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Abstract 
The alignment of bisulfite-treated DNA sequences (BS-seq reads) to a large genome involves a 
significant computational burden beyond that required to align non-bisulfite-treated reads.  In the 
analysis of BS-seq data, this can present an important performance bottleneck that can 
potentially be addressed by appropriate software-engineering and algorithmic improvements.  
One strategy is to integrate this additional programming logic into the read-alignment 
implementation in a way that the software becomes amenable to optimizations that lead to both 
higher speed and greater sensitivity than can be achieved without this integration. 

We have evaluated this approach using Arioc, a short-read aligner that uses GPU (general-
purpose graphics processing unit) hardware to accelerate computationally-expensive 
programming logic.  We integrated the BS-seq computational logic into both GPU and CPU 
code throughout the Arioc implementation.  We then carried out a read-by-read comparison of 
Arioc's reported alignments with the alignments reported by the most widely used BS-seq read 
aligners.  With simulated reads, Arioc's accuracy is equal to or better than the other read aligners 
we evaluated.  With human sequencing reads, Arioc's throughput is at least 10 times faster than 
existing BS-seq aligners across a wide range of sensitivity settings. 

The Arioc software is available at https://github.com/RWilton/Arioc.  It is released under a BSD 
open-source license. 
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INTRODUCTION 
As the use of next-generation DNA sequencing technology becomes increasingly widespread, 
the cost of sequencing a single human genome at 30-fold coverage continues to decrease toward 
$1,000 (van Nimwegen et al., 2016), and the number of large datasets generated by next-
generation sequencing is growing.  The first step in analyzing the data generated by a DNA 
sequencing run is read alignment, the process of determining the point of origin of each 
sequencing read with respect to a reference genome.  Read alignment is algorithmically complex 
and time consuming, to the point where the time spent in executing read-alignment software 
approaches that of the DNA sequencing run itself.   

To address this need, a number of attempts have been made to develop read-alignment software 
that exploits the parallel processing capability of general-purpose graphics processing units, or 
GPUs (Schatz et al., 2007).  GPUs are video display devices whose hardware and system-
software architecture can also be used for general purpose computing.  They are well suited to 
software implementations where independent computations on many thousands of data items can 
be carried out in parallel.  This was the primary motivation for the development of Arioc (Wilton 
et al., 2015), a high-throughput GPU-based read aligner. 

There are additional computational challenges in aligning DNA sequencing reads when the DNA 
has been treated with bisulfite so as to differentiate methylcytosine from cytosine residues in the 
DNA sequences.  After bisulfite-treated DNA is sequenced, the resulting BS-seq short reads 
must be aligned to a reference genome in a manner that identifies each methylcytosine 
occurrence in the context of its neighboring bases.  Arioc extracts this information from BS-seq 
reads using software techniques that provide for efficient GPU acceleration. 

Encoding of methylcytosine bases in BS-seq reads 
Bisulfite treatment of DNA converts cytosine residues to uracil while leaving methylcytosine 
residues intact; uracil is subsequently replaced by thymine during PCR amplification of the 
DNA.  Thus, in effect, thymine in the sequencer reads for bisulfite-treated DNA can represent 
either thymine or methylcytosine in the original DNA: 

In untreated DNA In sequencer reads 
A A 
Cm (methylcytosine) C 
G G 
C or T T 

The accepted technique for disambiguating the Ts in a BS-seq read sequence is to compare the 
read sequence to the corresponding reference sequence at the location where the read is properly 
aligned to the reference.  Each T in the read may then be inferred to map to the reference as 
follows: 
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In reference Inferred mapping 
A A (mismatch) 
C C 
G G (mismatch) 
T T 

This CT ambiguity introduces additional complexity into the sequence-alignment procedure in 
two significant ways: 

 Where a read aligner uses lookup tables, indexes, or other data structures to identify 
reference locations at which potential alignments may be found for a read, those data 
structures must be constructed so as to accommodate ambiguous Ts. 

 The read aligner must consider the inferred mapping of ambiguous Ts to the reference 
sequence when it computes a numeric alignment score for a mapped read. 

This ambiguity in the encoding of BS-seq reads increases the complexity of the software 
implementation of the read aligner.  It represents an additional computational burden that 
decreases the overall speed of the software in comparison with the alignment process for non-
bisulfite-treated reads.  In Arioc, the programming logic involved in handling BS-seq reads is 
integrated into the general-purpose read-alignment implementation so that the entire software 
pipeline remains highly parallel and amenable to GPU acceleration. 

METHODS 
The Arioc aligner is written in C++ and compiled for both Windows (with Microsoft Visual 
C++) and Linux (with the GNU C++ compiler).  The implementation runs in a single computer 
on a user-configurable number of concurrent CPU threads and on one or more NVidia GPUs.  
The implementation pipeline uses 38 different CUDA kernels written in C++ (nongapped and 
gapped alignment computation, application-specific list processing) and about 150 calls to 
various CUDA Thrust APIs (sort, set reduction, set difference, string compaction). 

We used two development and test computers for BS-seq experiments with Arioc, one with 
Microsoft Windows Server 2008 R2 and one with RedHat Scientific Linux release 7.3.  Each 
computer was built with dual 6-core Intel Xeon X5670 CPUs running at 2.93GHz, so 24 logical 
threads were available to applications.  There was 144GB of system RAM, of which about 96GB 
was available to applications.  Each computer was also configured with three NVidia Tesla series 
GPUs (Kepler K20c), each of which supports 5GB of on-device "global" memory and 26624 
parallel threads.  The internal expansion bus in each machine was PCIe v2. 

Throughput (query sequences aligned per second) was measured when the test computers were 
otherwise idle so that all CPU, memory, and I/O resources were available.  For experiments with 
simulated data, we used Sherman (Krueger, 2014) to generate 100 nt paired-end reads.  For 
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experiments with Illumina data, we used 100 nt paired-end Illumina HiSeq 2500 BS-seq data 
from an "Omics catalogue of lung adenocarcinoma cell lines" (Suzuki et al., 2014). 

Software implementation 
As described elsewhere (Wilton et al., 2015), Arioc is implemented as a pipeline in which 
batches of reads are processed by a sequence of discrete software modules, each of which 
operates on a separate CPU thread that is allocated for the lifetime of the module and then 
discarded.  When multiple GPUs are used, each GPU is associated with its own CPU thread.  
Modules execute concurrently on CPU threads and on the GPU. 

Arioc aligns reads by first extracting short subsequences (seeds) from each read.  It then uses 
lookup (hash) tables to identify reference-sequence locations at which each seed subsequence 
appears in the reference sequence (genome).  Specific adaptations within the Arioc 
implementation for aligning BS-seq reads are: 

 Seed lookup tables in which all Cs are represented by Ts. 

 Disambiguation of Ts in mapped read sequences by comparison with the reference 
sequence. 

 Read-alignment scoring based on disambiguated read-sequence mapping. 

 Creation of a methylation context map for each mapped read. 

For each bisulfite-treated read, Arioc converts Cs to Ts in the read sequence.  It then uses its CT-
converted lookup tables to find high-priority reference-sequence locations at which to carry out 
alignments.  It computes and scores alignments by performing a base-by-base comparison of the 
original bisulfite-treated read with the original (not CT-converted) reference sequence. 

Read alignment 
Arioc performs read alignment in two passes.  It first attempts nongapped spaced-seed alignment 
(Chen et al., 2009) in order to quickly identify read sequences that differ from the reference by 
no more than a few mismatches, without insertions or deletions.  If the candidate location was 
identified using the reverse complement of the read sequence, the alignment is done using that 
reverse complement.  Each alignment is scored by allowing a T in the read sequence to match 
either C or T in the reference. 

For reads that do not have a sufficient number of nongapped mappings, Arioc computes base-by-
base alignments at each candidate location using the Smith-Waterman algorithm (Smith and 
Waterman, 1981).  The computation is again carried out between the original reference and read 
sequences.  Again, Arioc computes alignment scores with either C or T in the reference sequence 
matching T in the read sequence.  If the candidate location was identified by seeding the reverse 
complement of the read sequence, the alignment is done using that reverse complement. 

This technique ensures that the base mapping (as reported in the SAM CIGAR field) and 
alignment score are accurately computed, regardless of the presence of methylcytosine in the 
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read sequence.  Furthermore, when aligning paired-end reads, Arioc applies the same heuristics 
for identifying high-priority candidate locations as it does when aligning non-bisulfite-treated 
reads.  For example, Arioc prioritizes pairs of candidate locations that are consistent with user-
specified orientation and fragment-length limits. 

Managing the CT ambiguity 
Like most other BS-seq aligners, Arioc deals with CT ambiguity using lookup tables (LUTs) or 
indexes in which all Cs are represented as Ts.  Arioc probes the LUTs or indexes using seeds 
(subsequences of each bisulfite-treated read) in which all Cs are likewise replaced by Ts 
(Figure 1).  Arioc also probes the LUTs using seeds derived from the CT-converted reverse 
complement of the read sequence. 

 
 

Figure 1.  Bisulfite treatment of a DNA sample that contains both cytosine and methylcytosine 
(Cm) results in sequencer reads that contain thymine in positions where the original DNA 
contains cytosine and cytosine in positions where the original DNA contains methylcytosine.  
Arioc converts all Cs to Ts in each sequencer read and probes a CT-converted lookup table for 
reference-genome locations at which to compute alignments between the original reference-
genome sequence and the read sequence.  
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AGTTC Sequencer read 
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Alignment 
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The result is a list of candidate locations at which to perform base-by-base alignment between 
the reference and read sequences.  Arioc sorts the candidate-locations list and, for each read and 
candidate location, counts the number of seeds that reference each location.  Candidates are then 
prioritized for alignment based on the number of different seeds that fall within a sufficiently 
narrow range of adjacent locations.  All of these operations are well suited to GPU acceleration. 

Identifying methylation sites 
Once Arioc has identified the set of high-scoring mappings to report, it performs a base-by-base 
comparison of each mapped read sequence with the corresponding region in the reference 
sequence (genome).  This procedure follows that implemented in Bismark (Krueger and 
Andrews, 2011):  Arioc establishes a methylation context (CpG, CHG, CHH, CHN, CN) for 
each methylcytosine by examining the two subsequent bases in the read sequence.  It reports the 
position and methylation context of each identified methylcytosine in a character-string map 
associated with the read sequence (emitted as an optional XM field in SAM-formatted alignment 
results).   

Analysis of alignment results 
We used the human reference genome release 38 (Genome Reference Consortium, 2016) for 
throughput and sensitivity experiments.  We evaluated published speed and sensitivity results for 
a number of BS-seq aligners (Supplementary Table T1) and identified three programs whose 
reported speed and sensitivity with BS-seq reads made them acceptable candidates for direct 
comparison with the Arioc implementation: 

 Bismark (CPU) 

 Segemehl (Otto et al., 2012) (CPU) 

 GPU-BSM (Manconi et al., 2014) (GPU) 

We parsed the SAM-formatted output (SAM/BAM Format Specification Working Group, 2016) 
from each aligner and aggregated the alignments reported by each aligner for each read.  We 
examined the POS (position), TLEN (paired-end fragment length), and AS (alignment score) 
fields to compare the mappings reported for each read by each aligner.  We computed local 
alignments using the following scoring parameters: match=+2; mismatch=−6; gap open=−5; gap 
space=−3, with a threshold alignment score of one half of the maximum possible alignment 
score. 

We used simulated (Sherman) reads to evaluate sensitivity for both paired-end and unpaired 
reads.  For each aligner, we used high "effort" parameters so as to favor sensitivity over 
throughput.  We assumed that a read was correctly mapped when, after accounting for soft 
clipping, one or both of its ends mapped within 40 nt of the mapping generated by Sherman.  
(Supplementary Table T4 explains our choice of a 40 nt threshold.)  To illustrate sensitivity and 
specificity, we plotted the cumulative number of correctly-mapped and incorrectly-mapped reads 
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reported by each aligner, stratified by the MAPQ score (Li, Ruan, and Durbin, 2008) for each 
read. 

We used the Illumina BS-seq lung adenocarcinoma data to measure throughput using both 
paired-end and unpaired reads.  For this analysis, we recorded throughput across a range of 
parameters chosen so as to trade speed for sensitivity.  We defined "sensitivity" as the percentage 
of reads reported as mapped by each aligner with alignment score (and, for paired-end reads, 
TLEN) within configured limits. 

Prior to computing alignments, the GPU-aware aligners spend a brief period of execution time 
initializing static data structures in GPU device memory.  We excluded this startup time from 
throughput calculations for these aligners. 

RESULTS 
Each of the read aligners we tested is able to map tens of millions of reads to the human genome 
in an acceptably short period of time.  Each was capable of mapping simulated reads with high 
accuracy.  With sequencer reads, Arioc demonstrated up to 10 times higher throughput across a 
wide range of sensitivity settings. 

Evaluation with simulated reads 
With simulated Illumina read data, Arioc was able to map paired-end reads to their correct origin 
in the reference genome with sensitivity and specificity as good as or better than each of the 
other aligners to which we compared it (Figure 2 and Supplementary Figures S1-S8).  Arioc 
maintains a very high ratio of correct to incorrect mappings until mappings with relatively low 
MAPQ scores are considered. 
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Figure 2.  Total correctly mapped versus incorrectly mapped reads, plotted for decreasing 
MAPQ, for 100,000 simulated 100nt paired-end Illumina reads (200,000 mates). 

 

Evaluation with sequencer-generated reads 
We used the lung adenocarcinoma data to evaluate speed (Figure 3).  Across a wide range of 
sensitivity settings, Arioc's speed when executed across three GPUs is over 10 times that of the 
CPU-based aligners to which we compared it, and over five times that of the GPU-based aligner 
to which we compared it.  Furthermore, Arioc's throughput scales almost linearly when two or 
more GPUs are available (Supplementary Figure S10). 
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Figure 3.  Speed (reads aligned per second) versus sensitivity (percentage of paired-end reads 
mapped) for three BS-seq aligners.   Data for 4 million 100 nt paired-end BS-seq reads (Suzuki 
et al., 2014).  Workstation hardware:  12 CPU cores (24 threads of execution), one NVidia K20c 
GPU. 

 

DISCUSSION 
The Arioc implementation demonstrates that high throughput can be achieved by GPU 
acceleration without losing sensitivity.  Furthermore, by sacrificing throughput, Arioc can be 
"pushed" to achieve greater sensitivity. 

Lookup tables and seeds for BS-seq short-read alignment 
Arioc uses lookup tables to identify the set of reference-sequence locations that correspond to 
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is, the lookup table is a simple hash table whose bins each contain the reference-sequence 
locations for one seed hash value. 

Choosing an appropriate seed length is important to achieving greater processing speed.  As seed 
length is increased the average hash bin size decreases, so the read aligner performs alignments 
at fewer reference-sequence locations and overall throughput improves.  Furthermore, longer 
seeds are intrinsically more specific for highly-similar reference-sequence locations.  As seeds 
become longer, however, they are increasingly likely to span mismatches, insertions, and 
deletions within read sequences and thus to fail to identify the best reference-sequence locations 
at which to perform alignments. 

With non-CT-converted short reads, a seed length of 20 nt provides a reasonable balance 
between hash efficiency and sensitivity; for this reason, 20 nt is the default seed length in both 
Bowtie 2 and Arioc.  With CT-converted DNA, however, a seed length of about 25 nt may be 
used in order to obtain a similar balance. 

 

 

Figure 4.  Lookup table bin sizes for CT-converted and non-CT-converted human reference 
genome (GRCh38) k-mers. 
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The effect of seed length on sensitivity and speed can be inferred from the distribution of hash 
bin sizes for different seed lengths (Figure 4).  With CT-converted seeds, we observe a flatter 
and broader distribution of bin sizes in comparison with the corresponding distribution for non-
CT-converted seeds of equal length.  This is reasonable, since CT-converted seeds ("3-letter 
alphabet") contain less information than non-CT-converted seeds ("4-letter alphabet").  In this 
way, one can see that the distribution of hash bin sizes for 25 nt CT-converted seeds 
approximates the distribution for 20 nt non-CT-converted seeds. 

Performance characteristics 
In practice, the tradeoff between sensitivity and speed characterizes the performance of a read 
aligner.  By adjusting runtime parameters (in particular, seed width, number of seeds examined 
per read, and maximum number of reference locations per seed), Arioc can be "tuned" to report 
additional mappings at the expense of speed.  The shape of the speed-versus-sensitivity curves 
we observed illustrates that Arioc, like all read aligners, achieves increased sensitivity by 
spending additional computing time exploring a proportionally larger number of reference-
sequence locations. 

For read sequences that differ only minimally from the reference genome, Arioc uses search-
space heuristics that cause it to find high-scoring mappings rapidly within a relatively small 
search space. For reads with multiple differences from the reference genome, Arioc examines 
more seed locations and computes more dynamic programming problems before it can report a 
satisfactory mapping.  The consequent decrease in overall speed can be seen with "hard-to-align" 
sequencer reads in which a higher proportion of mappings have multiple differences from the 
reference (compare Supplementary Figure S9 with Figure 3). 

Furthermore, Arioc (like any short-read aligner) explores a significantly larger search space 
when aligning BS-seq reads than it does when aligning non-bisulfite-treated reads.  This has a 
tangible impact on throughput, which is typically about 75% of that observed for non-CT-
converted reads. 

Implementation complexity and inaccuracies 
The programming logic for handling bisulfite-treated reads is integrated into Arioc's software 
pipeline.  This implementation avoids the software complexity and potential inaccuracies 
associated with BS-seq aligners that do not use this approach to the computation of BS-seq read 
alignments. 

Inaccuracies due to wrapper implementation 
The fundamental challenge in BS-seq alignment is to resolve the ambiguous representation of 
Cm (methylcytosine) in the original DNA as T in the sequencer reads.  The straightforward 
approach used by a number of BS-seq aligners, including Bismark and GPU-BSM, is to compute 
alignments by comparing read sequences with a CT-converted reference sequence (genome).  
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This strategy is advantageous in that it can exploit an existing, well-optimized short-read aligner 
such as Bowtie 2 (Langmead and Salzberg, 2012) or SOAP3-DP (Luo et al., 2013) to carry out 
alignments.  The BS-seq aligner implementation thus becomes a "wrapper" around an existing 
short-read aligner. 

Although the benefit of such software reuse is immediately apparent, the design and 
implementation of such a wrapper implementation is complex.  For example, to map a read 
sequence to the reverse complement of a reference genome, Bowtie 2 maps the reverse 
complement of the read sequence to the (forward) reference sequence.  This technique obviously 
cannot work with a CT-converted reference sequence; to find reverse-complement mappings, the 
wrapper implementation must invoke Bowtie 2 a second time, using a GA-converted reverse-
complement read sequence and a GA-converted index.  In effect, the wrapper implementation 
aggregates mappings for each BS-seq read from two independent invocations of the short-read 
aligner.  For reads in a non-directional library (in which each read sequence is represented by 
both its forward and reverse complement sequence), four such invocations are required (Krueger 
and Andrews, 2011). 

Although the overhead of launching multiple read-aligner instances can be amortized to some 
extent by concurrent execution, the use of a general-purpose short-read aligner to compute 
alignments with CT- and GA-converted reads requires additional post-alignment processing 
before alignment results can be reported.  The complex string-manipulation operations involved 
in post-alignment processing represent a performance bottleneck, especially for a wrapper 
implementation written in an interpreted language such as Python. 

Post-alignment processing also introduces new sources of potential inaccuracy.  In particular, the 
mappings produced by the wrapped short-read aligner cannot resolve the ambiguity inherent in 
CT conversion of the read sequences.  Doing so requires the wrapper to identify occurrences of 
Cm through base-by-base comparison of each mapping with the reference sequence, re-scoring 
the alignment, and recomputing the CIGAR, MD, and MAPQ output for each reported read. 

The wrapper implementation must also incorporate a method for choosing the "best" mapping(s) 
among those reported by different read-aligner instances.  The usual technique is to report a 
mapping only when it is the unique, highest-scoring mapping for a read.  This heuristic 
seemingly ensures that the implementation reports the "best" mapping (or no mapping at all) for 
each read, but it introduces reporting inaccuracies:  the heuristic reports "best" mappings that 
have alignment scores that are only incrementally higher than other mapping(s) with the second-
best alignment score, and filters out reads with equally high-scoring mappings in multiple 
regions of interest in the reference genome.  The result is to blunt the overall sensitivity and 
specificity of the implementation.  The magnitude of the problem is difficult to quantify but may 
be inferred from the shape and position of the ROC-like plots in Figure 2 and Supplementary 
Figures S1-S8. 
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Inaccuracies due to CT ambiguity 
A further inaccuracy stems from the asymmetry of the CT ambiguity.  When the read aligner 
identifies mappings using CT-converted sequences, it maps and scores C in the reference against 
T in the read sequence (indicating a bisulfite-converted, unmethylated cytosine) in the same way 
as T in the reference against C in the read sequence (indicating Cm in the read and a true 
mismatch at that base position).  This situation is unusual, but when it occurs, the mappings for a 
read may be incorrectly scored and reported (Xi et al., 2012).  It is possible, of course, to re-
examine every mapping to detect this inaccuracy, but such additional post-processing would be 
costly in terms of overall throughput.  

In any event, experience with BS-seq alignment has shown that these inaccuracies do not 
represent insurmountable obstacles to the use of a wrapper implementation.  Nevertheless, these 
problems can be avoided within the read aligner by computing alignments directly between the 
original bisulfite-treated read sequences and the original reference sequence.  Arioc encapsulates 
this logic within the software modules that compute and score read alignments, so the additional 
code required to align BS-seq reads executes on GPU threads and concurrent CPU threads. 

How fast is Arioc? 
Our results imply that Arioc's BS-seq implementation is an order of magnitude faster than the 
most widely used non-GPU aligners.  Of course, this estimate depends on GPU and CPU clock 
speeds, the number of available GPU and CPU threads, whether the aligner is parameterized to 
favor speed or sensitivity, and (for large data sets) disk I/O bandwidth. 

Significantly, the speed results we report here are conservative because we want them to be 
directly comparable with results we previously reported for general short-read alignment.  We 
therefore used the same Nvidia K20c devices (Nvidia, 2012) for both evaluations; with newer 
GPUs with higher internal clock speeds and more on-device memory, throughput is increased by 
an additional 40% for equivalent software parameterization settings. 

Overall, Arioc provides a tangible increase in throughput in comparison with CPU-based BS-seq 
aligner implementations while maintaining high sensitivity and avoiding the most common 
potential inaccuracies associated with BS-seq read-alignment software.  Arioc's speed also 
increases appropriately when additional CPU threads and multiple GPU devices are available.  
These characteristics make Arioc a reasonable choice for aligning large datasets of bisulfite-
treated short reads. 
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Supplementary Results 
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Tables 

Table T1 Candidates for performance comparisons. 
Table T2 Software versions. 
Table T3 Software configuration parameters. 
Table T4 Distance between simulated and reported mapping positions. 

Results for simulated unpaired reads 

Figure S1 Correctly mapped versus incorrectly mapped reads, for 100,000 simulated 100nt unpaired Illumina 
reads.  Empirical error rate 0%, directional. 

Figure S2 Correctly mapped versus incorrectly mapped reads, for 100,000 simulated 100nt unpaired Illumina 
reads.  Empirical error rate 0%, non-directional. 

Figure S3 Correctly mapped versus incorrectly mapped reads, for 100,000 simulated 100nt unpaired Illumina 
reads.  Empirical error rate 5%, directional. 

Figure S4 Correctly mapped versus incorrectly mapped reads, for 100,000 simulated 100nt unpaired Illumina 
reads.  Empirical error rate 5%, non-directional. 

Results for simulated paired-end reads 

Figure S5 Correctly mapped versus incorrectly mapped reads, for 100,000 simulated 100nt paired-end Illumina 
reads (200,000 mates).  Empirical error rate 0%, directional. 

Figure S6 Correctly mapped versus incorrectly mapped reads, for 100,000 simulated 100nt paired-end Illumina 
reads (200,000 mates).  Empirical error rate 0%, non-directional. 

Figure S7 Correctly mapped versus incorrectly mapped reads, for 100,000 simulated 100nt paired-end Illumina 
reads (200,000 mates).  Empirical error rate 5%, directional. 

Figure S8 Correctly mapped versus incorrectly mapped reads, for 100,000 simulated 100nt paired-end Illumina 
reads (200,000 mates).  Empirical error rate 5%, non-directional. 

Results for BS-seq reads 

Figure S9 Speed (reads aligned per second) versus sensitivity (percentage of paired-end reads mapped) for three 
BS-seq aligners, for 4 million 100 nt paired-end reads with a high proportion of low-scoring 
alignments. 

Figure 
S10 

Throughput (reads aligned per second) using one, two, and three GPUs (NVidia K20c) in a single 
computer for the data shown in Figure 3. 
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Bismark Kruger and Andrews 
2011 

CPU ~2600 reads/sec 

    
GPU-BSM Manconi et al. 2014 GPU ~13000 reads/sec; does not align paired-end 

reads; no longer supported 
HPG-Methyl Olanda et al. 2017 CPU does not align paired-end reads; does not 

compute MAPQ 
ERNE 2 Prezza et al. 2016 CPU ~1550 reads/sec 
BS-Seeker2 Guo et al. 2013 CPU ~1100 reads/sec 
Segemehl Otto et al. 2012 CPU ~4500 reads/sec; does not compute MAPQ; 

does not do Smith-Waterman alignment; 
does not report methylation contexts 

Table T1. Candidates for performance comparisons.  We considered the above CPU-based and GPU-
based read aligners for detailed speed and sensitivity comparisons.  Speed estimates are derived from 
published data. 

We carried out complete performance comparisons only with aligners that can handle both unpaired and 
paired-end mapping and that are capable of computing alignments on a large number (hundreds of 
millions) of short (100nt-250nt) reads on a single computer. 

We excluded aligners whose claimed or reported speed was not at least that of Bismark, or for which 
practical considerations (lack of support for all SAM/BAM fields, Smith-Waterman scoring, and 
methylation context) precluded a direct comparison using both simulated and sequencer-generated 
datasets. 

References for Table T1. 

Guo W et al.  (2013)  BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data.  BMC Genomics 14:774.  DOI: 
10.1186/1471-2164-14-774. 

Kruger F and Andrews SR.  (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications.  
Bioinformatics 27:11. DOI:10.1093/bioinformatics/btr167. 

Manconi A et al. (2014) GPU-BSM: A GPU-based tool to map bisulfite-treated reads.  PLOS One 9:5: e97277. 
DOI:10.1371/journal.pone.0097277. 

Olanda R et al. (2017) A new parallel pipeline for DNA methylation analysis of long reads datasets. BMC Bioinformatics 18:161. 
doi 10.1186/s12859-017-1574-3. 

Otto C, Stadler PF, Hoffmann S.  (2012) Fast and sensitive mapping of bisulfite-treated sequencing data.  Bioinformatics 28:13, 
1698-1704.  DOI:10.1093/bioinformatics/bts254. 

Prezza N et al. (2016) Fast, accurate, and lightweight analysis of BS-treated reads with ERNE 2.  BMC Bioinformatics 
17(Suppl 4):69.  DOI 10.1186/s12859-016-0910-3. 
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Arioc 1.21 
Bismark 0.18.1 
GPU-BSM 2.7.3 
Segemehl 0.2.0 (revision 418) 

Table T2. Software versions.  All binaries executed using Red Hat Scientific Linux release 7.3 and 
NVidia CUDA v7.5. 
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 High throughput High sensitivity 

Arioc <gapped maxJ="3" seedDepth="3" /> <gapped maxJ="200" seedDepth="3" /> 

Bismark --p 6 --p 6 

Segemehl -D 0 -t 16 -D 1 -t 16 

Table T3. Software configuration parameters.  Non-default parameters for the two extreme data points in 
Figure 3 (speed versus sensitivity).  Arioc and Bismark were configured to perform local alignment using 
25nt seeds.  For Arioc, maxJ specifies the maximum size of a "bucket" in the seed-and-extend hash table; 
seedDepth limits the number of seed iterations. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/175729doi: bioRxiv preprint 

https://doi.org/10.1101/175729
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 20 
 

unpaired paired-end 
D 0% 5% 0% 5% 
0 96789 48701 98643 50516 
1 1 1012 98940 52546 
2 0 1554 87 2572 
3 0 2828 82 4430 
4 0 5717 47 8716 
5 5 7063 250 13232 
6 1 7871 397 15636 
7 2 5889 340 14560 
8 0 4953 234 11165 
9 0 3712 224 9231 

10 to 19 3 6669 344 18020 
20 to 29 4 26 44 69 
30 to 39 12 25 43 39 
40 to 49 2 7 44 34 
50 to 59 3 15 39 21 
60 to 69 2 4 26 24 
70 to 79 3 6 26 22 
80 to 89 1 5 20 15 
90 to 99 3 8 24 13 

100+ 11487 20321 31767 26733 

 

Table T4. Number of reads with distance D between simulated and mapped positions reported by Arioc 
for 100,000 simulated 100nt unpaired and 100,000 paired-end Illumina reads, at 0% and 5% error rate. 

For each mapping reported by each aligner, we used the range of reference-sequence positions reported 
by Sherman (in the FASTQ defline associated with each read) to compute a distance metric D that 
represented the smallest distance from each of the endpoints of the mapping to each of the endpoints of 
the range. 

Based on the above data, we chose a distance of 40 as a threshold for determining whether a simulated 
read was correctly mapped. 
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Figure S1.  Total correctly mapped versus incorrectly mapped reads, plotted for decreasing MAPQ, for 
100,000 simulated 100nt unpaired Illumina reads. 

Empirical error rate: 0% (Sherman parameters: -cr 50.0) 
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Figure S2.  Total correctly mapped versus incorrectly mapped reads, plotted for decreasing MAPQ, for 
100,000 simulated 100nt unpaired Illumina reads. 

Empirical error rate 0% (Sherman parameters: -cr 50.0 --non_directional). 
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Figure S3.  Total correctly mapped versus incorrectly mapped reads, plotted for decreasing MAPQ, for 
100,000 simulated 100nt unpaired Illumina reads. 

Empirical error rate 5% (Sherman parameters: -cr 50.0 -e 5.0). 
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Figure S4.  Total correctly mapped versus incorrectly mapped reads, plotted for decreasing MAPQ, for 
100,000 simulated 100nt unpaired Illumina reads. 

Empirical error rate 5% (Sherman parameters: -cr 50.0 -e 5.0 --non_directional). 
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Figure S5.  Total correctly mapped versus incorrectly mapped reads, plotted for decreasing MAPQ, for 
100,000 simulated 100nt paired-end Illumina reads (200,000 mates). 

Empirical error rate: 0% (Sherman parameters: -pe -cr 50.0) 

 (Same as Figure ???.) 
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Figure S6.  Total correctly mapped versus incorrectly mapped reads, plotted for decreasing MAPQ, for 
100,000 simulated 100nt paired-end Illumina reads (200,000 mates). 

Empirical error rate 0% (Sherman parameters: -pe -cr 50.0 --non_directional). 
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Figure S7.  Total correctly mapped versus incorrectly mapped reads, plotted for decreasing MAPQ, for 
100,000 simulated 100nt paired-end Illumina reads (200,000 mates). 

Empirical error rate 5% (Sherman parameters: -pe -cr 50.0 -e 5.0). 
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Figure S8.  Total correctly mapped versus incorrectly mapped reads, plotted for decreasing MAPQ, for 
100,000 simulated 100nt paired-end Illumina reads (200,000 mates). 

Empirical error rate 5% (Sherman parameters: -pe -cr 50.0 -e 5.0 --non_directional). 
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Figure S9.  Speed (reads aligned per second) versus sensitivity (percentage of paired-end reads 
mapped) for three BS-seq aligners.  Data for 4 million 100 nt paired-end reads (unpublished 
data) with a high proportion of low-scoring alignments.  Workstation hardware:  same as 
Figure 3. 
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Figure S10.  Throughput (reads aligned per second) using one, two, and three GPUs (NVidia 
K20c) in a single computer for the data shown in Figure 3. 
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