Abstract
Agent-based models are valuable in cancer research to show how different behaviors emerge from individual interactions between cells and their environment. However, calibrating such models can be difficult, especially if the parameters that govern the underlying interactions are hard to measure experimentally. Herein, we detail a new method to converge on parameter sets that fit an agent-based model to multiscale data using a model of glioblastoma as an example.
Footnotes
Research supported by the McDonnell Foundation.
Email: jill.gallaher{at}moffitt.org; alexander.anderson{at}moffitt.org.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.