 100 

stimuli.  101 

 102 

Here we asked whether perceptual decision-making, as opposed to mere detection, can be 103 

enhanced for subthreshold visual stimuli by the application of tRNS over visual cortex, either 104 

bilaterally (Experiment 1) or unilaterally over the left and right visual cortex (Experiments 2 105 

and 3). To examine these effects, we used drift diffusion modeling (DDM, see Figure 2A) 106 

[19, 20] to uncover what aspects of the decision process were influenced by tRNS. Under the 107 

DDM framework, decision-making requires the collection of noisy sensory evidence over 108 

time. The collection of sensory evidence continues until a criterion is reached, and based on 109 

the collected sensory evidence, a decision is made [21, 22]. The DDM is a highly successful 110 

approach that has been used over a wide range of tasks [23]. 111 

 112 

 113 

 114 

 115 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 13, 2017. ; https://doi.org/10.1101/175455doi: bioRxiv preprint 

https://doi.org/10.1101/175455


 5 

 116 

We used a random-dot-motion task (RDM-task) as the perceptual decision-making task of 117 

choice (see Supplemental Information). The RDM-task is widely used in studies of 118 

perceptual decision-making, and has well characterized neural correlates [24, 25]. 119 

Participants fixated on a centrally presented array of randomly moving dots within which a 120 

proportion of the dots moved coherently in a common direction (leftward or rightward; see 121 

Figure 2B). Participants judged the common direction of movement (two-alternative forced-122 

choice/2-AFC) as quickly and accurately as possible. The difficulty of the task was 123 

parametrically manipulated by altering the proportion of signal dots that moved coherently in 124 

a given trial (3%, 6%, 12%, 25% or 50% coherence). The benefit of this task is that it allows 125 

for the continuous accumulation of sensory evidence over a period of several hundred 126 

milliseconds, which facilitates investigation of the underlying processes involved in decision-127 

making [21, 26, 27].  128 

 129 

If the stochastic resonance model applies to perceptual decision-making, then the addition of 130 

relatively small amounts of noise should enhance motion discrimination performance. The 131 

added noise will likely increase the quality of the sensory evidence for coherent motion trials 132 

in which the signal is just below threshold, but not for trials in which the signal is well below 133 

Figure 2. A: Schematic of the Drift Diffusion Modelling (DDM) framework used to model perceptual decision-making in the 
dot motion task. In the model, evidence is accumulated over time until a response boundary is crossed. t is the non-decision 
time, which includes the time taken to execute a motor response. v is the drift rate, which reflects the rate at which sensory 
evidence is accumulated. This parameter is taken as an index of the quality of sensory information. a represents the boundary 
separation (correct at the top, incorrect at the bottom), indicating how much information is needed to make a decision. B: 
Schematic of the random dot-motion task in which participants judged whether signal dots moved on average to the left or right. 
Task difficulty was titrated by altering the proportion of coherently moving dots (shown with arrows attached, for purposes of 
illustration) amongst randomly moving dots. In this example the coherent motion is rightward, but in the experiment the dots 
were equally likely to move toward the left or right. For display purposes, we depicted here the outline of the imaginary circle in 
which the dots were presented. 
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or above threshold. Conversely, the addition of large amounts of noise should either have no 134 

effect on perceptual thresholds, or should impair performance slightly for displays at or 135 

above threshold [8]. We therefore applied four different tRNS intensities (0.25, 0.375, 0.5 136 

and 0.75 mA; 100-640 Hz zero-mean Gaussian white noise) while participants engaged in the 137 

RDM-task. These tRNS intensities result in current densities that we have shown previously 138 

are able to induce a stochastic resonance effect in a visual contrast detection task [18]. The 139 

tRNS was applied in blocks of 20 trials at one of the four intensities, with each block of 140 

stimulation followed by a 20-trial block of no-stimulation to minimise build-up of any 141 

cumulative effects of the stimulation. Participants were blinded to the tRNS conditions. 142 

Consistent with several previous investigations, no participant reported awareness of the 143 

stimulation during de-briefing [28, 29] .  144 

 145 

 146 

Experiment 1: Effect of bilateral visual cortex stimulation on perceptual decision-147 

making  148 

In Experiment 1, we stimulated visual cortex bilaterally with tRNS in 15 participants (see 149 

Figure 3 and Figure S2). The coherence levels of 3% and 6% were subthreshold (average 150 

detection performance < 0.63%), i.e., performance was below the detection threshold, which 151 

corresponded to 75% correct in our task. For the analysis, we calculated the group %correct-152 

choice-index (%CCI) for each coherence level and each tRNS intensity by dividing the 153 

%correct motion-direction responses under tRNS by the %correct responses when no tRNS 154 

was applied (baseline), as given in the following formula: 155 

 156 

	 %CCI = 	%Corr(𝑖)/%Corr(zero	noise) 157 

 158 

where i denotes each of the 4 tested noise intensities. As shown in the left panel in Figure 3, 159 

for the 6% coherence condition, which was just below threshold in the no-tRNS condition, 160 

motion discrimination performance improved when tRNS was applied at a relatively low 161 

intensity, whereas performance remained unaffected for the other coherence levels and noise 162 

intensities. To quantify these effects, we performed a 4 (tRNS intensity) x 5 (coherence level) 163 

within-subjects ANOVA on the %CCI data. There was a significant interaction between 164 

coherence level and tRNS-intensity (F(12,156) = 2.47 p < 0.01, Cohen’s f= 0.43). To isolate 165 

the source of this interaction, one-way ANOVAs were conducted for each coherence level 166 

separately. For the 6% coherence condition only (red symbols in Figure 3), performance was 167 
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significantly affected by the different tRNS intensities (F(3,39) = 3.56 p = 0.02 Cohen’s 168 

f=0.52 ). There were no other significant main effects or interactions for the coherence 169 

conditions of 3%, 12%, 25% or 50%. Post-hoc tests were conducted to compare performance 170 

in the 6% coherence condition at each noise level against the baseline. All p-values were 171 

corrected for multiple comparisons. These comparisons revealed that a tRNS intensity of 172 

0.25mA significantly enhanced motion discrimination performance relative to baseline (t(13) 173 

= 3.39 pcorrected < 0.02). A similar enhancement was evident for the 6% coherence level at an 174 

intensity of .375mA, but this effect did not survive our stringent correction for multiple 175 

comparisons, (t(13) = 2.53, pcorrected > 0.1). These results suggest that perceptual decision-176 

making for sensory stimuli that are just below threshold can be improved by adding a small 177 

amount of neural noise over bilateral visual cortex, consistent with predictions arising from 178 

the stochastic resonance principle [8].  179 

 180 

 181 

Next we employed the drift diffusion framework to accurately model the processes involved 182 

in decision-making based on the accuracy and response time data obtained from the decision-183 

making task. Specifically, we used the hierarchical drift diffusion model (HDDM, [30]) to 184 

determine which aspect of decision-making was affected by tRNS. We normalized the 185 

obtained DDM-parameters relative to the zero noise condition in the same way as the 186 

behavioral data, as described above. As shown in the right panel of Figure 3, the drift rate 187 

was markedly affected by tRNS for the 6% coherence condition, whereas it appears to be 188 

unaffected for the remaining coherence levels. We submitted the drift-rate parameter to a 5 x 189 

Figure 3. Effects of transcranial random noise stimulation (tRNS) on perceptual decision-making in the dot-motion 
discrimination task for bilateral stimulation. The left panel shows performance for each motion coherence level as a function of 
tRNS intensity. The right panel shows the drift rate derived from modelling of the data shown in the corresponding plot to the 
left. *pcorrected < 0.05.  
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4 repeated measures ANOVA. This analysis revealed a significant main effect of tRNS-190 

intensity (F(3,39) = 2.85, p = 0.049) and of coherence level (F(4,52) = 3.18, p = 0.02 on drift 191 

rate, as well as a significant tRNS-intensity x coherence level interaction (F(12,156) = 3.22,  192 

p < .01, Cohen’s f = 0.47). To isolate the source of the significant interaction, one-way 193 

ANOVAs were conducted for each coherence level separately. Consistent with the behavioral 194 

data, there was a significant effect of tRNS intensity on drift rate in the 6% coherence 195 

condition (F(3,39) = 5.63, p < .01, Cohen’s f = .58), but no significant effects for the other 196 

coherence levels (3%, 12%, 25%, 50%).  197 

 198 

Post-hoc tests were conducted to compare performance in the 6% coherence condition 199 

against the baseline for each noise level. For the tRNS intensity of .25mA, the drift rate for 200 

the 6% coherence condition was significantly higher than baseline (t(13) = 3.44, pcorrected < 201 

0.02, corrected for multiple-comparisons). A similar benefit for the 6% coherence condition 202 

was apparent for the tRNS intensity of .375mA, but this effect did not survive correction for 203 

multiple comparisons (t(13) = 2.55, p = 0.1). Separate 5 x 4 repeated measures ANOVAs 204 

revealed no significant effects for the bound-separation parameter (all p > 0.06), and no 205 

significant effects for non-decision time (all p > 0.13).  206 

 207 

Previous studies of visual motion discrimination have shown reliable effects of offline 208 

transcranial electrical stimulation – as opposed to the online effects reported here – following 209 

unilateral stimulation of left or right visual cortex in isolation [31-33]. We therefore 210 

conducted two further experiments to determine whether the stochastic resonance effects we 211 

observed for bilateral tRNS in Experiment 1 also arise for unilateral visual stimulation. We 212 

also modelled the current spread for the electrode montage used in each experiment using the 213 

SimNibs toolbox [34] (Figure 4). 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 
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 224 

Experiments 2 and 3 – Effect of unilateral visual cortex stimulation on perceptual 225 

decision-making 226 

In Experiments 2 and 3 we applied tRNS unilaterally to the left and right visual cortex, 227 

respectively, using two new groups of 15 participants each. Figures 5A and 5B show the 228 

behavioral results for these two experiments. Neither left nor right unilateral tRNS produced 229 

the characteristic inverted-U tuning curve observed in Experiment 1 for the 6% coherence 230 

condition during bilateral stimulation. To characterize the data statistically, we employed the 231 

same analytic approach as for the bilateral tRNS experiment, for both the behavioural data 232 

and the drift diffusion modelling. There was no significant interaction between stimulation 233 

intensity and coherence level for either left unilateral or right unilateral visual cortex 234 

stimulation (p > .05 for all key comparisons). Thus, there was no evidence for the stochastic 235 

resonance effect observed during bilateral stimulation in experiment 1.  236 

Figure 4. Electrode pad montages and modelled electrical field strength (normE) for each of the three tRNS experiments. A.  
Bilateral visual cortex stimulation (Experiment 1). B. Left visual cortex stimulation (Experiment 2). C. Right visual cortex 
stimulation (Experiment 3).  
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 237 

Analysis of the baseline data in all three experiments revealed no interaction between 238 

coherence level and tRNS intensity (repeated measures ANOVA with within-subjects factor 239 

of coherence level and between-subjects factor of experiment, F(2,39) = 1.15, p > .32), 240 

suggesting that the stochastic resonance-effect observed in Experiment 1 was not driven by 241 

differences in baseline performance between the three experiments. Across all three 242 

experiments, there was a highly significant main effect of coherence level on performance, as 243 

expected. For completeness, we also report here a small number of significant main effects 244 

which are not related to the central stochastic resonance hypothesis under examination in this 245 

study (see also Figure S2). First, there was a small but consistent main effect of tRNS 246 

intensity on accuracy during right visual cortex stimulation, F(3,39) = 3.13 p = .036, Cohen’s 247 

f =0.49. Post-hoc contrasts revealed that this effect was driven by overall poorer performance 248 

for the .25mA tRNS intensity, regardless of motion coherence level, t(69) = -2.78 pcorrected < 249 

0.03. This decrease in performance was mirrored by a significant main effect of tRNS-250 

Figure 5. Effects of transcranial random noise stimulation (tRNS) on perceptual decision-making in the dot-motion 
discrimination task for unilateral stimulation for the left visual cortex (A) and right visual cortex (B) stimulation. The left panels 
show performance for each motion coherence level as a function of tRNS intensity. The right panels show the drift rate derived 
from modelling of the data shown in the corresponding plots to the left.  
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intensity on drift rate (see Figure 5B and Table S1), (F(3,39) = 4.54 p < .01, Cohen’s f = 0.59, 251 

which was again specific to the .25mA tRNS intensity, (t(69) = 2.67 pcorrected = .04), 252 

regardless of motion coherence level. Second, there was a significant main effect of 253 

coherence level on bound-separation during stimulation of the right visual cortex, F(4,52) = 254 

3.09 p = .024, Cohen’s f = 0.4 (see Supplemental Information). Post-hoc tests showed that the 255 

bounds were significantly closer together for the highest (50%) coherence condition, t(55) = 256 

3.16 pcorrected < .04, relative to baseline), but there were no significant effects on bound 257 

separation for the other coherence levels.  258 

 259 

Conclusions  260 

We have shown that adding a small amount of noise bilaterally to the visual cortex can 261 

enhance perceptual decision-making in a motion discrimination task, particularly for 262 

subthreshold stimuli (6% coherence). When modeled as a drift-diffusion process, this tRNS-263 

induced performance improvement coincided with an increase in the rate of evidence 264 

accumulation, reflected as a change in the model’s drift-rate parameter. The same model 265 

revealed no change in either bound-separation or non-decision time, suggesting that an 266 

optimal level of neural noise exclusively improves perceptual decision-making by enhancing 267 

sensory information quality, consistent with a stochastic resonance mechanism ([8-10], see 268 

Supplemental Information for the model fits). In line with previous work [18], we showed 269 

that the stochastic resonance effect was strongest when appropriate tRNS intensities were 270 

added to the 6% coherence condition, i.e. to a subthreshold stimulus, as indicated by the 271 

average baseline detection accurarcy of 60%. Note that all tRNS intensities and coherence 272 

levels were randomized over participants to account for any aftereffects, fatigue or learning 273 

effects across conditions.  274 

 275 

There was no evidence for a stochastic resonance effect when noise was applied unilaterally 276 

to the visual cortex. This absence of a performance-enhancing effect for unilateral tRNS was 277 

not due to differences in baseline performance between the groups: detection performance in 278 

the 6% coherence condition was similar across experiments (Experiment 1 – 60%; 279 

Experiment 2 – 58%; Experiment 3 – 57%). Modelling of the electrical field for each 280 

electrode montage (Figure 4) indicated a higher peak current when the tRNS was applied 281 

bilaterally than in the unilateral stimulation conditions. It is unlikely that this apparent 282 

difference in current densities prevented a stochastic resonance effect for the unilateral 283 
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stimulation conditions, however, because the same absolute current densities during bilateral 284 

stimulation were also reached during unilateral stimulation but at higher tRNS intensities.  285 

 286 

The visual stimuli employed in our motion discrimination task were always presented in the 287 

centre of the display, and thus would have been processed initially by visual areas in both the 288 

left and right hemsipheres [35]. Given that unilateral visual cortex stimulation did not 289 

influence motion-discrimination performance, it is most parsimonious to conclude that visual 290 

areas in both hemispheres must be stimulated concurrently with tRNS for the stochastic 291 

resonance effect to occur. Because of the relatively diffuse nature of transcranial electrical 292 

stimulation in general [36], it is not possible to determine the specific anatomical regions that 293 

mediate the stochastic resonance effect we observed. The primary visual cortex (V1) [37] and 294 

motion area V5/MT are both crucial for the processing of dynamically moving visual stimuli 295 

[38-40]. These two areas are highly interconnected, so our bilateral stimulation protocol 296 

might have impacted motion processing in area V5/MT, enhanced signal quality in area V1, 297 

or both. Further work using more focal stimulation techniques (e.g., transcranial magnetic 298 

stimulation) will be needed to pinpoint the visual areas responsible for the stochastic 299 

resonance effects we report here.  300 

 301 

Our results are in line with recent work that employed a similar task to show that decision-302 

making is sensitive to the addition of noise to visual motion stimuli [41]. Critically, our 303 

findings extend these results by demonstrating that a stochastic resonance effect can be 304 

induced in a decision-making task when noise is directly applied to the visual cortex with 305 

tRNS [42, 43]. Moreover, we are the first to show that this stochastic resonance effect 306 

enhances the quality of information processing as indicated by an accelerated rate of evidence 307 

accumulation. The underlying mechanism for the observed tRNS effect is not completely 308 

understood. However, single unit recordings have shown that sensory neurons in the visual 309 

cortex are sensitive to a stochastic resonance mechanism, e.g., there is an increase in the SNR 310 

of the firing rate of neurons when an optimal level of noise is applied to a visual stimulus 311 

[44]. This is likely due to the recruitment of voltage-gated sodium channels by the noise [45-312 

47].  313 

 314 

 315 

 316 

 317 
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