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Abstract: 35 

Types of T-cell responses are categorized on the basis of a limited number of molecular 36 

markers selected using a priori knowledge about T-cell immunobiology. We sought to 37 

develop a novel systems-based approach for the creation of an unbiased framework 38 

enabling assessment of antigenic-peptide specific T-cell responses in vitro. A meta-39 

analysis of transcriptome data from PBMCs stimulated with a wide range of peptides 40 

identified patterns of gene regulation that provided an unbiased classification of types of 41 

antigen-specific responses. Further analysis yielded new insight about the molecular 42 

processes engaged following antigenic stimulation. This led for instance to the 43 

identification of transcription factors not previously studied in the context of T-cell 44 

differentiation. Taken together this profiling approach can serve as a basis for the 45 

unbiased characterization of antigen-specific responses and as a foundation for the 46 

development of novel systems-based immune profiling assays. 47 

 48 

Introduction: 49 

T-cells develop in the thymus where they undergo positive and negative selection 50 

through which unreactive and auto-reactive T-cells are removed from the lymphocyte 51 

pool. Upon antigen encounter with appropriate signals, naïve T-cells further develop into 52 

effector and memory T-cells. T-cell fate is influenced by the quantity of antigen and 53 

duration of antigen exposure, strength of T-cell receptor (TCR) interaction with peptide-54 

MHC complex, and co-stimulatory signals as well as cytokine environment. However, 55 

plasticity of the T-cells is maintained even after they develop into various effector T-cells 56 

(1). 57 
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 58 

Effector CD4+ T-cells are central organizers of adaptive immunity, and their current 59 

accepted classification includes Th1, Th2, Th9, Th17, Th22, regulatory T (Treg), and 60 

follicular helper T (Tfh) cells. Th1 cells induce cell-mediated immunity against 61 

intracellular microbes, and are characterized by expression of the transcription factor T-62 

bet and production of effector cytokine IFNG. Th2 cells play a role in allergic 63 

inflammation and promote humoral immunity against extracellular microbes, express 64 

GATA3, and produce IL4, IL5, and IL13 (2). Th9 cells play roles in allergic and 65 

autoimmune inflammations and anti-tumor immunity, express PU.1 and IRF4, and 66 

produce IL9 (3). Th17 cells are involved in protection at mucocutaneous sites, express 67 

RORγt, and produce IL17, IL21, IL22, and IL26 (4). Th22 cells function in barrier 68 

immunity, express AHR, and produce IL22 (5). Tregs express Foxp3, and keep immune 69 

responses in check by suppressing the responses partly by secretion of TGFβ and IL10 70 

(6). Tfh cells promote B cell activation and differentiation, stimulate generation of long-71 

lived antibodies, express BCL6, IRF4, MAF, and BATF, and secrete IL21, IL4, and IL10 72 

(7). 73 

 74 

T-cell responses are essential to health maintenance but also contribute to 75 

pathogenesis. Reduced Treg cell numbers or functions are seen in many autoimmune 76 

diseases as exemplified by association of Foxp3 gene mutation in some patients with 77 

IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome (1). 78 

Indeed, balancing the functions of effector and regulatory T-cells appears critical for 79 

promoting favorable outcomes. Auto-reactive T-cells that escape negative selection in 80 
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the thymus are involved in the development of autoimmune diseases such as type 1 81 

diabetes (T1D) (8). Polymorphisms at HLA-DR and –DQ class II loci strongly associate 82 

with increased risk for T1D (9), which is notable since these genes encode proteins 83 

involved in presentation of antigenic peptides to T-cells. Thus, tools and approaches for 84 

characterizing T-cells and monitoring their function over time are paramount to the 85 

development of preventative therapeutic strategies for autoimmune diseases. They are 86 

also necessary for evaluating responses elicited by prophylactic vaccines as well as a 87 

rapidly expanding array of immune modifying agents used in the treatment of chronic 88 

conditions such as arthritis and more recently cancer (10).  89 

 90 

Traditionally T-cells have been characterized using a limited number of cell-surface 91 

markers, transcription factors, and secreted cytokines, which are measured using flow 92 

cytometry and other antibody-based assays (11). Classification of T-cell responses 93 

using such a knowledge-based approach is inherently biased. Systems approaches 94 

could instead yield an unbiased molecular classification since they rely on the use of 95 

high-throughput profiling technologies to measure constituents in a given biological 96 

system. Recent technological advances allow, for instance, the genome-wide profiling of 97 

transcript abundance at the population and single-cell levels, the assessment of 98 

immunodominant antigens by pathogen proteome microarrays, and the determination of 99 

antibody and TCR repertoire diversities by DNA sequencing (12). 100 

 101 

Transcriptome profiling has been leveraged successfully to investigate pathogenesis 102 

(13-15), innate immunity (16), and responses to vaccines (17, 18). Systems approaches 103 
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in human immunology studies have largely consisted in profiling abundance of cellular 104 

RNA in whole blood or peripheral blood mononuclear cells (PBMCs) of the study 105 

subjects. Only seldom have whole transcriptome readouts been used in in vitro 106 

transcriptional assays (19-21). 107 

 108 

The work presented here employs transcript profiling for the unbiased characterization 109 

of T-cell responses. As a proof of principle, we used microarray datasets to characterize 110 

transcriptome-wide responses to immunodominant peptides in over 300 PBMC cultures. 111 

This meta-analysis identified co-expressed gene clusters that categorize antigenic 112 

responses using a purely data-driven approach. While the limited diversity of the 113 

antigenic repertoire tested and lack of immune phenotyping data constrains the 114 

interpretation of the findings described in this article, the strategy that we present can 115 

serve as a basis for further studies that will establish unbiased classification of antigen-116 

specific responses. These may contribute to further expand our understanding of T-cell 117 

immunobiology and serve as a foundation for the development of a new generation of 118 

immune profiling assays. 119 

 120 

Materials and Methods: 121 

Cell culture and peptide stimulation 122 

Blood samples were derived from subjects participating in studies under the auspices of 123 

Control and Diabetes Registries and Infectious disease registry. Informed consent was 124 

obtained from all subjects according to IRB-approval protocols at Benaroya Research 125 

Institute (Seattle WA) and at Baylor Research Institute (Dallas, TX). PBMCs were 126 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 13, 2017. ; https://doi.org/10.1101/175620doi: bioRxiv preprint 

https://doi.org/10.1101/175620


 7

isolated by ficoll method (GE Healthcare Bio-Sciences Corp., Piscataway, NJ), and 127 

were frozen until use. Immunodominant peptides used in this experiment consisted of 128 

allergy peptides: Alnus glutinosa major allergen Aln g 1 derived peptide Alng1p10 and 129 

Felis domesticus allergen Fel d 4 derived peptide Feld4p30, microbial peptides: 130 

Candidap38 from Candida albicans, CMVp86 from cytomegalovirus, BHp28, BHp46, 131 

H1p21, H1p33, H1p34, H1p45, H3p13, H3p3, H3p306, H5p86, MPp54, MPp8, MPp6, 132 

NPp125, NPp1528, NPp68, and Flu-MP from influenza virus, and WNVEp7 and 133 

WNVNS2ap2 from West Nile virus, and type 1 diabetogenic peptides: GAD65C1, 134 

GAD65p73, IGRPC4, IGRPp11, IGRPp12, IGRPp13, IGRPp14, PPIC3, ZnT8C5, 135 

ZnT8p15, ZnT8p16, ZnT8p17, ZnT8p18, ZnT8p33, ZnT8p65, ZnT8p68, and ZnT8p93. 136 

Peptide sequences are provided in S1 Table. Peptides were purchased from 137 

Mimotopes (Victoria, Australia), and were dissolved in 100% DMSO or 50% acetonitrile. 138 

PBMCs were thawed, washed, and cultured in 14 ml polypropylene tubes (BD Falcon, 139 

Tewksbury MA) with either RPMI 1640 (GIBCO, Grand Island NY) supplemented with 140 

10X AB serum (Gemini Bio-Products, West Sacramento CA), 50 uM of 2-141 

mercaptoethanol (Sigma, St. Luis MO), 25 ml of HEPES (GIBCO, Grand Island NY), 1% 142 

sodium pyruvate (Sigma, St. Luis MO), 1% non-essential amino acid (Sigma) or RPMI 143 

1640 supplemented with 1X serum replacement (Sigma, St. Luis MO), 1 mM sodium 144 

pyruvate (Sigma, St. Luis MO), 1x penicillin and streptomycin (Sigma, St. Luis MO). 145 

PBMCs were stimulated with peptides for 24 hours. The same amount of acetonitrile or 146 

DMSO without peptide was added to medium in control cultures (medium control). 147 

Subsequently cells were washed with PBS and lysed in RLT buffer (Qiagen, Valencia 148 

CA) supplemented with 1% 2-mercaptoethanol (Sigma, St. Louis MO). 149 
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 150 

Microarray 151 

RNAs were extracted using the RNeasy Mini Kit (Qiagen, Valencia CA), were 152 

quantitated by NanoQuant (Tecan, Männedorf, Switzerland), and their qualities were 153 

assessed on a Bioanalyzer 2100 (Agilent, Santa Clara CA). Samples were then labeled 154 

and amplified using Illumina TotalPrep-96 RNA amplification kit (Ambion, Grand Island 155 

NY). Finally, samples were hybridized to Illumina HumanHT-12 v3 or v4 bead chips, 156 

and read on an Illumina HiScanSQ scanner (Illumina, San Diego CA). Background 157 

subtracted data were generated using GenomeStudio (Illumina, San Diego CA). 158 

 159 

Microarray data analysis 160 

Data were analyzed in R (22). The data were preprocessed by quantile normalization, 161 

and flooring values <10 to 10. Common probes between the two microarray chip 162 

versions were selected. Probes present in less than 10% of all the samples (PALX10%), 163 

and probes with difference between minimal and maximal expression across samples 164 

less than 100 (range 100) were excluded. 165 

 166 

The ratio and difference between stimulated samples and medium controls from the 167 

same donor were computed. Experiment 5 consisted of cultures in triplicates for each 168 

peptide stimulation and medium control, and the mean of expression from the triplicate 169 

culture was used for the ratio and difference calculations. Filtered data consisting of 170 

probes with at least 5 samples and samples with at least 50 probes, with absolute 171 

log2(ratio) and absolute differences greater than 1 and 200, respectively, were selected 172 
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for clustering. To cluster probes and samples, ratio values less than 0.667 were set to -173 

1, values between 0.667 and 1.5 were set to 0, and finally values equal or greater than 174 

1.5 were set to 1. Probes and samples were individually clustered using Hartigan’s k-175 

Means (23) for all k in the range of 1-100, inclusive, and in the range of 1-30, inclusive, 176 

respectively. The Jump algorithm (24) was used to determine the final k = 9 and k = 11 177 

for probes and samples, respectively. Resulting clusters were called gene clusters and 178 

sample sets for probes and samples, respectively. The lists of genes related to immune 179 

functions were obtained from ImmPort (http://immport.niaid.nih.gov) (data retrieved in 180 

January 2012), the HUGO Gene Nomenclature Committee at the European 181 

Bioinformatics Institute (http://www.genenames.org/genefamilies/CD) (25) (data 182 

retrieved in March 2012), and MetaCore (GeneGO Inc, MI, [www.genego.com]) (data 183 

retrieved in January 2012). The biosets were created by matching the Illumina probes 184 

with the gene symbols from the lists of genes (S2 Table). Thus, the biosets were not 185 

derived from our data. The transcription factor (TF) bioset included genes that encode 186 

for not only TFs, but also regulators of transcription. 187 

 188 

Enrichment of genes in gene clusters that were also in biosets, and enrichment of 189 

peptide types in sample clusters were determined by Fisher’s exact test at a 190 

significance level of 0.05. 191 

 192 

For a given gene cluster and a sample set, the mean of ratios for the probes was taken 193 

for each sample. Then, the mean of the means of ratios was taken, transformed into 194 

log2 scale, and assessed the mean of the means of ratios was greater than 1 or less 195 
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than - 1 by one-sample test (one-sided) at a significance level of 0.025 to examine if the 196 

given sample set showed significant change in expression for the given probes. 197 

 198 

PubMed literature search 199 

TFs found in both TF bioset and our filtered data were identified, and they were 200 

individually searched in PubMed (http://www.ncbi.nlm.nih.gov/pubmed), using both 201 

gene symbols and synonyms, for associations with helper and regulatory T cells, 202 

including Th1, Th2, Th9, Th17, Th22, Treg, and Tfh cells. For the CAT gene, many false 203 

positives were returned using the symbol CAT, so the official full name Catalase was 204 

used instead of the symbol CAT. All searches were limited within the title and abstract 205 

using the [TIAB] tag. To narrow the search results to journal articles in humans, 206 

PubMed sidebar filters “Journal Article” and “Humans” were activated. Some synonyms 207 

were excluded from the search because they were not specific to the genes. For 208 

example, “DELTA” a synonym for YY1 and “MAIL” a synonym for NFKBIZ were 209 

excluded. The number of articles returned from the search was recorded to assess the 210 

extent to which TFs found in our filtered data were studied in the context of the various 211 

T-cell types. In addition, if an article was associated with more than one T-cell types, it 212 

was also recorded in “Overlap”. Moreover, a control set of 20 TFs (BANP, BNIP3, 213 

CTBP1, ELF5, FOSL2, GLIS2, HAND1, LOC642559, MOS, OVOL1, PBX2, POU5F1, 214 

PRDM16, RARA, RBMS1, SATB2, STAT5A, STOX1, TTF1, ZBTB38) were selected 215 

from the TF bioset randomly based on arbitrary integers chosen by using a function 216 

sample() in R (22). PubMed searches were performed for these TFs as described 217 

above. Data were retrieved in March 2014. 218 
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 219 

Functional annotation by DAVID 220 

Each gene cluster was annotated using DAVID (data retrieved in October 2013 using 221 

DAVID v6.7, http://david.abcc.ncifcrf.gov/home.jsp) (26, 27). The common probes 222 

between Illumina HT12 v3 and v4 (39426 probes) were used as a background gene list 223 

for enrichment analysis for Gene Ontology biological process (GO BP). Statistical 224 

significance of associated BPs was assessed using the FDR adjusted p-value at a 225 

significance level of 0.05. 226 

 227 

Results: 228 

Measuring in vitro transcriptome responses to antigenic peptides. 229 

Traditionally T-cell responses have been characterized and classified using limited 230 

panels of molecular markers selected based on a priori knowledge about T-cell 231 

immunobiology. Our goal was to identify and characterize antigenic-peptide specific T-232 

cell responses in an unbiased manner using a data-driven approach. Hence, we set out 233 

to utilize transcriptome profiling to capture the breadth of the response to antigenic 234 

peptides. Changes in transcript abundance were measured on a genome-wide scale in 235 

a set of 352 peptide-stimulated samples. Cryopreserved PBMCs from various donors 236 

were stimulated in vitro with a broad range of antigen-derived peptides for 24 hours. 237 

Changes in RNA abundance were measured using Illumina Beadarrays. A total of 7 238 

independent experiments were included in the analysis: Experiments #1-3 examined 239 

samples for which cytokine responses measured by a multiplex protein assay were 240 

known. In these experiments PBMCs from 1~3 donors were stimulated with peptides 241 
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derived from microbes, alder and cat allergens, and type 1 diabetogenic (T1D) proteins. 242 

Experiment 4 compared influenza virus (flu) peptide-induced responses in young and 243 

old individuals. This study involved 11 donors and 13 flu derived peptides. Experiment 5 244 

examined PBMCs from a single donor, exposed to flu derived peptides and 245 

simultaneously measured the effect of freezing PBMCs on the peptide specific response 246 

at different T-cell precursor frequencies. Finally, experiments 6 and 7 examined 247 

differences in T1D or flu matrix protein derived peptides-induced responses in 248 

individuals with T1D and age/gender/HLA-matched healthy controls (28). These two 249 

studies involved 35 patients and 30 controls in total. The T1D peptides were derived 250 

from the 65kDa isoform of glutamic acid decarboxylase (GAD65), islet-specific glucose-251 

6-phosphatase catalytic subunit-related protein (IGRP), preproinsulin (PPI), and zinc 252 

transporter 8 (ZnT8). The antigen sources of peptides used in those experiments are 253 

listed in Table 1. 254 

 255 

Table 1 List of peptides used in PBMC cultures. 256 

Disease Source protein Peptide 
Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 

Allergy 

Alnus glutinosa major 
allergen Aln g1   Alnglp10     

Felis domesticus 
allergen Fel d 4   Feld4p30     

T1D 

GAD65  p73    C1  

IGRP      

C4, 
p11, 
p12, 
p13, 
p14 

C4, 
p11, 
p12, 
p13, 
p14 

PPI      C3 C3 

ZnT8  

p68, 
p33, 
p65, 
p93 

   

C5, 
p15, 
p16, 
p17, 
p18 

 

Microbial Candida albicans p38       
Cytomegalovirus (CMV) p86       
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Influenza virus (Flu) H1p45, 
H5p86   

BHp28, BHp46, 
H1p21, H1p33, 
H1p34, H3p13, 
(H3p3, H3p306), 
MPp6,  
(MPp8, MPp54), 
NPp125, NPp68 

MPp8, 
MPp54, 
NPp1528 

MP  

West Nile virus (WNV)  Ep7, 
NS2ap2      

Peptides that were used to examine antigenic responses in PBMC cultures are listed in 257 

this table. GAD = glutamic acid decarboxylase, IGRP = islet-specific glucose-6-258 

phosphatase catalytic subunit-related protein, PPI = preproinsulin, ZnT8 = zinc 259 

transporter 8. C1, C3, C4, and C5 were pools of peptides derived from GAD65, IGRP, 260 

PPI, and ZnT8, respectively. Influenza A HA, and influenza B HA proteins are denoted 261 

as H, and BH, respectively. Peptides (H3p3, H3p306) and (MPp8, MPp54) were pools 262 

of 2 peptides H3p3 and H3p306, and MPp8 and MPp54, respectively. MP was pool of 263 

overlapping peptides encompassing the entire influenza A M1. 264 

 265 

Identification of peptide responsive gene clusters. 266 

We first verified that the data obtained from the different experiments could be 267 

consolidated in a single meta-analysis. Principal component analysis (PCA) was 268 

performed using 12069 probes that showed variability based on filter criteria for 269 

selection of transcripts detected in at least 10% of all samples (PALX10%) and with 270 

range 100 (see Methods) across 352 stimulated samples and 83 medium controls. As 271 

could be expected, the resulting plot showed a clear separation of samples between 272 

independent experiments (Figure 1A). However, such a separation was not present 273 

once stimulated conditions were normalized to their respective medium controls (Figure 274 

1B). This finding demonstrates that the use of respective medium controls as a common 275 

denominator across the different experiments is an effective approach for normalizing 276 
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our data and controlling batch effects. This normalization method also made it possible 277 

to analyze changes induced by stimulation regardless of baseline variations among 278 

donors. Thus, this strategy of using the normalized data to each donor’s baseline was 279 

adopted for carrying out the meta-analysis presented in this article. 280 

 281 

Figure 1 Principal component analysis of transcriptional profiles before and after 282 

normalization to medium controls. 12069 probes, after exclusion of probes with little 283 

variations across datasets, were used as input in the PCA. Samples were color-coded 284 

by experiments. Percent variations explained by PC1 and PC2 are shown. A) Before 285 

data normalization: PCA of data from 352 stimulated samples and 83 medium controls. 286 

Intensity values in log2 scale were used. B) After data normalization: PCA of data from 287 

352 samples. Log2(ratio) data after normalization of stimulated samples to their 288 

respective medium controls were used. 289 

 290 

We sought to categorize T-cell responses in an unbiased fashion, based on 291 

transcriptional patterns observed following antigenic peptide stimulation. For this we 292 

employed an unsupervised clustering approach grouping samples and genes according 293 

to patterns of responsiveness, which is described in detail in the Methods section. 294 

Clustering methods are known to be prone to noise. Thus, following normalization of 295 

stimulated conditions to their respective medium controls, both probes and samples 296 

were filtered on the same cutoffs; ratio of 2 for upregulation or 0.5 for downregulation 297 

and absolute difference of 200. The probes were retained if at least 5 samples passed 298 

those cutoffs, and the samples were retained if at least 50 probes passed those cutoffs. 299 
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The filtered data consisted of 949 probes and 111 samples while the data prior to the 300 

filtering consisted of 12069 probes and 352 samples. To identify co-expressed genes, 301 

this dataset was clustered two-ways (i.e. probes and samples) using Hartigan’s K-302 

means and applying Jump theory as published previously (24). The clustering resulted 303 

in 9 gene clusters (C0-C8) and 11 sets of samples (SS0-SS10) (Figure 2). The 304 

complete cluster information for both probes and samples can be found in S3 and S4 305 

Tables, respectively. 306 

 307 

Figure 2 Heatmap of co-expressed genes. Log2(ratio) (stim/non-stim) of 949 probes 308 

and 111 samples that passed the filter were visualized on this heatmap. Probes and 309 

samples were clustered by K-means clustering using the Jump method. Probes were 310 

arranged in columns and samples in rows. Vertical and horizontal white lines divide 311 

probes and samples in clusters, respectively. Red, blue, and yellow indicate an 312 

increase, decrease, and no change, respectively, in abundance over the medium 313 

controls. 314 

 315 

Functional enrichment analysis of peptide-responsive gene clusters 316 

Next, the gene clusters defined above were characterized functionally. Although we are 317 

attributing changes in transcript abundance to regulation in T-cells, these changes could 318 

also be caused by other cell types that are exposed to T-cell factors in PBMC culture. 319 

 320 

Gene clusters were functionally characterized at a high level through Gene Ontology 321 

(GO) enrichment analysis using the DAVID annotation tool (26, 27). The top five 322 

significant biological process terms associated with each cluster at a significance level 323 

of 0.05 using the FDR adjusted p-values are summarized in Table 2. Cluster 0 (C0) was 324 
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associated with lipid metabolic process and response to external stimulus. C1 was 325 

associated with translation and metabolic process. C2 through C7 were associated with 326 

various aspects of immune response. No GO terms were significantly associated with 327 

C8. 328 

 329 

Table 2 Top five GO biological process terms associated with gene clusters.  330 

Gene cluster GO term FDR adjusted p-value % 

C0 

GO:0006629~lipid metabolic process 0.01 23.4 
GO:0009605~response to external stimulus 0.04 23.4 
GO:0009611~response to wounding 0.13 17.2 
GO:0006952~defense response 0.40 17.2 
GO:0006766~vitamin metabolic process 0.51 7.8 

C1 

GO:0006414~translational elongation 0.00 13.5 
GO:0006412~translation 0.00 14.6 
GO:0016070~RNA metabolic process 0.00 21.3 
GO:0044237~cellular metabolic process 0.01 57.3 
GO:0044260~cellular macromolecule metabolic process 0.01 49.4 

C2 

GO:0006955~immune response 0.00 57.9 
GO:0002376~immune system process 0.00 57.9 
GO:0050896~response to stimulus 0.00 73.7 
GO:0009607~response to biotic stimulus 0.00 36.8 
GO:0051707~response to other organism 0.01 31.6 

C3 

GO:0006955~immune response 0.00 47.6 
GO:0002376~immune system process 0.00 47.6 
GO:0006954~inflammatory response 0.05 28.6 
GO:0042330~taxis 0.05 23.8 
GO:0006935~chemotaxis 0.05 23.8 

C4 

GO:0002376~immune system process 0.00 39.4 
GO:0006955~immune response 0.00 34.0 
GO:0019882~antigen processing and presentation 0.00 13.8 
GO:0002504~antigen processing and presentation of 
peptide or polysaccharide antigen via MHC 0.00 9.6 

GO:0050896~response to stimulus 0.00 54.3 

C5 

GO:0006950~response to stress 0.00 25.9 
GO:0006952~defense response 0.00 14.7 
GO:0002376~immune system process 0.00 17.6 
GO:0050896~response to stimulus 0.00 37.6 
GO:0009611~response to wounding 0.01 11.8 

C6 

GO:0009611~response to wounding 0.00 30.9 
GO:0006954~inflammatory response 0.00 25.0 
GO:0009605~response to external stimulus 0.00 35.3 
GO:0006935~chemotaxis 0.00 19.1 
GO:0042330~taxis 0.00 19.1 

C7 

GO:0042221~response to chemical stimulus 0.00 25.0 
GO:0006955~immune response 0.00 17.5 
GO:0002376~immune system process 0.00 19.2 
GO:0050896~response to stimulus 0.00 37.5 
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GO:0070482~response to oxygen levels 0.01 7.5 

C8 

GO:0006414~translational elongation 3.46 3.2 
GO:0006412~translation 4.32 5.4 
GO:0055114~oxidation reduction 34.62 6.5 
GO:0008152~metabolic process 35.51 43.5 
GO:0044237~cellular metabolic process 35.99 38.7 

DAVID functional annotation was performed using lists consisting of probes from each 331 

cluster and background of 39426 probes, which were considered for ratio and difference 332 

filtering. GO biological process terms associated with each cluster were ordered by p-333 

values and the top 5 GO terms were listed in this table. The FDR adjusted p-values and 334 

% were rounded to 2 and 1 decimal points, respectively. % indicates percentage of 335 

genes associated with a term / total # of query genes. Only 2 terms were significant for 336 

C0, 3 terms for C3, and none for C8. 337 

 338 

Next we refined our interpretation by mapping co-clustered probes to several relevant 339 

functional categories (biosets) corresponding to transcription factors (TF), Cluster of 340 

Differentiation (CD) molecules, cytokines and chemokines, cytokine and chemokine 341 

receptors, T-cell and B cell receptor (TCR and BCR) signaling, and antigen processing 342 

and presentation (Figure 3). These functional gene lists were formed based on 343 

information compiled from the GeneGO MetaCore knowledgebase (GeneGO Inc, MI, 344 

[www.genego.com]), HGNC Database (http://www.genenames.org/genefamilies/CD) 345 

(25) and Immport (http://immport.niaid.nih.gov), and were summarized in S2 Table. 346 

Overlaps existed between these biosets due to the nature of the annotation of the 347 

genes. For example, CSF2, IFNG, IL2, IL4, IL5, IL10, and TNF were all categorized as 348 

cytokines, but were also in TCR signaling; and were therefore found in both the cytokine 349 

and TCR signaling biosets. Immune bioset-derived probes accounted for greater than 350 

30% of the probes constituting each cluster with the notable exception of C1 and C8 (≤ 351 
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10%). Over 60% of the probes constituting C3 were found in the immune biosets. Using 352 

the Fisher’s exact test (Ha: odds ratio > 1 at a significance level of 0.025), we 353 

determined that C0 was significantly enriched for CD molecules, C3 for cytokines, C4 354 

for molecules found in the antigen processing, C5 for CD molecules, C6 for cytokines. 355 

In addition, presence of TFs, cytokines, and chemokines in each cluster is summarized 356 

in Table 3. 357 

 358 

Figure 3 Immunological annotation of gene clusters. TFs, CD molecules (CD), 359 

Cytokine, cytokine receptors (CytokineR), BCR signaling (BCRsig), TCR signaling 360 

(TCRsig), antigen processing and presentation (AgProcess) biosets were created by 361 

matching the gene symbols obtained from GeneGo, HGNC, and Immport websites with 362 

Illumina probes. Gene clusters are shown along the x-axis. Percent of genes in each 363 

cluster that overlap with the biosets are shown along the y-axis. 364 

 365 

Table 3 TFs and cytokines found among gene clusters C0 to C8. 366 

Gene cluster Transcription factor Cytokine 
C0 FOS, PPARG, TSC22D1 CCL24 
C1 CNBP, ETS1, FLI1, HIF1A, MYC, YY1 LEP, SBDS 
C2 STAT1 CCL8, CXCL9, CXCL10, IFNG 

C3  CCL1, CCL20, CCL3, CCL3L1, CSF2, 
IL1A, IL1F9, IL19, IL6, IL24 

C4 ATF5, IRF1, IRF7, IRF8, IRF9, STAT2 CCL7, LTA, TNFSF10, TNFSF13B 

C5 ATF3, CEBPA, CHURC1, EGR2, MAFB, 
NME1, SPI1, TSC22D1 

CAT, CCL5, CECR1, GREM1, GRN, 
IL1RN, S100A6, SPP1, TNFSF14 

C6 ETS2, GLIS3, IER3, NFKBIZ, ZC3H12A 
CCL2, CCL22, CCL3L3, CCL4L2, 
CXCL1, CXCL2, CXCL6, EBI3, HBEGF, 
IL1B, IL8, OSM, NAMPT, NDP, TNF 

C7 
BNIP3, C1orf85, CDKN1A, CEBPD, 
CES1, EGR1, MYC, NFKB2, USF2, 
ZNF395 

ADM, CXCL5, IL8, PLAU, PPBP 

C8 HMGB2, ID2, LRRFIP1, MAFF, ZNF281, 
ZNF91 

CCL4L1, CXCL5, IL10, SEMA3E, 
TNFSF14 
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This table provides the gene symbols of transcription factors and cytokines in gene 367 

clusters responsive to peptide stimulation in PBMC cultures. Some genes were in 368 

multiple clusters because multiple Illumina probes could be associated with the same 369 

gene. When multiple probes targeting the same gene were found within a cluster, the 370 

gene symbol was listed only once. 371 

 372 

Assessing knowledge gaps among peptide-responsive gene clusters 373 

We identified 43 transcription factors, regulated in response to peptide stimulation in our 374 

assay system, and assessed whether these were already known to be associated with 375 

T-cell function. Literature searches were conducted in PubMed to determine the 376 

frequency of articles indexed for these transcription factors that contained in their titles 377 

or abstracts keywords describing CD4+ T-cell phenotypes, “Th1”, “Th2”, “Th9”, “Th17”, 378 

“Th22”, “Treg”, and “Tfh”. The results are shown in Figure 4. Out of 43 transcription 379 

factors, 9 (21%) had at least 5 unique articles associated with T-cell phenotypes, 60% 380 

had at least one. When PubMed searches were carried out in a similar manner for 20 381 

transcription factors that did not belong to any of our gene clusters and were selected at 382 

random, only 2 of them (10%) returned more than 5 articles containing those keywords. 383 

The fact that the signatures that we observe were enriched in transcription factors 384 

known to be relevant to differentiation and function of T-cell was not altogether 385 

surprising. However, the wide spread in the number of T-cell types associated-articles 386 

returned across all 43 genes indicate that the degree to which those genes have been 387 

investigated in the context of T-cell immunobiology varied greatly. While searches for 388 

STAT1 returned over 200 articles associated with different types of T-cell responses, 389 
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transcription factors such as PPARG and ATF5 returned fewer than 5 articles related to 390 

T-cell phenotypes, and 14 transcription factors returned none. Those transcription 391 

factors that displayed limited or non-existent overlap with literature on CD4+ T-cell types 392 

should be considered for further investigation as potential candidate master regulators 393 

of T-cell differentiation and effector functions (according to the principle of “guilt by 394 

association”). One of those candidates was ATF5, which belongs to cluster C4, 395 

annotated as immune system process, immune response, and antigen processing and 396 

presentation (Table 2). ATF5 is a member of cAMP response element binding 397 

(CREB)/activating transcription factor family, and regulates cell differentiation, 398 

proliferation and survival (29). Only one journal article found by our PubMed search 399 

indicates an association of ATF5 with Th1 response. In the article, Chuang et al. 400 

showed ATF5 was induced by phytohemagglutinine and a combination of anti-CD3 and 401 

anti-CD28 antibodies in T-cells, and that the induced ATF5 expression was associated 402 

with increased IFNG and TNFA expressions (30). Another article related to ATF5 but 403 

not in association with T-cell response suggests that ATF5 induces expression of 404 

mammalian target of rapamycin (mTOR) through PI3K/AKT pathway in BCR/ABL-405 

transformed 32D cells (31). PIK3/AKT pathway can signal through mTOR, which in turn 406 

participate in regulation of T-cell differentiation and proliferation (32). Therefore, it is 407 

conceivable that ATF5 may participate in the establishment of an antigen-specific T-cell 408 

response by increasing Th1 cytokine secretion as well as by activating mTOR to control 409 

T-cell fate through PI3K/AKT pathway downstream of TCR activation. Altogether our 410 

analysis provides the potential for discovery of novel factors involved in T-cell 411 

differentiation and effector function. 412 
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 413 

Figure 4 Literature profiles of TF genes. T-cell literature profiles for TF genes were 414 

generated. Gene symbols and gene cluster information are shown along the x-axis. The 415 

numbers of returned articles were plotted. If an article was associated with more than 416 

one T-cell types, it was also counted in “Overlap.” 417 

 418 

A novel unbiased definition of types of T-cell responses  419 

Our study aimed at leveraging systems approaches to arrive at an unbiased (i.e. data-420 

driven) classification of T-cell responses obtained after peptide stimulation in an in vitro 421 

system. Unsupervised filtering and clustering identified a collection of gene clusters that 422 

we have characterized functionally. To classify the observed responses, one-sample t-423 

tests were performed for each gene cluster (C1 to C8) and sample set (SS1 to SS10) 424 

combinations, except for SS7 and SS8 that consisted of fewer than 3 samples. The 425 

change in mean expression was considered significant if mean expression change was 426 

> 2 or < 0.5 at a significance level of 0.025 (one-sided). The results, summarized in 427 

Table 4 and shown in Figure 2, indicate that each sample sets exhibited expression of 428 

one or a combination of two or more gene clusters, except SS4 that did not show 429 

significant change in any gene cluster. We designated downregulation and upregulation 430 

of gene clusters with superscripts “lo” and “hi”, respectively, following the gene cluster 431 

names. For instance, the SS2 response was defined by changes in 3 different gene 432 

clusters and was noted as C0loC3hiC6hi. Overall 8 different types of T cell responses 433 

were identified in this manner (Table 4). On the basis of this classification we then 434 

compared responses to type 1 diabetogenic peptides (88 samples) and microbial 435 
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peptides (21 samples) (Figure 5). For each category of the peptides, the percentages of 436 

the samples among the total number of samples in a given peptide category was 437 

computed for each sample set. Then, the sample set was labeled by the responses 438 

defined in Table 4. We found the responses elicited to be distinct between these two 439 

categories of peptide stimulated samples. Type 1 diabetogenic peptide induced 440 

responses were dominated by the types C1lo (35% of the samples), C0loC3hiC6hi (24%) 441 

and C1hi (15%), while microbial peptide stimulation elicited C2hiC4hi (33%), C3hi (19%), 442 

C2hi (14%), C0hiC3lo (14%), and C0loC3hiC6hi (14%) patterns. Notably, only the later 443 

type, C0loC3hiC6hi, was found represented at a high proportion in both stimulation 444 

groups. Functional interpretations for the different types of T cell responses identified 445 

via this approach are provided below. 446 

 447 

Table 4 Combination of gene clusters used for characterizing the types of 448 

responses observed.  449 

Sample set C0 C1 C2 C3 C4 C6 C8 Response 

SS0  -      C1
lo

 

SS1  +      C1
hi

 

SS2 -   +  +  C0
lo

C3
hi

C6
hi

 

SS3   +  +   C2
hi

C4
hi

 

SS5  +     + C1
hi

C8
hi

 

SS6 +   -    C0
hi

C3
lo

 

SS9    +    C3
hi

 

SS10   +     C2
hi

 

+ and − in the table indicate that mean expression change of a sample set for a gene 450 

cluster was > 2 and < 0.5, respectively, at a significance level 0.025 in one sample t-test 451 

(one-sided). Blank cell indicates that the mean expression change of a sample set for a 452 

gene cluster was neither > 2 nor < 0.5 at the significance level. SS7 and SS8 were not 453 
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tested as they consisted of only two and one samples. SS4, C5, and C7 were omitted 454 

from the table for lack of significant change in expression. 455 

 456 

Figure 5 The distribution of T-cell responses for T1D and microbial peptides. 457 

Peptides were categorized into Type 1 diabetogenic and microbial proteins: labeled in 458 

the figure as “T1D” and “Microbial”, respectively. Percentage of samples that exhibited 459 

T-cell response types determined in Table 4 were computed and shown in the pie chart. 460 

Each pie represents a T-cell response type and its percentage. Numbers of samples for 461 

each peptide category are shown in parenthesis on the top of each pie chart. Undefined 462 

includes SS7 and SS4. 463 

 464 

Functional characteristics of T1D peptide responses 465 

Cluster C1 signatures dominated the responses to T1D peptides, with C1lo and C1hi 466 

responses representing 35% and 15% of the response types, respectively. The C1 467 

cluster consisted of 99 probes and was enriched with genes involved in translation and 468 

RNA metabolic process. Those genes included ribosomal proteins RPL7, RPL9, RPL23, 469 

RPLP1, RPS28 for translation, and CROP, ETS1, HIF1A, HNRPC, HSPA1A, LCOR, 470 

MYC, NOP56, PABPC1, PABPC3, RPL7, RPS28, SBDS, SFRS11, SLBP, ZFP36L1 for 471 

RNA metabolic processes such as pre-mRNA processing, mRNA stability and 472 

translation. Previously published studies suggested that translational regulation is 473 

important for control of inflammation. For example, ZFP36 destabilizes TNFα mRNA 474 

after macrophage activation (33); a ribosomal protein RPL13A in murine macrophage 475 

functions in resolution of inflammation (34); and translation of inhibitors of NFκB and 476 
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post-transcriptional suppressors of cytokine expression are increased at early cell 477 

activation upon LPS stimulation of murine macrophage (35). Although the specific 478 

genes described in these previous studies are different from those identified in this 479 

study, it is possible that C1 genes are also involved in the translational regulation of the 480 

inflammatory response. The C0loC3hiC6hi type was the other predominant response 481 

observed, with 24% of the T1D peptide responses being of this type. This type of 482 

response was characterized by a concomitant suppression of an anti-inflammatory 483 

program (C0) and induction of pro-inflammatory ones (C3 and C6). C0 consisted of 71 484 

probes, and included the genes APOC1, APOE, CD36, and PPARG. PPARG, prevents 485 

T-cell activation via reduction in IL2 production, and inhibits macrophage activation and 486 

cytokine production by monocytes (36), while APOE suppresses T lymphocytes 487 

proliferation (37). Notably C0 also contained CD163, CSF3R, and LYZ genes. CD163 is 488 

an anti-inflammatory monocyte/macrophage marker (38). CSF3R activates STAT5 that 489 

targets SOCS3, which in turn modulates IFNG response (39). LYZ encodes lysozyme 490 

that is known for its antimicrobial activities. Overall, this transcriptional program may be 491 

associated with suppression of immune responses. Conversely C3 can be associated 492 

with pro-inflammatory function. This cluster consisted of 28 probes, and the genes in C3 493 

associated with inflammation were mostly cytokine genes, which were also observed in 494 

the biosets-analysis. These genes included CCL1, CCL20, CCL3, CCL3L1, CSF2, IL1A, 495 

IL1F9, IL6, and IL19. Activated T-cells secret large amounts of CCL1, while CCL1 496 

receptor, CCR8, is expressed on subsets of T-cells including Th1, Th2, and Treg cells 497 

(40). CCL3 and CCL3L1 are chemoattractants that promote the inflammatory response 498 

by recruiting immune cells of the myeloid lineage (41, 42). CCL20 expression is induced 499 
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by proinflammatory cytokines, and recruits immature DCs and macrophages to 500 

inflammation sites through interaction with CCR6 (43). CSF2 is a pro-inflammatory 501 

cytokine, which supports survival of Th17 cells (44). The pro-inflammatory cytokine IL6 502 

induces acute phase proteins, and regulates recruitment of immune cells to 503 

inflammation sites. It also regulates the balance between Th17 and Treg cell 504 

differentiation, and indirectly antibody production by B cells (45). IL19 increases Th2 505 

cytokine production, and induces expression of IL6, IL8 and IL10 in monocytes (46). 506 

Overall, C3 genes may promote inflammation. C6 was associated with the GO term 507 

“inflammatory response.” This cluster consisted of 78 probes, and the genes in C6 508 

enriched for this term were mostly cytokine and cytokine receptor genes, which were 509 

also observed with the biosets-analysis. Some of these genes were pro-inflammatory 510 

cytokines (e.g.: IL1B and IL8). Others such as CCL2 and TNF can be both pro- and 511 

anti-inflammatory. CCL2 recruits monocytes, memory T-cells, and NK cells, but also can 512 

negatively regulate macrophage activation and pro-inflammatory cytokine production, 513 

and skew macrophage polarization towards M2 with anti-inflammatory activity (47). TNF 514 

activates caspases, NFκB and MAPK pathways for induction of inflammation, but also 515 

can increase anti-inflammatory factors such as IL10 and corticosteroid to downregulate 516 

its expression (48, 49). The cytokine receptors in C6 include FPR2 and TNFRSF4. 517 

Activation of G-couple protein receptor FPR2 may result in pro- or anti-inflammatory 518 

response. The ligands for this receptor include anti-inflammatory lipids lipoxin A4, and 519 

serum amyloid A, and their bindings to the receptor induce apoptosis and survival 520 

signal, respectively (50). TNFRSF4 is a TNF receptor family member, which binds to 521 

OX40L expressed on APC. It is preferentially expressed on activated regulatory CD4+T-522 
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cells, NKT-cells, NK cells, and neutrophils. The signaling through TNFRSF4 regulates 523 

T-cell division, survival, and cytokine release (51). Overall, C6 carried genes with a 524 

predominantly inflammatory function. 525 

 526 

Functional characteristics of microbial antigen responses 527 

The C2 cluster was implicated in two of the dominant responses to microbial antigen-528 

derived peptides, with the C2hiC4hi and C2hi types representing 33% and 14% of the 529 

responses, respectively. C2 consisted of 24 probes and was significantly associated 530 

with the GO term “immune response” with enrichment for this term driven by the 531 

immune-related genes CCL8, CXCL9, CXCL10, FCGR1A, FCGR1B, GBP1, GBP5, 532 

IFI44L, IFITM3, IFNG, and RSAD2. Many C2 genes carried interferon gamma (IFNG)-533 

activated sequence at their promoters, suggesting C2 was linked to IFNG response. 534 

These genes included p65 guanosine 5’ triphosphatases GBP1 and GBP5, TF STAT1, 535 

cytokines CXCL9, CXCL10 as well as IFNG itself (52). GBP1 has antiviral effects 536 

including against influenza virus (53). STAT1 together with IFNG induce Th1 response 537 

by upregulation of TBX21 (54). IFNG is known to induce CXCR3 on lymphocytes, and 538 

CXCL9 and CXCL10 chemotaxis activated T-cells expressing CXCR3 to sites of 539 

infection or inflammation. Once recruited these cells stimulate local cells with IFNG to 540 

release more chemokines to further amplify inflammation (55). Expression of CCL8, 541 

RSAD2, and WARS, also in C2, can be induced by IFNG (56-58). To our knowledge, 542 

regulations of ANKRD22 and IFI44L genes by IFNG have not been investigated, but co-543 

expression of these genes with other IFNG inducible genes indicates the possibility of 544 

induction by IFNG. C4, which together with C2 was high in SS3 was again significantly 545 
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associated with GO term “immune system response.” This cluster consisted of 116 546 

probes, and many of the genes in C4 enriched for this term were involved in antigen 547 

processing, which were also identified by biosets-analysis. These genes included CD74 548 

which is involved in assembly and trafficking of class II molecules, subunits for class II 549 

molecules HLA-DMA, -DMB, -DPA1, -DQA1, -DQB1, -DRA, -DRB1, -DRB3, and -550 

DRB4, immunoproteasome subunits PSMB8, PSMB9, and PSME1, and peptide 551 

transporter subunits TAP1 and TAP2. Genes in both C4 and the GO BP term also 552 

included IFN inducible genes and anti-viral genes such as IFI35, IFI6, IFIH1, IRF1, 553 

IRF8, OAS1, OAS2, and OAS3. Target genes of IRF1 include GBP1 for antiviral 554 

response, IL12 for Th1 response, and CASP1 for apoptosis (59). The OAS proteins 555 

produce 2’,5’-oligomers that activate RNaseL for RNA degradation, and degraded RNA 556 

can be a ligand for MDA5 and RIGI that induce IFN response during antiviral defense 557 

(60). Of note, other genes in C4 included IRF7, IRF9, and GTPases MX1 and MX2. 558 

IRF7 participates in a positive feedback mechanism during viral infection that results in 559 

enhanced expression of both IFNA and IFNB (59). MX1 and MX2 have been shown to 560 

have antiviral activities (61, 62). Overall C4 genes may promote antigen presentation 561 

and were involved in anti-viral responses. The other dominant responses to microbial 562 

antigens involved the pro-inflammatory program C3 described above and included the 563 

C0loC3hiC6hi type also encountered in T1D peptide responses (14% of responses to 564 

microbe-derived peptides) but also the C3hi and C0hiC3lo types. C0, which is described 565 

above, consists of an anti-inflammatory program; with C0hiC3lo thus corresponding 566 

tentatively to an immunopressive response type that is the converse of the C0loC3hi 567 

response encountered in response to both T1D and microbial peptides. 568 
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 569 

Altogether, the unbiased definition of T-cell responses obtained employing a systems 570 

approach yielded a surprising number of types of responses given the relatively 571 

restricted range of antigen types used in this initial study. We found it possible to further 572 

refine response types with the definition of subtler sub-clusters as illustrated in Figure 573 

6. The heatmap focuses only on samples from SS2 with response type C0loC3hiC6hi and 574 

underscores the fact that more granular patterns of expression can be found within a 575 

given response type. 576 

 577 

Figure 6 Sub-clusters can be found for a given type of response. This heatmap 578 

shows that distinct expression patterns can be found among samples constituting SS2 579 

(rows) across genes C0, C3, and C6 gene clusters using (1 - correlation) for the 580 

distance. 581 

 582 

Discussion: 583 

A compelling case can be made for the development of unbiased approaches for typing 584 

and characterizing antigenic T cell responses: Antigen-specific immunity plays a critical 585 

role in both health maintenance and pathogenesis. The successful introduction of 586 

therapies targeting checkpoints of T-cell immunity for treatment of cancer patients is 587 

only one of the most recent examples (63). Expanding the range of assays available for 588 

monitoring antigen-specific T cell responses is therefore likely to have a positive impact 589 

on development of new therapeutics and on clinical-decision making. Routine 590 

monitoring of antigen-specific immunity consists in the measurement of panels of 591 
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cellular markers and cytokines released following peptide stimulation. The availability of 592 

so called “systems approaches” offers an opportunity to employ instead assays that 593 

simultaneously measure all the constitutive elements of a system (e.g. the PBMC 594 

transcriptome). This provides investigators with a global perspective on the molecular 595 

events occurring during antigenic responses. In addition, the approach has the distinct 596 

advantage of being unbiased, since it does not rely on a priori knowledge for panel 597 

selection. It simply measures everything that can be measured for that system. 598 

 599 

The primary aim of the analysis presented here was to explore the potential utility of a 600 

systems-scale profiling readout for unbiased characterization and typing of antigen-601 

specific T-cell responses. The method described in our paper suggests that this is 602 

indeed a viable approach, however it cannot at this stage be proposed as a new 603 

classification scheme. Indeed, the extensive collection of transcriptome profiles 604 

obtained following antigenic stimulations lacks diversity, being largely biased toward 605 

T1D peptides and included only a small number of non-T1D peptide-stimulated 606 

samples. Second, since the studies that have been assembled were carried out 607 

independently from one another, with different aims and sample sources, available 608 

“classical” immune phenotyping data are neither sufficiently uniform nor detailed to 609 

compare the classification scheme that we have obtained using a systems approach 610 

with the “gold standard” classification that uses cell surface markers and cytokine 611 

profiles accepted by the immunology research community. Nevertheless, what we have 612 

learned while performing these analyses should be useful to inform the design of future 613 

studies: 614 
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  615 

The whole genome transcriptional responses measured in over 300 samples stimulated 616 

with peptide in vitro were used for the stratification of the types of T-cell responses. On 617 

the basis that co-expressed genes likely share common regulatory mechanism and 618 

function for the same aim, we used cluster analysis to identify 9 co-expressed gene 619 

clusters and 11 sample sets. Interestingly, signatures combined in different ways to give 620 

rise to distinct types of responses. Given the the restricted antigenic repertoire used, the 621 

range of response types is likely to expand once responses to an extended range of 622 

microbes or allergens are measured. 623 

 624 

To grasp the underlying biological functions of gene clusters, we examined them in 625 

detail using biosets-analysis and GO annotations (Figure 3 and Table 2). C0 genes 626 

were enriched for a lipid metabolic process that possesses the ability to suppress T-cell 627 

responses. C2 genes were enriched for immune response and were IFNG inducible. C3 628 

genes were enriched for pro-inflammatory genes. C4 genes were enriched for antigen 629 

presentation and anti-viral response. C5, C6, and C7 genes were enriched for defense 630 

response, inflammatory response, and immune response, respectively, that were both 631 

pro- and anti-inflammatory. 632 

 633 

We also examined whether co-expressed gene clusters presented meaningful 634 

functional associations. SS3 was predicted to exhibit anti-viral response because it was 635 

enriched with Flu-MP stimulated samples (at a significance level of 0.05, data not 636 

shown). Statistical test revealed that C2 and C4, which carry IFNG inducible genes and 637 
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antigen presentation and anti-viral response genes, were upregulated in SS3 (Table 4). 638 

Notably, several genes from these gene clusters, including IFNG, IRFs, MX1, OAS, and 639 

STAT1, are critical for controlling influenza virus infection (60, 64). Furthermore, Strutt 640 

et al. have shown that memory CD4+ T-cells promote anti-viral responses through 641 

production of IFNG, CXCL9, and CXCL10, and induce expression of MHC class II and 642 

CD40 molecules on CD11c+ cells (65).  These genes also belong to C2 and C4, which 643 

were induced in SS3 in our study. 644 

 645 

Sensitivity of the PBMC stimulation assay and readout was also evaluated. Organ-646 

specific autoimmune diseases such as T1D are difficult to study because the target 647 

tissues are inaccessible. Easily available blood, carrying circulating immune cells, 648 

provides a great opportunity to examine immune status of an individual. However, the 649 

numbers of antigen-specific T-cells can be exceptionally small, hindering experiments 650 

that require large number of cells (66, 67). Using microarray, we found peptide-induced 651 

response from a million PBMCs that carried only 6 of flu peptide-specific CD4+ T-cells 652 

could be detected (data not shown). Because characterizing T-cells and monitoring their 653 

activities for progressive diseases are critical for understanding disease evolution, our 654 

method can be used to provide comprehensive qualitative immune responses. It should 655 

be noted that viably frozen PBMCs may not offer optimal condition for the identification 656 

of differential patterns of transcriptional responses. This was the case for instance, in 657 

experiments 6 and 7, where the number of peptide-specific CD4+ T-cells was expected 658 

to be low and responses of patients with T1D and healthy controls could indeed not be 659 

distinguished in our transcriptional assay. However, in a limited set of experiments, we 660 
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have observed enhanced differential responses when comparing fresh vs viably frozen 661 

samples (data not shown). These preliminary data suggest that use of fresh cells would 662 

be indicated for the purpose of establishing a new T-cell classification scheme. Once a 663 

robust reference framework has been obtained it could be applied using a more 664 

sensitive targeted assay in clinical or research setting that necessitates the use of 665 

frozen samples.  666 

 667 

Translation into a more practical and cost-effective assay can be achieved by reducing 668 

signatures to sets of representative genes. These genes in turn could act as surrogates 669 

for the entire set. The abundance of these transcriptional markers could be measured 670 

using conventional PCR or meso-scale profiling platforms such as high throughput 671 

qPCR or Nanostring (68, 69). It should be noted that the selection of a panel of analytes 672 

would be informed by a data-driven rather than a knowledge-driven approach. Such a 673 

strategy has already been implemented in the development of “transcriptome 674 

fingerprinting assays” that measure changes in blood transcript abundance in vivo (70). 675 

 676 

Profiling the literature for transcriptional factors found among gene clusters identified in 677 

this study served to illustrate how systems-scale profiling can also contribute to identify 678 

potential knowledge gaps and to grow our knowledge of T-cell immunobiology (Figure 679 

4). TFs and cytokines are drivers of immune responses. Some of these factors are 680 

known to play essential roles in T-cell development and functions. However, many 681 

others have never been examined. 682 

 683 
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Taken together, our findings demonstrate that transcriptome profiling can be used as a 684 

readout for measuring antigen-specific responses following peptide stimulation of 685 

PBMCs in vitro. Furthermore, identification of co-expressed genes allowed the 686 

development of a novel unbiased framework for the definition of types of antigen-687 

specific CD4+ T cell responses. Thus, we believe the “systems approach” described 688 

herein can serve as a basis for further characterization of antigen-specific responses to 689 

expand current knowledge and to establish a foundation for a new generation of 690 

immunomonitoring assays. 691 
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