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Abstract 
The propensity of a trait to vary within a population may have evolutionary, ecological or 

clinical significance. In the present study we deploy sibling models to offer a novel and 

unbiased—if underpowered—way to ascertain loci associated with the extent to which 

phenotypes vary (variance-controlling quantitative trait loci, or vQTL).  Previous methods for 

vQTL mapping either exclude genetically related individuals or treat genetic relatedness among 

individuals as a complicating factor addressed by adjusting estimates for non-independence in 

phenotypes. The present method uses genetic relatedness as a tool to obtain unbiased estimates 

of variance effects rather than as a nuisance. The family-based approach, which utilizes random 

variation between siblings in minor allele counts at a locus, also allows controls for parental 

genotype, mean effects, and non-linear (dominance) effects that may spuriously appear to 

generate variation. Deploying this strict approach on data from the Framingham Heart Study we 

found several alleles that appeared to alter within-family variation in height as well as pathways 

that appear to be enriched.  However, significant SNPs failed to replicate in an independent 

sample.  Pathway analysis revealed one gene set, encoding members of several signaling 

pathways related to gap junction function, which appears significantly enriched for associations 

with within-family height variation in both datasets (while not enriched in analysis of mean 

levels). We recommend approximating laboratory random assignment of genotype using 

complete family data and more careful attention to the possible conflation of mean and variance 

effects.  Because of the lower power of family-based analyses, we further advocate the creation 

of consortia that unite studies with family-based designs, thereby increasing the sample sizes 

available for such analyses. 
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Introduction 

The extent to which a complex trait varies in a population is a product of mutation, 

genetic drift and natural selection, as well as environmental variation and its interaction with 

genotype. Moreover, genotypes may differ in their propensities to vary. That is, particular 

genotypes might be more sensitive than others to changes in the environment or to the effects of 

new mutations. Sensitivity to the environment could come in the form of phenotypic plasticity, 

whereby stereotyped phenotypic changes occur under particular circumstances, or in the form of 

developmental instability, whereby random fluctuations in the internal or external environment 

lead to different phenotypic outcomes [1–3]. 

Sensitivity to the effects of mutations is related to cryptic genetic variation. In a 

population in which individuals are relatively insensitive to the effects of mutations, allelic 

variation may accumulate, while not presenting phenotypic effects. Replacing an allele that 

confers less sensitivity to mutational effects with one that confers more sensitivity (or 

introducing an environmental perturbation with similar effect) will cause the accumulated 

variation to have phenotypic consequences [4,5]. This release of cryptic genetic variation might 

have major implications for the adaptation of populations to environmental change, as well as for 

the genetics of human complex traits [6–10]. Indeed, it has been proposed that release of cryptic 

genetic variation might be responsible for the increased prevalence of human “diseases of 

modernity” such as diabetes [6]. 

Model organisms have been used to identify genes that control sensitivity to mutations or 

the environment [4,11]. Two approaches have been taken. One approach is to test for differences 

in phenotypic variance between wild-type and mutant strains. For example, the molecular 

chaperone Hsp90, when impaired, reveals cryptic genetic variation in the fly Drosophila 
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melanogaster, the flowering plant Arabidopsis thaliana, the fish Danio rerio and the budding 

yeast Saccharomyces cerevisiae [12–15]. Other genes appear to affect the expression of cryptic 

genetic variation as well [16,17].  

Evidence on whether Hsp90 controls environmental sensitivity is mixed [17–19]. 

However, screens of the S. cerevisiae genome identified hundreds of genes that, when mutated, 

cause increased variation in cell morphology among isogenic cells raised in the same 

environment. That is, these mutations increased sensitivity to fluctuations in the internal or 

external environment [20,21]. A test of one of these genes, which showed a major increase in 

environmental sensitivity upon deletion, revealed a high degree of epistasis with new mutations 

but no net increase in mutational sensitivity upon deletion [22]. A similar result was found for 

impairment of Hsp90 [23]. In general, the relationship between suppression of the effects of 

environmental variation and suppression of the effects of mutational variation is unclear [4,11]. 

The second approach to identifying variance-controlling genes is to use linkage or 

association analysis to map natural genetic variants that confer differential sensitivity. Such 

searches for variance-controlling quantitative trait loci (vQTL) have been conducted to identify 

determinants of microenvironmental sensitivity (i.e., inherent stochasticity or sensitivity to 

fluctuations within a nominally constant environment) and/or phenotypic plasticity (variation 

across controlled environments) of various phenotypes, including morphological and life-history 

traits as well as expression levels of individual genes, in a range of organisms including humans 

[24–42]. Natural genetic variation affecting sensitivity to other segregating alleles has been 

studied as well, and indeed there are natural variants of the Hsp90 gene that appear to reveal 

cryptic variation [43–45].   
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The first study claiming to map a locus that controls variance of a human trait examined 

body mass index (BMI) using data from 38 cohorts that participate in the GIANT consortium for 

genome-wide analysis (GWA) of single-nucleotide polymorphisms (SNPs) that affect human 

height [46] (although a prior study had examined variance in order to prioritize the search for 

gene-by-environment and gene-by-gene interaction effects [47]). Yang et al. [46] computed a Z-

score (inverse-normal transformation) for BMI for each of 133,154 individuals then performed 

GWA on the squared Z-score. This squared Z-score captures the magnitude of each individual’s 

deviation from the mean phenotype and therefore is meant to act as an individual-based measure 

of variance.  In this discovery sample they found SNPs in the FTO gene and the RCOR1 gene 

that appear to control variation in human BMI.  In a replication sample of 36,327 individuals 

from 13 cohorts, one SNP in the FTO gene was confirmed [46].  

Later research pointed to several challenges inherent in using association analyses to 

identify vQTL.The first issue is mean-variance confounding: a given locus can have: 1) effects 

on mean levels of a trait (mean effects), 2) effects on variance in a trait (variance effects), or 3) 

effects on both mean levels of a trait and variance in a trait. For association analyses that aim to 

isolate variance effects, it is critical to check that any detected effects on “variance” are not 

merely statistical artifacts of mean effects. In particular, this conflation of variance and mean 

effects was a concern in the analysis of Yang et al. [46] because normalized variation scores will 

tend to be higher for populations with higher mean levels and because FTO is one of the most 

well-established genes that affects the mean level of BMI in human populations [48–56]. 

Research examining MMP3 protein levels in cerebrospinal fluid found similar overlap, where 

SNPs in linkage disequilibrium with a locus well-established in predicting mean levels of the 
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trait (rs679620 of the MMP3 gene) were associated with both higher mean levels and higher 

variance in the trait [57]. 

Yang et al. [46] addressed the effect of mean BMI by showing that there is no global 

correlation between mean effects of SNPs and their variance effects.  However, it must be 

considered that a lack of correlation between mean and variation effects across the genome could 

be caused merely by the fact that the vast majority of SNPs have negligible or nonexistent effects 

on both mean and variation. For this reason, in the present study, we test only the top-scoring 

SNPs. We show that a significant confounding between mean and variance effects does in fact 

exist.     

In addition to mean-variance confounding, methods to investigate vQTL must address 

several other issues, some of which are shared with the estimation of mean effects and others of 

which, such as mean-variance confounding, are unique to or particularly acute in the case of 

variance effects [39]. Methods for vQTL analysis beyond the squared Z-score method can be 

grouped into: 1) non-parametric methods that test whether the three genotypes at a biallelic locus 

(minor-allele homozygote, heterozygote, and major-allele homozygote) have equal or unequal 

variance, and 2) parametric methods that relax the assumption in GWA linear regressions that 

the residual error is identically distributed across all genotypes.  

Non-parametric methods include Levene’s test, which uses a test statistic derived from 

the squared difference between an individual’s level of a trait and the genotype-level mean or 

median, the latter of which is used to make the method more robust to a non-normally distributed 

trait [47,58] and the Fligner-Killeen (FK) test, which is similar to Levene’s test, in that it uses the 

absolute difference between an individual’s level of a trait and the genotype-level median, but 

then computes the test statistic based on ranks of these differences. The FK test can be used 
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either as a standalone test for variance effects [24], or as the test statistic for the scale component 

of the Lepage or other joint scale-location test [59]. More recently proposed non-parametric tests 

consider not only the variance of the trait distribution but other features as well, such as skew 

[60,61]. 

The main drawback of non-parametric tests for detecting vQTL’s is that the tests, which 

compute differences between discrete genotype groups, cannot directly control for important 

covariates, such as age, sex and population structure. Some adopt a two-stage regression 

procedure for including covariate controls: first the trait is regressed on covariates, then the 

variance test of interest is  performed on the residualized dependent variable [61,62]. However, 

two-stage procedures have been shown in simulations to reduce power and induce bias [57]. The 

problem of how to include covariates in a way that does not induce bias is acute because of the 

importance of two types of controls when investigating variance-controlling loci: control for 

population stratification and controls for nonrandom association between genotype and 

environment. The former control is needed in all GWA analyses to separate the effect of any 

particular locus from the effects of all other loci shared by virtue of common ancestry. The latter 

control might be particularly relevant to vQTL analyses because mean effects of genotypes 

might impact the environment that is experienced, which might in turn impact variance [63].  

Parametric approaches that use generalized linear models to jointly estimate the mean and 

variance of a trait address this problem [57,64,65]; these models can include controls for 

population stratification as well as controls for observed covariates that influence genetic 

distribution into variance-affecting environments. The double generalized linear model (DGLM) 

approach begins with the typical linear model for estimating mean effects where the residual 

variance is the same across genotypes, then the model is relaxed to allow residual variance to 
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differ by genotype and to incorporate non-genetic covariates that might contribute to residual 

variance; fitting the two models alternates until convergence [64]. DGLM thus allows joint 

estimation of mean effects and variance effects, attempting to address mean-variance 

confounding, and permits controls for population stratification directly in the model. The main 

drawback is that DGLM is sensitive to violations of the assumption that the trait value is 

normally distributed, and simulations [57] show that attempts to address this violation by 

transforming the dependent variable (e.g., by Box-Cox transformation [64]) lead to the high type 

I error rates that others note are of particular concern in vQTL analyses due to right-skewness in 

trait variance [66]. This drawback might be alleviated by a parametric bootstrap-based likelihood 

ratio test for choosing among models with and without mean and variance effects [57]. Bayesian 

approaches, which allow simultaneous estimation of mean and variance effects as well as 

inclusion of covariates, also show promise [67]. 

The covariate of population stratification is typically controlled in these methods by 

inclusion of principal components of the sample population’s genotypes among the vectors of 

covariates predicting the mean and/or residual variance of a trait. This control is especially 

important for traits, such as BMI, that are expected to show considerable environment-

dependence. Especially when pooling such traits across cohorts, there is a risk that systematic 

differences in environment correlate regionally with systematic differences in genetic variation.  

That is, it is plausible, due to population stratification, that any genetic signal is merely acting as 

a proxy for culture and environment—a potential confounder that has been well-illustrated by the 

“chopsticks gene” example [68]. 

The other critical covariate that might bias vQTL estimates is genotype-environment 

correlation (rGE). Genotype-environment correlations may be caused by niche construction, 
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whereby individual organisms shape the environment (in a genotype-dependent way) [69–73]—

dynamics we might expect to occur for phenotypes that have significant behavioral and 

environmental etiologies, such as BMI. As a result, genotypes may be associated with variance 

in BMI and other traits not through direct genetic effects but through interaction with alternative 

environments associated with variance such as more versus less sedentary lifestyles. An 

analogous situation that illustrates this potentially confounding genotype-by-environment 

interaction effect is that of caffeine consumption. A variant in a gene that encodes a caffeine-

metabolizing enzyme can lead to greater variation with no effect on the mean through a 

mechanism of niche construction—i.e. individuals with the minor allele avoid coffee altogether, 

or if they are unable to do so, they end up drinking more than those with the major allele, thus 

leading to greater variance thanks to the coffee “environment” [63].  

Regression approaches can control for observed covariates that are correlated with 

genotype and influence construction of variance-affecting environments. However, these 

methods cannot control for unobserved differences that produce these correlations. The present 

paper uses a family-based model to control for these unobserved differences. Two existing 

family-based models allow for investigations of variance-based loci in samples among related as 

opposed to unrelated individuals, but do not leverage the family-based structure of the data to 

control for unobserved confounders that vary between families [65,74]. First is a family-based 

version of the likelihood ratio test that adds a random effect meant to capture familial correlation 

in a trait. Although the family-level random effect helps control for unobserved variation 

between families that may influence variance in a trait through pathways other than genotype, the 

model relies on the strong assumption of independence between these unobserved features of 

family and the observed covariates. As a result, the model does not control for unobserved 
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characteristics that vary between families and that may be correlated with construction of 

variance-affecting environments. Simulation studies of random effects models show that 

substantial bias might therefore be introduced into the estimated effects if there are likely non-

zero correlations between unobserved confounders, observed genotypes, and the trait of interest 

(BMI in the author’s case) [75]. Similarly, a model that estimates the DGLM in a sample 

containing monozygotic and dizygotic twins, which has the advantage of isolating non-genetic 

from genetic sources of variance, does not control for unobserved features that vary between 

families and that affect construction of variance-affecting environments [74].   

We offer an alternative methodology—comparisons of variation within sibling sets while 

controlling for parental genotype—that does not assume independence between observed 

covariates and unobserved between-family differences and that, as a result, better approximates 

random assignment of genotype in a laboratory. Utilizing a regression-based framework, the 

approach retains the advantages of the DGLM and Bayesian regression approaches: the ability to 

include covariates and control for mean effects when estimating variance effects through 

simultaneous estimation of parameters capturing both. The model uses sibling pairs as the unit of 

analysis and regresses the standard deviation of the sibling pair’s trait on the pair’s count of 

minor alleles with sibling pair-level controls that include controls for the mean level of the trait 

in the sibling pair, parental genotype, pair sex (MM or FM or FF), mean pair age, and the within-

pair age difference (for the full model specification, as well as alternative specifications tested, 

see Methods). The parental genotype control means that the quantity of interest—the additive 

effect of each minor allele on variance in the trait—is identified solely from random between-

sibship variation in minor allele counts. Likewise, the control for the mean level of the trait in a 

sibling pair aims to control for mean-variance conflation. 
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The proposed methodology, although restricted in applicability to datasets that enjoy a 

family-based design with quartets (both parents and at least two offspring), sacrifices statistical 

power and efficiency for improved consistency of parameters. This is a particularly important 

trade-off to make when we wish to rule out gene-environment correlations across populations as 

well as population stratification as alternative explanations to variance-locus associations.  As 

noted above, this is especially critical for a phenotype such as BMI and a locus such as FTO 

given that environment and behavior (such as sedentariness) alter the FTO-BMI relationship and 

may vary significantly across cohorts/societies [76]. In cases where the goal is not to study 

control of variance per se, but instead is to probe the existence of gene-environment or gene-gene 

interactions in a way that avoids the high-dimensional parameter space problems of traditional 

approaches, the use of vQTL approaches with higher statistical power might be warranted. 

In addition to power, another important feature of an approach to detect vQTL is the 

flexibility to capture non-linear effects of alleles, which the DGLM, the parametric bootstrap-

based likelihood ratio test, and Bayesian regressions allow for by allowing genotypes to be 

specified using three indicator variables to capture non-linearities. The present family-based 

approach is potentially susceptible to confounding of variance effects by non-linear effects of 

alleles, because the association mapping is done on the sibship unit so the genotype is 

represented as the total number of major or minor alleles of each sib pair. Therefore, if 

dominance were at play with respect to mean levels, then this might generate spurious effects on 

variance [77].  That is, if among heterozygotes there was no effect of an allele on mean levels but 

among homozygotes there was, then this itself would generate apparent, but spurious, effects on 

variance even when controlling for linear mean effects.  However, by comparing subgroups 

among sibship pairs that have two minor alleles (out of four possible in total), we are able to 
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check for this possibility.  Specifically, by comparing those 2-minor allele pairs where both 

siblings are heterozygotes (i.e. each individual has one minor allele) with those where both are 

homozygotes (where one sibling has zero minor alleles and the other has two), we can rule out 

this possible statistical artifact of non-linear effects on mean levels. Although the possibility of 

non-linearities that do not reflect true variance effects can never be totally eliminated [77], this 

approach guards against a primary form of non-linearity—dominance. 

Below we report GWA results for variation effects on two phenotypes: height and BMI.  

When we control for parental genotype, we are unable to replicate any genome-wide statistically 

suggestive hits in the Framingham Heart Study (FHS) data, our discovery sample, in our 

replication sample, the Minnesota Twin Family Study (MTFS).  We also test whether our 

potential variance-related alleles are merely reflecting dominance effects among heterozygotes; 

we find no evidence for this.  Finally, we perform gene-based and pathway enrichment analysis.  

We do find one pathway, related to gap junction function, that is significantly enriched in both 

our discovery and replication samples for associations with variance in height.  We then discuss 

the implications of our findings for prior and future research. 

 

Results 

When we use data from quartets in the FHS and control for mean sibling-pair height, sex, 

mean pair age, within-pair age difference, and parental genotype in genome-wide regressions on 

the standard deviation of the sibling pair height we find four SNPs that are genome-wide 

suggestively significant (p<10-5) and meet other Hardy-Weinberg equilibrium (HWE) and minor-

allele frequency (MAF) controls (see Methods):  rs2804263 (MAF  30.8%); rs2073302 (MAF 

39.1 %);  rs8126205 (MAF 37.1 %) and rs4834078 (MAF 24.0 % ) (Fig 1A; for detailed 
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association plots and regional linkage maps of genome-wide suggestive hits, see S1 Fig and S2 

Fig, respectively).  For BMI we find no loci that meet even genome-wise suggestive significance 

(Fig 1B).  Our method, as expected, controls well for population structure: QQ plots for the 

height and BMI p-values do not show the telltale “early liftoff” typical of failure to control this 

confounder (S3 Fig).  

Fig 1: Manhattan plot of sibling variation in height and BMI among FHS 3rd generation 
sibling pairs.  A) Results for the pairwise sibling standard deviation in height regressed against 
the sibling-pair average height with controls for sex of sibship, mean age of siblings, age 
difference of siblings and parental genotype. B) Same as in (A) except for BMI instead of height.  

 

However, the absence of genome-wide significant SNPs suggests that the method’s 

statistical power is low. A power analysis for the sample size utilized in the discovery dataset 

indeed supports this suggestion. For example, a single SNP would need to explain over 4.8% of 

the variation in the trait for the study to achieve 80% statistical power at the given sample size 

(S4 Fig). An effect size of this magnitude is not expected for human complex traits (e.g., the 

largest effect of a single SNP for mean height explains approximately 1% of the variation). 

Power is very low near R2 = 0.01 (S4 Fig). 

Apparent effects on variance can be generated if means and variances are correlated or if 

effects of alleles at a locus are not additive (i.e., there is dominance). Confounding of mean and 

variance effects is a serious issue with the present data. Although there is no overall correlation 

between effects on mean and on variance (as measured by squared Z-score and as previously 

reported [46]), the absence of the correlation appears to be caused by the fact that the vast 

majority of SNPs affect neither mean nor variance and therefore noise swamps out any signal; 

restricting the analysis to the SNPs that are the top hits reveals a very strong correlation between 

mean and variance effects for BMI (S5 Fig). Moreover, the top SNP for variance in BMI found 
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by Yang et al. [46] shows clear association with mean BMI in the same data set from the GIANT 

consortium (S6 Fig), whereas the four suggestively significant SNPs in our analysis do not show 

an association with mean height in the GIANT consortium data (S7 Fig). Further highlighting the 

importance of our regression-based control for sibling-pair mean are the observations that: 1) 

sibling-pair standard deviation shows a strong positive correlation with sibling-pair mean, and 2) 

this correlation is not eliminated by using the sibling-pair coefficient of variation rather than the 

standard deviation (S8 Fig). 

Our approach does not control for non-additivity of allele effects at a locus, as it assumes 

a linear model. However, it does allow a test of whether an effect on variation net of mean was 

actually an artifact of non-linear effects on average rather than an actual variance effect. If the 

true relationship between phenotype and MAF were non-linear (i.e. revealed dominance effects) 

our initial findings could be entirely driven by divergence among those sibling pairs with two 

minor alleles.  For example, if an individual with two minor alleles were significantly taller than 

an individual with either one or zero minor alleles (recessive effect) then when we collapsed the 

sibling pairs with two minor alleles, we could generate artifactual variation effects because 

among those sibships with two minor alleles, some would be distributed 0-2 (and thus one 

sibling would be taller than the other) while other sibships would be 1-1 (and thus would be the 

same height).  Put together, it would appear that two minor alleles increased the variation net of 

mean effects.  And if strong enough, such a misspecified effect could exert enough leverage to 

make a linear effect on variation appear across all allele numbers (zero to four for the sibship).  

These concerns appear not to apply to our analysis: there are minor differences in the variance 

effects among two-minor allele sibships by zygosity, but three out of the four are not statistically 

significant and the other is only weakly significant (p= 0.048) (Fig 2). 
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Fig 2: Test for spurious association with variance due to non-linear effects on mean levels. 
Sibling-pair mean height (inches) among pairs with two minor alleles is shown separately for 
homozygotes (one sibling with zero minor alleles and the other sibling with two) and 
heterozygotes (each sibling has one minor allele), for each genome-wide suggestively significant 
SNP. 

 

 For replication analysis, we used respondents from the MTFS.  (For list of proxy MTFS 

SNPs with information on MAF and linkage with FHS SNPs see S1 Table.)  These families 

included phenotypic and genotypic information on pairs of twins as well as their parents, 

allowing us to replicate the sibling-based analysis with parental genetic controls so as to mimic 

random assignment of alleles.  The MTFS has both dizygotic (DZ) and monozygotic (MZ) twins.  

Because MZ sibships do not vary in terms of cryptic genetic variation and may experience much 

more similar environments to each other than do genetically distinct siblings, we also repeated 

our replication analysis only with DZ twin sets but found that exclusion of MZ twins did not 

affect results.  Another concern is that twins (even DZ twins) may experience more similar 

environments than singleton siblings; thus, our replication analysis may suffer from attenuation 

bias to the extent that the cause of variation is environmental and not cryptic genetic differences 

(which should, by contrast, be equivalent for singleton full siblings and DZ twins).   Among the 

SNPs that were genome-wide suggestively significant for the height analysis, only two of the 

four had viable proxy SNPs in the MTFS dataset after quality control:  rs2804263 and rs4834078 

both had proxies whereas rs2073302 and rs8126205 did not (S1 Table). When we ran the 

analysis for the proxy SNPs in the MTFS dataset, none achieved statistical significance. 

 In an attempt to gain power (at the expense of identifiability), we also performed two 

analyses that pool SNPs: gene-based and pathway-based pooling (see Methods).  VEGAS for the 

gene analysis yielded no genes that were significantly enriched compared to null (in either 
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dataset).  However, i-GSEA4GWAS did yield some pathways that appeared to be significantly 

enriched (Table 1).  One of these pathways, associated with within-sibship variance in height in 

the FHS data, replicated in the MTFS data: HSA04540 Gap Junction (p=0.002 for each data 

set)(S9 Fig).  HSA04540 includes members of several signaling pathways, including growth 

factors and their receptors, although any connection between these factors and organismal 

growth, as manifested in ultimate height, remains to be determined.  Importantly, this pathway 

was not significant in the GWA for mean levels effects in either dataset. 

 

Table 1: Enriched canonical pathways for height and BMI sibling-pair standard deviations 
in FHS  

   Sign. Genes/ 
   Slctd. Genes/ 
Pathway/Gene set name P-value FDR All Genes  
HEIGHT    

GLYCEROLIPID METABOLISM  < 0.001 0.006 20/35/45 
    
HSA00561 GLYCEROLIPID METABOLISM  < 0.001 0.009 27/49/58 
    
VEGFPATHWAY  < 0.001 0.015666666 10/20/28 
    
HSA03030 DNA POLYMERASE  0.001 0.0276 9/20/25 
    
BILE ACID BIOSYNTHESIS  0.003 0.03175 11/21/27 
    
HSA04540 GAP JUNCTION * 0.002 0.041666668 42/78/98 
    
HSA05217 BASAL CELL CARCINOMA  0.004 0.106 25/46/56 
    
HSA02010 ABC TRANSPORTERS GENERAL  0.006 0.123875 20/40/44 
    
HSA00564 GLYCEROPHOSPHOLIPID 
METABOLISM  0.005 0.24111111 20/49/68 
    
BMI    
HSA00591 LINOLEIC ACID METABOLISM  < 0.001 0.006 11/25/31 
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HSA00020 CITRATE CYCLE  < 0.001 0.1145 12/22/29 
    
HSA04520 ADHERENS JUNCTION  0.005 0.2392 37/67/75 
    
*Replicates in MTFS data    
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Discussion 

 Our analysis extends earlier work that aimed to map variance-controlling loci in humans 

[46]. Although the prior work enjoyed greater statistical power, it also had more potential for 

bias—due both to environmental confounding and to conflation of mean and variance effects.  

Indeed, Yang et al. [46] identified a locus regulating BMI variability that is also strongly 

associated with mean levels and for which a gene-by-environment interaction effect on mean has 

been shown. In the present study we were able to perform within-family analysis on two samples 

of white Americans, completely free of population stratification, largely devoid of rGE 

confounding, and with controls for mean level effects as well as checks for non-linear (i.e. 

dominance) effects on mean levels.  Like the latest methods to map variance-controlling loci in 

controlled crosses [64], our approach therefore avoids common confounds. At the same time it 

overcomes problems specifically associated with human traits, including the construction of 

variance-affecting environments, that existing regression-based methods for detecting vQTLs fail 

to address because they allow controls solely for observed confounders (e.g., [57,64,65,78]). 

Though underpowered our results strongly support the benefits of approximating a 

randomized genetic experiment by analyzing within-family variation while controlling for 

parental genotype. Such an analysis addresses the possibility that it is merely cross-family 

environments interacting with a mean effect and/or population structure that produce apparent 

association with variability.  Meanwhile, parameterizing the estimand as spread (SD) net of 

sibship mean levels provides a robust, flexible way to conceive of variation—that is, rather than 

parameterizing the relationship between mean and variance a priori by using the coefficient of 

variation or some similar summary statistic.  The trade-off inherent to our approach is that 

environmental and phenotypic variation within sibships may be attenuated, reducing statistical 
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leverage; the extent of such a dynamic is wholly dependent on phenotype, of course.  Although 

the within and between family components of the variation in the phenotype can be measured to 

determine whether or not the phenotype is suitable for such an approach, the extent of variation 

within and between sibships in the unmeasured environmental factors that matter is, of course, 

unknown. 

In light of this discussion, we think that there is benefit to combining prior, pedigree-

based approaches with newer GWAS methods to better estimate variance effects (as well as 

levels effects).  Thus, we recommend that consortia of cohorts with genome-wide data on full 

pedigrees (quartets at a minimum) be formed to advance GWA to a more solid foundation of 

inference that approximates the unbiased estimates of lab-based genetic manipulations by taking 

advantage of random differences in sibling genotypes. 

 

Materials and Methods 

Data 

Data for discovery analysis come from the Framingham Heart Study (FHS), second (parental) 

and third (sibling) generation respondents.  (This dataset is publicly available through dbGaP 

http://www.ncbi.nlm.nih.gov/gap. QC code can be obtained from the FHS investigators [79].)  

The FHS is, in fact, one of the cohorts included in the GIANT meta-analysis performed by Yang 

et al. [46].  Height and weight were taken from clinical measurements and then BMI was 

calculated as (weight in kilograms)2 / height in meters.  Genotypes were assayed using the 

Affymetrix GeneChip Human Mapping 500K Array and the 50K Human Gene Focused Panel. 

Genotypes were determined using the BRLMM algorithm. Our analysis began with the original 

500,568 SNPs, and resulted in 260,469 SNPs available for analysis after cleaning (e.g., HWE 
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screens and a MAF cut-off of 0.05). The screens were conducted using all available individuals 

with genetic data, not only those that were included in this analysis.  Genome-region association 

plots were produced using SNAP [80], except for those of published GIANT consortium data, 

which were produced using LocusZoom [81]. Regional linkage maps were produced using 

SNAP [80] and data from the 1,000 Genomes CEU Panel [82], which also provided the reference 

MAFs for S1 Table. 

Among third-generation respondents, the numbers in our sample by sibship size are 

presented in Table 2.  The 200 families with only one sibling in the data drop from the sibling 

analysis.  Those with more than two contribute multiple pairs to the data; however, our final 

analysis selects only one pair per second-generation family as the more complicated error 

structure with multiple pairs leads to early takeoff on QQ plots.   

___________________________________________________________________________ 

Table 2: Distribution of third generation siblings included in data by sibship size: 

# 3rd-G Sibs in Family:  1     2    3    4    5    6    7    8   9 

  N (pairs): -- 292  483   504   250   150    189    28    36 

   Families: 200 292 161 84 25 10 9 1 1 

Total actual N of sibling pairs after random selection of one per family: 583 

____________________________________________________________________________ 

 

The Minnesota Twin Family Study (MTFS) replication data were genotyped on the 

Illumina 660W Quad array [84].  (DNA samples are stored at the National Institutes of Health’s 

National Genetics Repository at Rutgers University in New Jersey.  This dataset will be publicly 

available through dbGaP http://www.ncbi.nlm.nih.gov/gap. QC code can be obtained from the 

MTFS investigators.)  Detailed information on genotypes [84] and phenotypes can be found 
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elsewhere [85].  Quality control procedures were applied separately to each individual cohort. 

Individuals with a call rate <0.95 (N=22), estimated inbreeding coefficient > 0.15 (N=2), or 

showing evidence of non-European descent from multidimensional scaling (N=298, mainly 

individuals with Mexican ancestry) were removed. Individuals were considered outlying from 

European descent if one or more of the first four eigenvectors were more than three standard 

deviations removed from the mean. SNPs with MAF < 0.01, call rate < 0.95 or HWE-test p-

value <0.001 were removed. For our analysis, we included both the MZ and DZ twin pairs 

because restricting to DZ twin pairs that more closely approximate the sibships in the FHS 

discovery sample does not change the substantive findings. Because the discovery sample and 

the replication sample were genotyped on different arrays, we deployed SNAP to find 

corresponding SNPs [80]. The resulting sample size for our analysis was 1,048 pairs. 

In addition to the GWA analysis in the discovery and replication sample, we performed 

two sets of analyses that pooled SNPs: gene-based pooling using VEGAS [86] and pathway-

based pooling using i-GSEA4GWAS [87].  For the discovery sample, gene-based and pathway-

based analyses were performed using 260,434 variants input; 239,526 variants used; 14,783 

genes mapped; 221 gene sets selected.  For the replication sample, gene-based and pathway-

based analyses were performed using 522,726 variants input; 487,692 variants used; 16,840 

genes mapped; 259 gene sets selected.  

Statistical Analysis 

All analysis was performed using R .  The power analysis depicted in S4 Fig. to estimate 

the 𝑅𝑅2 of the putative effect at varying power was performed using the pwr package in R [88] 

with n = observations in discovery sample and p = 10-5 (heteroscedasticity-robust standard errors 

should not substantially affect power under the present sample size [89]). 
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For the main analysis, sibling-pair standard deviations (SD) were fit by linear regression 

to the following model, where the key regressor is the number of minor alleles for the pair of 

siblings at a given locus.  Because this number is for two individuals, the range is 0 to 4: 

𝑆𝑆𝑆𝑆𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽MAF countik + 𝛾𝛾𝑍𝑍𝑖𝑖 +   𝜖𝜖𝑖𝑖𝑖𝑖 

In the model, i indexes a sibling pair, k indexes a SNP, MAF count is the total number of minor 

alleles in a sibling pair and Zi is a vector of sibling pair-level controls that includes controls for 

the mean level of the trait in the sibling pair, parental genotype (coded as the parent count of 

minor alleles from 0 to 4), pair sex (MM or FM or FF), mean pair age, and the within-pair age 

difference. Qualitative results do not change if we instead specify the mother’s and father’s 

genotypes separately. Results also do not change when we normalize for minor allele frequency 

(MAF) using the procedure in [83], where i indexes participants, k indexes a snp, 𝑝𝑝𝑘𝑘 refers to the 

MAF, and count refers to the count of minor alleles for sibling pair i at snp k: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑘𝑘
�2𝑝𝑝𝑘𝑘(1 − 𝑝𝑝𝑘𝑘)

 

Huber-White standard errors robust to clustering on pedigree ID (to account for 

correlated errors among cousins: sibling pairs that share the same grandparents but not the same 

parents) were calculated for the FHS analysis in the following way, where i = sibling pair 1, j = 

sibling pair 2, n = total sibling pairs, g = pedigree grouping, and k = SNP. 

For the simple case, where 𝜎𝜎2 =   𝜎𝜎𝑖𝑖2  ∀ 𝑖𝑖  and 𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥2 =  ∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥 �)𝑛𝑛
𝑖𝑖=1

2 : 

𝑣𝑣𝑣𝑣𝑣𝑣(𝛽̂𝛽𝑘𝑘) =  
∑ (𝑥𝑥𝑖𝑖 −  𝑥̅𝑥)2𝜎𝜎2𝑛𝑛
𝑖𝑖 =1

𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥2
 

To account for errors that may be heteroskedastic and correlated within a shared pedigree, we 

adjust the variance to be robust to cases where  𝜎𝜎2  ≠  𝜎𝜎𝑖𝑖2  and where 𝐸𝐸�𝑢𝑢𝑖𝑖𝑖𝑖 𝑢𝑢𝑗𝑗𝑗𝑗′� ≠  0 for g = g’ 

(two sibling pairs share same grandparent/pedigree ID).  For the case of pedigree ID’s with two 
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or more sibling pairs, this becomes the following variance robust to heteroskedastic and 

correlated errors, with an indicator function for when the sibling pairs belong to the same 

pedigree: 

𝑣𝑣𝑣𝑣𝑣𝑣�𝛽̂𝛽𝑘𝑘� =  
∑𝑛𝑛
𝑗𝑗=1 ∑ (𝑥𝑥𝑖𝑖 −  𝑥̅𝑥)2�𝑥𝑥𝑗𝑗 −  𝑥̅𝑥�2 𝑢𝑢�𝑖𝑖𝑖𝑖 𝑢𝑢�𝑗𝑗𝑗𝑗′𝟏𝟏[𝑔𝑔 = 𝑔𝑔′]𝑛𝑛

𝑖𝑖 =1

𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥2
 

 

For the case of pedigree ID’s with one sibling pair only, the above equation reduces to the 

following variance robust to heteroskedastic errors [90]: 

 

𝑣𝑣𝑣𝑣𝑣𝑣�𝛽̂𝛽𝑘𝑘� =  
∑ (𝑥𝑥𝑖𝑖 −  𝑥̅𝑥)2 𝑢𝑢�𝑖𝑖𝑔𝑔2𝑛𝑛
𝑖𝑖 =1

𝑆𝑆𝑆𝑆𝑇𝑇𝑥𝑥2
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Supporting Information 
 
 
S1 Fig. Regional association plots for QC-filtered SNPs that were genome-wide suggestively 
significant (p<10-5) for association with sibling-pair standard deviation in height.  Plots, 
produced by SNAP [80], show genotyped SNPs used in analysis of sibling variation in height. 
A–D) Plots for the SNPs rs2804263, rs2073302, rs8126205, and rs4834078, respectively. 

S2 Fig. Regional linkage maps for FHS genome-wide suggestive SNPs for sibling-pair 
standard deviation in height from 1,000 Genomes, CEU Panel. Maps produced by SNAP 
[80]. A–D) Plots for the SNPs rs2804263, rs2073302, rs8126205, and rs4834078, respectively. 

S3 Fig. QQ plots associated with Manhattan plots in Fig. 1. A) Observed versus expected p-
value distributions for analysis of sibling-pair standard deviation in height for FHS generation-
three respondents with controls for parental genotype, mean height of sibling pair, sex, and sex 
difference. B) Same as in (A) except for BMI instead of height. Shaded gray regions depict 95% 
confidence intervals. 

S4 Fig. Power to detect an effect size of R2 for the sample size used in the discovery analysis 
at genome-wide suggestive significance level (p<10-5). 

 
S5 Fig. Correlation between SNP mean effects and SNP association with squared Z-scores. 
SNPs are normalized for minor allele frequency (W) (See Data). A) For each SNP, association 
between the SNP and squared Z-scores for BMI is plotted against the SNP’s effect on mean BMI 
(correlation approximately zero). B) Same as in (A) except only the top 100 SNPs (based on 
mean effects on BMI) are shown (correlation 0.87). 

S6 Fig. Regional Association Plot of rs7202116, top hit for variance in BMI found by Yang 
et al. (2012), on mean level of BMI from GIANT consortium data. Figure produced using 
LocusZoom [81]. 

S7 Fig. Regional Association Plot of genome-wide suggestively significant (p<10-5) hits from 
Fig 1 on mean height from GIANT consortium data.  (A–D) Plots for the SNPs rs2804263, 
rs2073302, rs8126205, and rs4834078, respectively, show no markers in the respective regions  
that approach even genome-wide suggestive significance (p<10-5). Figures produced using 
LocusZoom [81].  

S8 Fig. Relationship between sibling-pair mean BMI and sibling-pair standard deviation 
(SD) or coefficient of variation (CV). A) Sibling-pair SD versus mean (correlation = 0.43). B) 
Sibling-pair CV versus mean (correlation = 0.25). 

S9 Fig. Manhattan plots for enriched pathway HSA04540 Gap Junction for height 
variability. A) FHS discovery sample; B) MTFS replication sample. 
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S1 Table. Proxy SNPs and results for replication analysis using Minnesota Twin Family 
Study data.  
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