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Abstract	53 

BACKGROUND:	Along	with	time,	variation	in	the	exposome	is	dependent	on	the	location	and	54 

sex	of	study	participants.	One	specific	factor	that	may	influence	exposure	co-variations	is	a	55 

shared	household	environment.	56 

	57 

OBJECTIVES:	To	examine	the	influence	of	shared	household	and	partner’s	sex	in	relation	to	the	58 

variation	in	128	endocrine	disrupting	chemical	(EDC)	exposures	among	couples.	59 

	60 

METHODS:	In	a	cohort	comprising	501	couples	trying	for	pregnancy,	we	measured	128	(13	61 

chemical	classes)	persistent	and	non-persistent	EDCs	and	estimated	1)	sex-specific	differences;	62 

2)	variance	explained	by	shared	household;	and	3)	Spearman's	rank	correlation	coefficients	(rs)	63 

for	females,	males,	and	couples’	exposures.	64 

	65 

RESULTS:	Sex	was	correlated	with	8	EDCs	including	polyfluoroalkyl	substances	(PFASs)	(p	<	66 

0.05).	Shared	household	explained	43%	and	41%	of	the	total	variance	for	PFASs	and	blood	67 

metals,	respectively,	but	less	than	20%	for	the	remaining	11	EDC	classes.	Co-exposure	patterns	68 

of	the	exposome	were	similar	between	females	and	males,	with	within-class	rs	higher	for	69 

persistent	and	lower	for	non-persistent	chemicals.	Median	rss	of	polybrominated	compounds	70 

and	urine	metalloids	were	0.45	and	0.09,	respectively,	for	females	(0.41	and	0.08	for	males),	71 

whereas	lower	rss	for	these	2	classes	were	found	for	couples	(0.21	and	0.04).	72 

	73 

CONCLUSIONS:	Overall,	sex	did	not	significantly	affect	EDC	levels	in	couples.	Individual,	rather	74 

than	shared	environment,	could	be	a	major	factor	influencing	the	co-variation	of	128	markers	75 

of	the	exposome.	Correlations	between	exposures	are	lower	in	couples	than	in	individual	76 

partners	and	have	important	analytical	and	sampling	implications	for	epidemiological	study.	77 

	78 

	79 

	80 

	81 
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Introduction	87 

Variation	of	environmental	exposure	levels	in	the	population	is	a	complex	phenomenon	and	is	88 

influenced	by	factors	shared	by	individuals	—	such	as	those	within	a	household	—	and	non-89 

shared	factors	specific	to	individuals,	such	as	their	sex.	One	could	apply	the	exposome	90 

paradigm	(Wild	2005),	a	model	to	capture	the	totality	of	exposures	from	conception	onwards,	91 

to	comprehensively	characterize	the	individual-level	and	shared	differences	of	exposure.	92 

However,	the	exposome	is	a	dynamic	entity	with	variations	across	time	(temporal)	and	place	93 

(spatial)	(Wild	et	al.	2013)	underscoring	the	importance	of	considering	variability	when	94 

assessing	human	health.	95 

		96 

Instead	of	trying	to	“capture	all”	lifetime	exposures,	investigators	can	focus	on	critical	and	97 

sensitive	time	windows	in	human	development	such	as	pregnancy,	infancy,	childhood	and	98 

adolescence	to	reduce	temporal	complexity	(Stingone	et	al.	2017).	Furthermore,	household-99 

level	ascertainments	of	exposure	(i.e.,	sampling	individuals	from	households)	has	been	posited	100 

to	be	sufficient	surrogates	for	all	individuals	in	the	household	(Potera	2014).	These	assumptions	101 

may	help	characterize	the	exposome	and	study	its	time-dependent	relationship	with	health	102 

outcomes.	For	example,	the	Human	Early-Life	Exposome	(HELIX)	project	seeks	to	define	the	103 

pregnancy	and	early-life	exposomes	and	health	(Vrijheid	et	al.	2014),	while	the	EXPOsOMICS	104 

project	has	its	conceptual	framework	of	a	life-course	approach	to	a	broader	range	of	exposures	105 

(Vineis	et	al.	2017).		106 

	107 

Another	challenge	includes	the	difficulty	of	interpreting	exposure-disease	associations	due	to	108 

the	dense	correlations	among	all	exposures	(Ioannidis	2016).	The	dense	correlation	pattern	109 

makes	it	hard	to	identify	the	directionality	of	the	potential	causality	(Ioannidis	et	al.	2009).	110 

Second,	correlations	between	exposures	vary	(e.g.	absolute	median	correlation	from	almost	0	111 

to	above	0.5)	and,	thus,	there	is	no	universal	scale	to	assess	the	biological	significance	(Patel	112 

and	Ioannidis	2014).	In	addition,	exposome-wide,	or	equivalently,	environment-wide	113 

association	studies	(EWASs),	assess	all	the	associations	between	exposures	and	an	outcome	to	114 

identify	potential	etiologic	signals	(Manrai	et	al.	2017).	The	data-driven	approach	assumes	little	115 
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to	no	collinearity	between	environmental	predictors,	but	it	is	almost	impossible	to	select	any	116 

single	uncorrelated	exposures	out	from	the	dense	exposome.	One	strategy	for	addressing	these	117 

analytical	issues	is	to	characterize	the	correlations	in	diverse	cohorts	to	provide	reference	levels	118 

to	gauge	biological	significance	of	associations.	119 

	120 

We	investigated	whether	cohabiting	couples	trying	for	pregnancy	would	have	similar	121 

concentrations	of	endocrine	disrupting	chemicals	(EDCs)	given	their	shared	households,	and	122 

whether	concentrations	varied	across	partners	in	light	of	their	individual	exposures	arising	from	123 

other	environments	such	as	lifestyle,	recreation	or	occupation.	This	avenue	of	study	is	124 

important	given	that	EDCs	have	been	found	to	affect	human	fecundity	and	fertility	(Hauser	125 

2006;	te	Velde	et	al.	2010),	though	much	of	the	available	evidence	relies	on	research	conducted	126 

in	either	men	or	women	but	not	couples.	We	utilized	the	Longitudinal	Investigation	of	Fertility	127 

and	the	Environment	(LIFE)	Study	to	empirically	assess	couples’	shared	and	individual	variations	128 

in	a	mixture	of	EDCs.	We	selected	the	LIFE	Study	because	it	has	13	classes	of	EDCs	quantified	in	129 

both	partners	of	the	couple	in	keeping	with	the	couple	based	nature	of	human	reproduction	130 

(Buck	Louis	et	al.	2014,	2016;	Patel	et	al.	2016).	To	meet	our	overarching	aim,	we	characterize	131 

the	dense	correlation	structure	of	couples’	EDC	concentrations	and	then	estimate	shared	and	132 

individual	variability.	Lastly,	we	discuss	the	implications	of	the	findings	in	designing	future	133 

exposome-related	research.	134 

	135 

Methods	136 

Study	Design	and	Cohort	137 

Briefly,	the	LIFE	Study	enrolled	501	couples	planning	to	discontinue	contraception	to	become	138 

pregnant	from	16	counties	in	Michigan	and	Texas,	2005–2009.	Couples	were	followed	daily	139 

until	pregnant	or	up	to	12	months	of	trying	to	become	pregnant	(infertile).	Study	participants	140 

were	screened	for	eligibility	based	on	a	set	of	criteria	and	the	complete	details	have	been	141 

previously	published	(Buck	Louis	et	al.	2011).	142 

	143 

Data	Collection	and	Toxicologic	Analysis	144 
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Following	enrollment	and	completion	of	the	baseline	interview,	couples	provided	145 

preconception	blood	(20	mL)	and	urine	(120	mL)	samples	for	the	quantification	of	both	man-146 

made	and	natural	EDCs	(e.g.	phytoestrogens).	We	also	included	serum	cotinine,	a	metabolite	of	147 

nicotine,	and	have	a	total	of	128	chemicals	from	13	different	classes	(Table	1).	Persistent	EDCs	148 

included	4	classes	of	serum	persistent	organic	compounds:	36	congeners	of	polychlorinated	149 

biphenyls	(PCBs),	9	organochlorine	pesticides	(OCPs),	11	polybrominated	chemicals	150 

[polybrominated	diphenyl	ethers	(PBDEs)	and	1	polybrominated	biphenyl	(PBB)],	and	7	151 

polyfluoroalkyl	substances	(PFASs),	and	were	quantified	by	a	single	laboratory	using	published	152 

standard	operating	procedures	(Kuklenyik	et	al.	2005;	Sjödin	et	al.	2004).	153 

	154 

Non-persistent	ECDs	included	5	classes	of	urinary	non-persistent	organic	compounds:	6	155 

phytoestrogens,	14	phthalate	metabolites,	6	phenols	[bisphenol	A	(BPA)	and	benzophenones	156 

(BPs)],	12	antimicrobial	chemicals	[parabens,	triclosan	(TCS)	and	triclocarban	(TCC)],	2	157 

paracetamol	&	derivatives,	and	were	quantified	by	another	laboratory	using	published	standard	158 

operating	procedures	(Asimakopoulos	et	al.	2014;	Guo	et	al.	2011;	Mumford	et	al.	2015;	Smarr	159 

et	al.	2016).	Other	3	classes	of	EDCs	included	3	blood	metals,	17	urinary	metals,	and	4	urinary	160 

metalloids	(Bloom	et	al.	2015a).	161 

	162 

Serum	lipids	were	obtained	by	measuring	total	cholesterol,	free	cholesterol,	triglycerides,	and	163 

phospholipids	by	an	enzymatic	method	(Akins	et	al.	1989)	and	we	calculated	the	total	serum	164 

lipids	as	described	by	Phillips	et	al.	(1989).	Creatinine	was	measured	by	a	Roche/Hitachi	Model	165 

912	clinical	analyzer	(Dalla,	TX,	USA)	using	the	Creatinine	Plus	Assay	(Roche	Diagnostics).	Serum	166 

cotinine	was	quantified	by	isotope	dilution	tandem	mass	spectrometry	(Bernert	et	al.	1997).	167 

	168 

Statistical	Analysis	169 

Our	overall	analytical	scheme	is	shown	in	Figure	1.	First,	we	adjusted	each	of	the	indicators	of	170 

exposures	for	potential	confounders	in	addition	to	total	lipids	(for	lipophilic	chemicals,	n	=	56)	171 

and	creatinine	(for	urinary	chemicals,	n	=	61)	to	reduce	estimate	variability	and	susceptibility	to	172 

bias	(Heavner	et	al.	2006;	Schisterman	et	al.	2005).	Specifically,	we	adjusted	PCBs,	OCPs,	and	173 
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polybrominated	chemicals	for	total	lipids	and	all	other	urinary	chemicals	for	creatinine.	174 

Chemicals	were	log-transformed	(x	+	1)	and	continuous	covariates	were	rescaled	to	have	mean	175 

zero	and	unit	variance	(Figure	1A).	After	extracting	the	residuals,	we	calculated	the	Spearman’s	176 

rank	correlation	(rs)	matrices	for	EDCs	in	females,	males,	and	couples.		177 

	178 

Adjusting	procedures	such	as	Bonferroni	correction	assume	independence	between	179 

independent	variables.	One	way	to	resolve	this	analytical	issue	is	to	account	for	the	correlation.	180 

To	study	the	effect	of	correlations	between	exposures	on	the	family-wise	error	rate,	we	181 

calculated	the	effective	number	of	variables	(Meff)	(Nyholt	2004)	for	estimating	the	Bonferroni	182 

adjusted	p	values	with	formula	1,	where	Var(λobs)	is	the	eigenvalue	variance	of	the	correlation	183 

matrix	and	M	is	the	original	number	of	variables.	184 

	185 

M"## = 1 + ' − 1 1 − )*+ ,-./
0 	…	formula	1	186 

	187 

We	estimated	the	sex-specific	difference	with	a	paired	t-test	(by	household)	after	extracting	the	188 

residuals	from	a	linear	model	adjusted	for	age	(Figure	1B).	We	used	a	similar	approach	to	189 

estimate	the	percentage	of	variance	explained	by	the	shared	environment.	However,	sex	and	190 

age	variables	were	excluded	in	the	adjustment	step	to	isolate	their	effects	(Figure	1C).	191 

Afterward,	we	extracted	and	regressed	the	residuals	against	the	household	variable	to	obtain	192 

the	adjusted	coefficient	of	determination	(R2).		193 

	194 

We	computed	concordance	as	the	Pearson	correlation	coefficient	(r)	between	the	chemical	195 

relatedness	rs	in	this	study	and	that	in	the	2003–2004	National	Health	and	Nutrition	196 

Examination	Survey	(NHANES)	(Patel	and	Ioannidis	2014)	to	assess	generalizability	of	the	co-197 

exposure	patterns.	We	estimated	the	concordance	based	on	a	total	of	101	matched	biomarkers	198 

between	the	2	studies.	We	chose	the	2003–2004	NHANES	because	1)	many	of	the	chemicals	199 

measured	in	LIFE	were	also	measured	in	NHANES	and	2)	by	the	same	laboratory;	and	3)	the	200 

time	period	(2003–2004)	is	close	to	the	beginning	of	recruitment	for	the	LIFE	Study.	201 

	202 
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We	used	all	the	instrument	derived	concentrations	for	the	analyses	(Richardson	and	Ciampi	203 

2003;	Schisterman	et	al.	2006).	For	missing	values,	we	substituted	them	by	multiple	imputation,	204 

assuming	a	missing-at-random	scenario	(Louis	et	al.	2013).	We	conducted	imputation	based	on	205 

the	information	from	available	demographic,	previous	history	of	clinical	symptoms	and	all	other	206 

chemical	variables	and	created	a	total	of	10	imputed	data	sets	for	males	and	females	207 

separately.	208 

 209 

We	visualized	the	correlations	between	exposures	as	exposome	globe	using	the	R	package	210 

Circlize	(v	0.3.1)	(Gu	et	al.	2014).	EDCs	were	sorted	from	lipophilic	to	hydrophilic	to	aid	visual	211 

interpretation	of	the	patterns.	We	combined	the	final	estimates	from	imputations	using	Rubin’s	212 

method	(Schafer	1999)	and	calculate	the	p	values	of	correlations	by	permutation	tests.	To	213 

adjust	for	multiple	testing,	we	used	the	false	discovery	rate	(FDR)	q	values	unless	otherwise	214 

specified.	We	executed	all	analyses	using	the	computing	environment	R	(v	3.3.1)	(R	Core	Team	215 

2016).	For	reproducibility	purpose,	all	analytic	code	is	publicly	available	on	GitHub	via	a	MIT	216 

license	(github.com/jakemkc/exposome_variability).	217 

	218 

	219 

	 	220 
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Results	221 

Important	sociodemographic	differences	were	observed	between	partners	(Table	2).	Overall,	222 

female	partners	were	younger,	had	a	lower	body	mass	index	(BMI)	(<	25),	consumed	fewer	223 

alcoholic	drinks,	were	less	likely	to	report	a	hypertension	or	high	cholesterol,	and	had	lower	224 

serum	cotinine	and	lipids	and	creatinine	than	male	partners	(p	<	0.01).	225 

	226 

Nine	(7%)	chemicals	were	correlated	with	partner’s	sex	(p	<	0.05),	i.e.,	cotinine,	blood	lead,	227 

mercury	and	cadmium;	and	5	PFASs:	perfluorodecanoate	(PFDeA),	perfluorononanoate	(PFNA),	228 

perfluorooctane	sulfonamide	(PFOSA),	perfluorooctane	sulfonate	(PFOS),	and	229 

perfluorooctanoate	(PFOA).	Of	note,	findings	were	robust	to	the	FDR	with	the	exception	of	230 

blood	cadmium.	231 

	232 

Figure	2	shows	the	boxplot	summary	of	the	variance	explained	by	the	shared	environment.	We	233 

estimated	that	two	classes	of	chemicals,	PFASs	and	blood	metals,	had	higher	levels	of	explained	234 

variance	(median	0.43	and	0.41	respectively)	than	the	others.		For	the	rest	of	the	11	classes,	235 

median	explained	variances	were	ranged	from	0.04	(phthalates)	to	0.21	(cotinine).		A	few	236 

persistent	organic	compounds,	namely	PCB	congener	28,	PBDE	congener	47,	and	1-237 

hexachlorocyclohexane	(1-HCH),	had	an	explained	variance	over	50%. 238 

	239 

The	exposome	globe	(Patel	and	Manrai	2015)	displays	the	rss	for	females	(right-half),	for	males	240 

(left-half),	and	for	couples	(across	the	left-right	of	the	globe)	(Figure	3).	To	assist	interpretation,	241 

we	only	presented	the	rss	outside	the	range	of	−0.25	to	0.25	as	lines	connecting	different	parts	242 

on	the	track,	and	they	represent	less	than	10%	of	all	the	rss.	For	females,	we	observed	two	243 

larger	positively	correlated	“clusters”	across	EDC	classes:	A)	a	dense	cluster	with	serum	244 

persistent	organic	compounds	such	as	PCBs	and	OCPs	(upper	right	of	Figure	3);	B)	another	245 

loosely	packed	cluster	with	urinary	EDCs	such	as	phytoestrogens,	phthalates,	phenols,	and	246 

antimicrobial	compounds	(lower	right	of	Figure	3).	Correlations	between	serum	and	urinary	247 

EDCs	were	mostly	small	and	distributed	between	−0.25	and	0.25.	For	males,	there	were	similar	248 

co-exposure	patterns	to	females	249 
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	250 

While	we	found	similar	correlations	in	the	population	of	males	and	females	separately,	we	251 

found	that	correlations	in	couple	living	in	the	same	household	were,	in	fact,	less	densely	packed	252 

and	with	values	attenuated	toward	the	null	(Figure	3;	see	Figure	S1).	253 

	254 

Summary	of	the	within-class	correlations	as	absolute	magnitude	is	shown	in	Figure	4.	For	255 

females	(Figure	4A),	we	found	that	polybrominated	compounds	had	the	highest	median	256 

correlation	(rs	=	0.45)	while	urine	metalloids	had	the	lowest	(rs	=	0.09).	Across	different	257 

chemical	classes,	persistent	organic	compounds	such	as	polybrominated	compounds,	PCBs	and	258 

OCPs	had	higher	median	correlations	(0.45,	0.38,	and	0.34	respectively).	For	the	rest	of	the	259 

classes,	the	median	correlations	were	all	below	0.25.	Males	(Figure	4B)	had	similar	within-class	260 

correlation	distributions	as	were	found	in	females.	The	class	with	highest	and	lowest	median	261 

correlations	were	polybrominated	compounds	(rs	=	0.41)	and	paracetamols	(rs	=	0.02)	262 

respectively.	263 

		264 

In	contrast,	we	found	a	strong	diminishing	effects	to	the	within-class	correlations,	both	in	terms	265 

of	the	median	and	interquartile	range	(IQR),	in	couples	(Figure	4C).	Comparing	the	couples	with	266 

females	and	males,	all	chemical	classes	had	the	median	correlations	below	0.25	and	urine	267 

metals	were	the	class	with	greatest	percentage	drop	(83%).	We	also	observed	a	substantial	268 

reduction	in	the	IQRs	of	the	chemical	classes.	For	example,	the	IQR	of	polybrominated	269 

compounds	was	0.21,	which	corresponds	to	an	over	35%	drop	relatively	to	females	and	males.	270 

We	found	that	urine	metals	had	the	largest	drop	in	IQR	(over	77%).	Looking	more	closely	to	the	271 

data,	correlations	between	the	same	chemicals	in	couples	(i.e.	the	diagonal	of	the	correlation	272 

matrix	of	couples)	were	generally	higher	than	that	among	the	same	class	members.	Because	of	273 

the	low	number	of	exposure	indicators	in	blood	metals	(3	chemicals),	paracetamols	(2	274 

chemicals),	and	cotinine	(1	chemical),	the	diminishing	effect	to	within-class	correlations	was	275 

countered	and	thus	the	drop	in	medians	and	IQRs	of	these	classes	were	not	as	prominent	as	276 

others.	277 

	278 
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P	values	obtained	from	Bonferroni	correction	with	Meff	were	highly	similar	between	females	279 

and	males	(Table	3).	Both	groups	had	similar	Meff	values	with	a	difference	smaller	than	1	280 

variable,	suggesting	that	the	overall	degree	of	correlations	was	also	similar.	After	adjusting	for	281 

the	correlation,	we	found	the	total	number	of	variables	decreased	from	128	to	112	for	females	282 

and	113	for	males.	283 

	284 

We	estimated	the	concordances	between	correlations	in	the	LIFE	study	(as	females,	males	and	285 

couples)	and	the	2003-2004	NHANES	in	Table	4.	Overall,	correlations	r	varied	greatly	between	286 

chemical	groups,	from	−0.78	to	0.98.	Certain	chemical	groups	had	small	sample	size	(n	≤	6)	and	287 

could	cause	low	and	inverse	correlations.	However,	correlations	r	were	more	consistent	and	288 

comparable	when	we	discarded	group	information	and	considered	all	chemicals	as	a	whole	289 

(females:	0.88;	males:	0.84;	couples:	0.67);	therefore,	we	conclude	the	exposure	correlation	290 

patterns	captured	in	LIFE	are	comparable	to	that	in	the	U.S.	population.	291 

	292 

Discussion 293 

Findings	294 

Understanding	the	co-exposure	patterns	is	an	important	step	toward	investigating	the	joint	295 

health	effects	of	chemical	mixtures	and	for	statistical	design	of	exposome-related	296 

investigations.	We	describe	our	high	level	findings	here.	First,	exposure	levels	of	one	individual	297 

in	the	household	were	not	correlated	with	another	individual	in	the	same	household.	Second,	298 

the	percentages	of	significant	rs	(q	<	0.05)	in	males	and	females	were	25.3	and	23.1	299 

respectively,	in	contrast	to	only	9.5%	between	couples	in	the	same	household	(Figure	4).	300 

Chemical	correlations	in	a	household	setting	were	concordant	to	those	in	03–04	NHANES,	301 

indicating	reproducible	co-exposure	correlations	with	respect	to	the	patterns	sought	in	a	302 

generalized	and	non-institutionalized	U.S.	population.	303 

	304 

Although	couples	in	our	study	potentially	shared	a	large	degree	of	dietary	and	indoor	305 

environmental	factors,	their	exposures	were	only	modestly	correlated	(low	rs	).	We	believe	that	306 

there	are	two	additional	factors	affecting	the	familial	co-exposure	patterns	in	our	investigation.	307 
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The	first	one	is	concerned	with	how	long	the	couples	have	been	living	together.	In	the	U.S.,	the	308 

median	age	of	first	marriage	is	over	24	since	2000	(U.S.	Census	Bureau	2016),	and	newly	309 

married	couples	could	show	a	greater	discordance	in	chemical	co-exposure	relationships	due	to	310 

a	different	pre-marriage	exposures.	The	second	factor	is	potential	physiological	dampening	of	311 

exposure	variability	related	to	the	half-life	of	the	target	chemicals	(Makey	et	al.	2014;	312 

Rappaport	and	Kupper	2008).	Polybrominated	compounds,	PCBs,	and	OCPs	are	persistent	313 

chemicals	with	high	lipophilicity	and	longer	half-lives	(on	the	order	of	years).	Their	serum	314 

concentrations	are	integrated	over	a	period	of	time	and	not	completely	associated	with	recent	315 

exposure	(Aylward	et	al.	2014).	Since	most	of	the	couples	recruited	in	LIFE	Study	were	living	316 

together,	we	claim	this	phenomenon	can	explain	the	drop	in	rs	of	persistent	chemicals	relative	317 

to	the	short-lived	urinary	chemicals	(such	as	phthalate	metabolites,	whose	half-lives	are	on	the	318 

order	of	days)	in	couples	(Figure	4).		319 

	320 

Wu	et	al.	(2015)	conducted	a	household-based	study	and	measured	serum	PBDE	levels	in	321 

children	and	parents	and	reported	the	rs	between	child	and	parent	were	in	the	range	of	0.66	to	322 

0.74	(median	=	0.68,	n	=	68)	for	a	number	of	PBDE	compounds.	The	pairs	shared	a	substantial	323 

portion	of	genes,	diet,	and	living	environment	and	they	found	that	for	the	latter	2	components,	324 

measured	as	floor-wipe	PBDEs,	canned	meat,	tuna	and	whitefish,	were	predictive	of	serum	325 

PBDEs.	Furthermore,	they	found	higher	rs	of	PBDEs	between	older	couples	(age	≥	55,	range	=	326 

0.45	to	0.78,	median	=	0.72).	These	findings	are	consistent	with	our	claim.		327 

	328 

Persistent	organic	chemicals	are	known	to	cause	adverse	health	effects	and	are	prioritized	by	329 

the	U.S.	Centers	for	Disease	Control	and	Prevention	for	health	monitoring	(Li	et	al.	2006).	Many	330 

of	them	had	wide	applications	in	electrical/electronic	equipment,	agricultural	chemicals,	and	331 

furniture	(Dodson	et	al.	2012;	Whitehead	et	al.	2011).	Although	other	emerging	EDCs	such	as	332 

BPA	and	phthalates	have	short	half-lives,	they	have	extensive	modern	applications	in	cosmetics	333 

and	consumer	products	(Bloom	et	al.	2015b;	Buck	Louis	et	al.	2014;	Louis	et	al.	2014;	Smarr	et	334 

al.	2017).	The	ubiquity	of	these	chemicals	in	different	microenvironments	such	as	schools	and	335 

offices	suggests	that	household	environment	alone	is	not	a	major	contributor	to	body	burden,	336 
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consistent	with	our	results	(Figure	2).	PFASs	and	blood	metals	had	higher	variance	explained	by	337 

the	shared	environment	than	other	chemical	classes	and	we	believe	that	this	could	be	related	338 

to	the	lifestyle	of	the	subjects	in	the	LIFE	cohort	(e.g.	PFAS	exposures	via	food	items	and	339 

personal	care	products).		340 

	341 

Strength	and	Limitations	342 

Our	investigation	includes	128	chemical	biomarkers	with	diverse	physicochemical	properties	343 

that	span	from	persistent	lipophilic	to	non-persistent	hydrophilic	chemicals	and	is	one	of	the	344 

first	attempts	to	systematically	characterize	their	correlations	in	a	household	setting.	However,	345 

we	do	not	know	how	long	the	couples	have	been	living	together	at	the	baseline	of	the	study	to	346 

quantitatively	assess	how	this	factor	affects	co-exposure	patterns.	Also,	we	only	collected	347 

biological	samples	at	the	baseline;	thus,	it	is	not	possible	to	study	how	exposure	levels	and	co-348 

exposure	patterns	change	longitudinally	with	time,	which	could	be	an	important	piece	of	349 

information	for	assessing	fecundity	outcome	and	chemical	exposures.	350 

	351 

Analytical	and	Sampling	Implications	for	Exposome-Wide	Investigations	352 

Our	findings	have	implications	for	high-throughput	association	tests	between	correlated	353 

exposures	and	health	outcomes	and	phenotypes.	One	of	the	typical	approaches	adjusting	for	354 

multiplicity	in	EWASs	is	controlling	the	family-wise	error	rate	(e.g.	Bonferroni	correction).	355 

However,	the	tests	are	assumed	to	be	independent.	Nyholt	(2004)	provided	one	solution	to	356 

address	correlation	in	Bonferroni	correction	by	calculating	the	effective	number	of	variables	357 

(Meff,	formula	1),	which	relies	on	identifying	the	number	of	variables,	M,	and	estimating	the	358 

eigenvalue	variance,	Var(λobs)	of	the	correlation	matrix.	For	example,	conducting	an	EWAS	of	a	359 

response	with	respect	to	the	chemical	class	PCBs	containing	36	congeners,	one	can	calculate	360 

the	correlation	matrix	(M	=	36)	and	estimate	the	associated	Var(λobs)	to	obtain	Meff	(Table	3). A	361 

new	significance	level	for	this	set	of	comparisons	will	be	α/Meff,	which	is	less	stringent	than	362 

Bonferroni	correction	because	Meff	wil	be	smaller	than	M	if	correlations	exist	between	363 

congeners.	Benjamini	and	Yekutieli	(2001)	and	Fan	et	al.	(2012)	documented	a	procedure	that	364 

considers	the	correlation	structure	for	better	controlling	the	FDR.	365 
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	366 

In	the	future,	exposome-related	investigations,	will	include	many	more	variables	than	ever	367 

before	with	the	emergence	of	highly	sensitive	high-resolution	mass	spectrometry	techniques	368 

(Jones	2016)	and	availability	of	large	data	sets	from	reproducibility	initiatives	(Manrai	et	al.	369 

2017).	Attempts	to	assess	health	outcome	associated	with	a	number	of	exposures	may	increase	370 

R2	and	lead	to	“overfitting”	(Hawkins	2004).	Additionally,	dense	correlations	among	exposures	371 

indicate	that	multicollinearity	may	also	influence	the	reliability	of	the	association	size	in	372 

multiple	regression	or	even	potential	confounding.	We	claim	that	these	analytic	challenges	373 

could	be	ameliorated	through	understanding	co-exposure	patterns.	For	example,	statistical	374 

approaches	for	evaluating	the	effects	of	mixture	exposures	such	as	principal	component	375 

analysis	generally	involve	dimensionality	reduction	that	relies	on	estimating	the	correlation	376 

structure	to	reduce	the	number	of	exposures	being	considered	prior	to	analysis	but	are	difficult	377 

to	interpret	(Taylor	et	al.	2016).	Other	regression	approaches,	such	as	the	Elastic	Net	(Zou	and	378 

Hastie	2005)	can	consider	highly	co-linear	exposure	variables	while	giving	coefficients	that	are	379 

similar	to	that	delivered	from	a	typical	regression	model;	however,	inferential	estimates	(e.g.	p	380 

values	and	confidence	intervals)	are	still	in	development	(Taylor	and	Tibshirani	2015).		381 

	382 

	383 

Capturing	population-level	exposure	variability	—	and	the	demographic	variables	that	are	384 

associated	with	the	variation,	such	as	sex,	location,	and	time	—	is	a	grand	ambition	in	the	385 

exposome	concept	(Manrai	et	al.	2017).	Given	people	spend	over	90%	of	their	time	indoor	and	386 

more	than	12	hours	a	day	at	home	(bls.gov/tus),	household	samples	(e.g.	such	as	house	dust)	387 

might	be	a	reasonable	surrogate	to	represent	home	exposures	to	family	members	who	share	388 

the	same	living	environment.	While	sampling	the	household	is	a	tempting	approach	because	of	389 

the	simplicity	and	cost-savings	over	personal	measurement,	it	may	fail	to	catch	a	significant	390 

fraction	of	exposure	variability	in	the	population	as	we	found	that	shared	environment	could	391 

explain	a	small	percentage	of	biomarker	variance	(Figure	2).	For	epidemiological	investigation	392 

that	sample	study	participants	who	are	nested	in	a	unit,	for	example,	schools	or	homes,	393 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2017. ; https://doi.org/10.1101/175513doi: bioRxiv preprint 

https://doi.org/10.1101/175513
http://creativecommons.org/licenses/by-nd/4.0/


 

conducting	preliminary	measurements	to	assess	the	influence	of	shared	environment	is	one	of	394 

the	ways	to	justify	unit-based	measurement.	395 

	396 

Finally,	correlations	of	chemical	mixtures	can	also	be	an	important	tool	used	in	exposure	397 

science	and	cumulative	risk	assessment	as	groups	of	correlated	chemicals	are	often	released	398 

from	a	single	source	(e.g.	power	plant	and	vehicular	exhaust	(Ravindra	et	al.	2008).	Thus,	399 

studying	the	co-exposure	patterns	is	the	first	step	to	identify	the	sources	prior	to	more	in-depth	400 

source	apportionment	methods	such	as	positive	matrix	factorization	and	chemical	mass	401 

balance	receptor	models	(Rizzo	and	Scheff	2007).	In	cumulative	risk	assessment,	dose	addition	402 

is	one	of	the	common	approaches	to	estimate	the	risks	from	mixture	exposures	by	assuming	a	403 

shared	toxicity	mechanism	between	chemicals	(e.g.	binding	to	the	same	receptor)	(Chen	et	al.	404 

2001).	Knowing	the	co-exposure	correlations	could	be	a	first	step	toward	identification	of	405 

exposures	with	similar	physicochemical	properties	to	guide	follow-up	investigations.	406 

Conclusions	407 

While	we	observed	similar	co-exposure	patterns	between	females	and	males,	the	correlations	408 

were	much	lower	in	couples.	Our	analyses	empirically	demonstrate	that	shared	environment	409 

explains	less	than	20%	of	the	biomarker	variance	in	11	out	of	13	EDC	classes.	The	influence	of	410 

shared	environment	to	EDC	levels	is	likely	conditional	on	1)	the	duration	of	residence	of	the	411 

subjects	and	2)	the	lipophilicity	and	persistency	of	the	chemicals.	These	factors	should	be	412 

considered	when	using	surrogate	measurement	to	assess	the	exposures	of	family	members.	413 

	414 

	415 

	416 

	417 

	418 

	419 

	420 

	 	421 
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Tables	564 

Table	1.	List	of	chemical	classes	and	measured	chemicals	in	the	current	study.		565 
EDC Class No. Individual Chemicals Medium LOQ 
Polychlorinated 
 biphenyls 
(PCBs) 

36 Congeners: 28, 44, 49, 52, 66, 74, 87, 99, 101, 105, 110, 114, 118, 128, 138, 146, 
149, 151, 153, 156, 157, 167, 170, 172, 177, 178, 180, 183, 187, 189, 194, 195, 196, 
201, 206, 209 

Serum 1-3 pg/g, wet weight 

Organochlorine  
pesticides 
(OCPs) 

9 Hexachlorobenzene (HCB), !-hexachlorocyclohexane (!-HCH), "-
hexachlorocyclohexane ("-HCH), oxychlordane, trans-nonachlor, p,p'-DDT, o,p'-DDT, 
p,p'-DDE, and mirex 

Serum 1-3 pg/g, wet weight 

Polybrominated  
chemicalsa 

11 Brominated biphenyl (BB 153); brominated diphenyl ethers (BDEs) congeners: 17, 
28, 47, 66, 85, 99, 100, 153, 154, 183 

Serum 5 pg/g, wet weight 

Polyfluoroalkyl  
substances 
(PFASs) 

7 2-(N-ethyl-perfluorooctane sulfonamido) acetate (Et-PFOSA-AcOH), 2-(N-methyl-
perfluorooctane sulfonamido) acetate (Me-PFOSA-AcOH), perfluorodecanoate 
(PFDeA), perfluorononanoate (PFNA), perfluorooctane sulfonamide (PFOSA), 
perfluorooctane sulfonate (PFOS), and perfluorooctanoate (PFOA) 

Serum 0.04-0.1 ng/mL, wet 
weight 

Phytoestrogens 6 Genistein, daidzein, O-desmethylangolensin, equol, enterodiol, and enterolactone Urine 0.2-0.6 ng/mL 
Phthalate  
metabolites 

14 Mono (3-carboxypropyl) phthalate (mCPP), monomethyl phthalate (mMP), monoethyl 
phthalate (mEP), mono (2-isobutyl phthalate) (miBP), mono-n-butyl phthalate (mBP), 
mono (2-ethyl-5-carboxyphentyl) phthalate (mECPP), mono-[(2-carboxymethyl) hexyl] 
phthalate (mCMHP), mono (2-ethyl-5-oxohexyl) phthalate (mEOHP), mono (2-ethyl-
5-hydroxyhexyl) phthalate (mEHHP), monocyclohexyl phthalate (mCHP), 
monobenzyl phthalate (mBzP), mono (2-ethylhexyl) phthalate (mEHP), mono-
isononyl phthalate (mNP), and monooctyl phthalate (mOP) 

Urine 0.2-2 ng/mL 

Phenolsb 6 Total bisphenol A (BPA); benzophenones (BPs): 4-hydroxybenzophenone (4-OH-
BP), 2,4-dihydroxybenzophenone (2,4-OH-BP), 2,2′,4,4′-tetrahydroxybenzophenone 
(2,2′4,4′-OH-BP), 2-hydroxy-4-methoxybenzophenone (2-OH-4-MeO-BP), and 2,2′-
dihydroxy-4-methoxybenzophenone (2,2′-OH-4-MeO-BP) 

Urine 0.02-0.05 ng/mL 

Antimicrobial  
chemicalsc 

12 Triclosan (TCS) and triclocarban (TCC);  parabens: methyl paraben (MP), ethyl 
paraben (EP), propyl paraben (PP), butyl paraben (BP), benzyl paraben (BzP), heptyl 
paraben (HP), 4-hydroxy benzoic acid (4-HB), 3,4-dihydroxy benzoic (3,4-DHB), 
methyl-protocatechuic acid (OH-Me-P), and ethyl-protocatechuic acid (OH-Et-P) 

Urine 0.02-0.05 ng/mL 

Paracetamol  
& derivatives 

2 Paracetamol and 4-aminophenol Urine 0.5 ng/mL and  
0.25 ng/mL 

Blood metals 3 Cadmium (Cd), lead (Pb), and mercury (Hg)   10 ng/L to 10 µg/L 
Cotinined 1 Cotinine Serum 0.01 ng/mL 
Urine metals 17 Manganese (Mn), chromium (Cr), beryllium (Be), cobalt (Co), molybdenum (Mo), 

cadmium (Cd), tin (Sn), caesium (Cs), barium (Ba), nickel (Ni), copper (Cu), zinc (Zn), 
tungsten (W), platinum (Pt), thallium (Tl), lead (Pb), and uranium (U) 

Urine 10 ng/L to 10 µg/L 

Urine metalloids 4 Selenium (Se), arsenic (As), antimony (Sb), and tellurium (Te) Urine 10 ng/L to 10 µg/L 

	566 
Note:	LOQ,	Limits	of	quantification.	567 
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aPolybrominated	chemicals	contain	mostly	PBDEs	with	one	PBB.	568 
bPhenols	contain	mostly	benzophenones	with	one	BPA.	569 
cAntimicrobial	chemicals	contain	mostly	parabens	with	TCS	and	TCC.	570 
dSerum	cotinine	is	not	an	EDC	but	included	for	comprehensive	investigation. 571 
	572 
 	573 
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Table	2.	Sociodemographic	and	lifestyle	characteristics	of	females	and	males	in	the	LIFE	Study.	574 
Characteristics Females (n = 501) Males (n = 501) 
Age (year) ** 29.99 ± 4.14 31.77 ± 4.92 
BMI (kg/m2) **     
      < 25 230 (46) 84 (17) 
      ≥ 25 & < 30 136 (27) 206 (41) 
      ≥ 30 135 (27) 311 (62) 
Non-Hispanic White 396 (79) 397 (79) 
College graduate or higher * 474 (95) 457 (91) 
Yearly income $80,000 or over 297 (59) 298 (59) 
Regular vigorous exercise in the past 12 months 200 (40) 211 (42) 
Smoke at the time of study     
      No  445 (89) 440 (88) 
      Yes (No. of cigarettes   on a typical day)     
          1 - 3 19 (4) 26 (5) 
          4 - 6 8 (2) 11 (2) 
          7 - 10 15 (3) 8 (2) 
          11-15 7 (1) 2 (0) 
          16 - 25 3 (1) 10 (2) 
          > 25 4 (1) 4 (1) 
≥ 12 alcoholic drinks in the past 12 months ** 374 (75) 428 (85) 
No. of alcoholic drinks on a typical occasion **     
      0 128 (26) 73 (15) 
      1 108 (22) 63 (13) 
      2 169 (34) 150 (30) 
      3 68 (14) 99 (20) 
      4 19 (4) 62 (12) 
      5 9 (2) 54 (11) 
History of diabetes 6 (1) 14 (3) 
History of high blood pressure ** 20 (4) 52 (10) 
History of high cholesterol ** 41 (8) 78 (16) 
Serum cotinine (ng/mL)a ** 0.62 ± 0.23 1.24 ± 2.17 
Serum total lipids (mg/dL)a ** 2.00 ± 0.03 6.56 ± 0.26 
Urinary creatinine (mg/dL)a ** 4.22 ± 0.86 4.76 ± 0.73 

	575 
Note:	BMI,	body	mass	index.	Values	in	mean	±	SD	or	n	(%).	576 
*p	<	0.05;	**p	<	0.01.	577 
alog+1	transformed	values. 578 
	579 
	580 
	 	581 
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Table	3.	Number	of	effective	variables	for	each	chemical	class	after	adjusting	for	the	within-class	correlation.		582 
  Females     Males  
Chemical class M Meff Mdiff P value   Meff Mdiff P value 
Serum persistent  
organic compounds 

           

Polychlorinated 
 biphenyls (PCBs) 

36 28.38 7.62 0.002  28.69 7.31 0.002 

Organochlorine  
pesticides (OCPs) 

9 7.94 1.06 0.006  8.17 0.83 0.006 

Polybrominated  
chemicals  

11 8.22 2.78 0.006  8.38 2.62 0.006 

Polyfluoroalkyl  
substances (PFASs) 

7 6.13 0.87 0.008  6.25 0.75 0.008 

Urinary non-persistent  
organic compounds 

               

Phytoestrogens 6 5.34 0.66 0.009  5.38 0.62 0.009 
Phthalate  
metabolites 

14 12.72 1.28 0.004  12.87 1.13 0.004 

Phenols  6 5.48 0.52 0.009  5.51 0.49 0.009 
Antimicrobial  
chemicals 

12 11.38 0.62 0.004  11.60 0.40 0.004 

Paracetamol  
& derivatives 

2 1.99 0.01 0.025  2.00 0.00 0.025 

Others                
Blood metals 3 2.91 0.09 0.017  2.91 0.09 0.017 
Serum cotinine 1 1.00 0.00 0.050  1.00 0.00 0.050 
Urine metals 17 16.13 0.87 0.003  16.22 0.78 0.003 
Urine metalloids 4 3.95 0.05 0.013  3.95 0.05 0.013 
Total 128 111.57 16.43 0.0004  112.94 15.06 0.0004 

	583 
Note:	M,	number	of	variables	in	the	corresponding	chemical	classes;	Meff,	number	of	effective	variables	after	taking	account	of	584 
within-class	correlation;	Mdiff,	the	different	between	M	and	Meff;	P	value,	Bonferroni	adjusted	p	values	as	0.05/Meff.	585 
	586 
	587 
 	588 
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Table	4.	Correlations	of	chemical	relatedness	between	2003–2004	NHANES	and	current	study	by	different	chemical	classes.		589 
Chemical classa Females  Males  Couples  
 Pearson r n Pearson r n Pearson r n 
Blood_metals 0.07 3 0.13 3 -0.04 6 
OCPs 0.69 36 0.51 36 0.25 72 
PCBs 0.88 561 0.88 561 0.77 1122 
PFASs 0.31 21 0.29 21 0.32 42 
Phthalates 0.90 78 0.89 78 0.34 156 
Phytoestogens 0.98 15 0.97 15 0.86 30 
Polybrominated_cpds 0.76 55 0.74 55 0.77 110 
Urine_metalloids 0.41 3 -0.78 3 0.34 6 
Urine_metals 0.82 55 0.78 55 -0.01 110 
Total 0.84 827 0.84 827 0.67 1654 

	590 
Note:	Pearson	r,	Pearson	correlation	coefficients	of	the	chemical	relatedness	(spearman	correlations	of	chemicals)	between	National	591 
Health	and	Nutrition	Examination	Survey	(NHANES)	and	this	study;	n,	sample	size.	592 
aOnly	9	classes	are	shown	because	not	all	chemicals	in	13	chemical	classes	in	this	study	could	be	matched	with	NHANES.		593 
	 	594 
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Figure	Legends	595 

Figure	1.	Analytical	scheme	to	investigate	the	variability	and	correlations	in	this	study.	A)	We	first	extract	the	residuals	from	a	linear	596 
model	after	adjusting	for	the	base	covariates	(total	lipids	or	creatinine)	to	calculate	the	effective	number	of	variables	(Meff)	and	597 
Spearman’s	rank	correlation	(rs).	B)	Then,	we	used	another	linear	model	with	an	additional	age	variable	to	obtain	residuals	and	598 
conducted	paired	t-test	to	test	the	difference	of	biomarkers	between	females	and	males	living	in	the	same	household.	C)	Afterward,	599 
we	further	adjusted	for	sex	prior	to	extracting	residuals	to	calculate	the	percentage	of	biomarker	variance	explained	by	the	shared	600 
environment.	601 
	602 
Figure	2.	Summary	of	the	percentage	variance	explained	by	the	shared	environment.	Boxplots	of	the	adjusted	coefficient	of	603 
determination	(R2)	within	different	chemical	classes	are	shown.	Interquartile	range	is	not	shown	for	cotinine	class	because	it	604 
contains	only	1	compound.	For	each	box,	median	and	interquartile	range	are	drawn	and	the	whiskers	are	extended	to	the	largest	605 
values	within	1.5*interquartile	range.	Black	dots	denote	correlations	outside	of	the	range	covered	by	the	whiskers. 606 
	607 
Figure	3.	Exposome	correlation	globe	showing	the	relationships	of	biomarkers	between	females,	males	and	couples.	Right-half	608 
represents	biomarkers	in	females;	left-half	represents	biomarkers	in	males.	Only	Spearman’s	rank	correlations	greater	than	0.25	and	609 
smaller	than	−0.25	were	shown	as	connections	in	the	globe.	Red	line	denotes	positive	correlation	and	dark	green	line	denotes	610 
negative	one.	Color	intensity	and	line	width	are	proportional	to	the	size	of	the	correlation.	Within-class	and	between-class	611 
correlations	are	shown	outside	and	inside	of	the	track	respectively.	Correlations	in	couples	are	indicated	by	the	lines	linking	females	612 
and	males	(i.e.	crossing	the	vertical-half	of	the	globe). 613 
	614 
Figure	4.	Boxplots	of	Spearman’s	rank	correlations	(rs)	within	different	chemical	classes.	A)	Females;	B)	Males;	and	C)	Couples.	For	615 
couples,	summary	statistics	were	estimated	with	the	full	128	x	128	correlation	matrix	instead	of	with	the	half	triangle.	Certain	616 
classes	contain	only	1	pair	of	correlation	(paracetamols	in	females,	paracetamols	in	males,	and	cotinine	in	couples).	“All”	represents	617 
the	grouping	by	the	correlation	of	all	pairs	of	chemicals	available.	Horizontal	line	drawn	across	the	chemical	classes	is	equal	to	the	618 
95th	percentile	of	the	null	distribution	obtained	from	permuting	the	concentrations	of	all	chemicals.	Definition	of	whisker	and	black	619 
dot	can	be	referred	to	the	caption	in	Figure	2.	620 
	 	621 
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Figure 1 623 
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A.	Base	covariates:
Log(chemical	+1)	~	total	

lipids/	creatinine

B.	Base	covariates	+	age:
Log(chemical	+1)	~	total	
lipids/	creatinine	+	age

C.	Base	covariates	+	age	+	sex:
Log(chemical	+1)	~	total	lipids/	

creatinine	+	age	+	sex

Extract	residuals	and	
estimate	Meff and	rs

Extract	residuals	and	
conduct	paired	t-test

Extract	residuals	and	
estimate	adjusted	R2:
Chemical	~	family
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