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Abstract 1 

While deleterious de novo mutations (DNMs) in coding region conferring risk in 2 

neuropsychiatric disorders have been revealed by next-generation sequencing, the 3 

role of DNMs involved in post-transcriptional regulation in pathogenesis of these 4 

disorders remains to be elucidated. Here, we identified 1,736 post-transcriptionally 5 

impaired DNMs (piDNMs), and prioritized 1,482 candidate genes in four 6 

neuropsychiatric disorders from 7,748 families. Our results revealed higher 7 

prevalence of piDNMs in the probands than in controls (P = 8.19×10-17), and 8 

piDNM-harboring genes were enriched for epigenetic modifications and neuronal 9 

or synaptic functions. Moreover, we identified 86 piDNM-containing genes 10 

forming convergent co-expression modules and intensive protein-protein 11 

interactions in at least two neuropsychiatric disorders. These cross-disorder genes 12 

carrying piDNMs could form interaction network centered on RNA binding 13 

proteins, suggesting a shared post-transcriptional etiology underlying these 14 

disorders. Our findings illustrate the significant contribution of piDNMs to four 15 

neuropsychiatric disorders, and lay emphasis on combining functional and 16 

network-based evidences to identify regulatory causes of genetic disorders. 17 

 18 
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Introduction 1 

Next-generation sequencing, which allows genome-wide detection of rare and de 2 

novo mutations (DNMs), is transforming the pace of genetics of human disease by 3 

identifying protein-coding mutations that confer risk 1. Various computational 4 

methods have been developed to predict the effects of amino acid substitutions on 5 

protein function, and to classify corresponding mutations as deleterious or benign, 6 

based on evolutionary conservation or protein structural constraints 2, 3. Beside the 7 

effect on protein structure and function, genetic mutations involve in 8 

transcriptional processes 4, 5 via direct or indirect effects on histone modifications 6, 9 

and enhancers 7 to affect pathogenesis of diseases. However, the majorities of 10 

mutation are located in non-coding regions, and some of them have no relationship 11 

with transcriptional regulation, but can lead to an observable phenotype or disease 12 

8, suggesting the existence of another layer of regulatory effect of mutations. It has 13 

been revealed that single nucleotide variants can alter RNA structure, known as 14 

RiboSNitches, and depletion of RiboSNitches result in the alteration of specific 15 

RNA shapes at thousands of sites, including 3'untranslated region, binding sites of 16 

RBPs and microRNAs 9. Thus, the mutations can impair post-transcriptional 17 

processes through disrupting the binding of micRNAs and RNA binding proteins 18 

(RBPs) 10, 11, resulting in various human diseases. For example, a variant in the 3' 19 

untranslated region of FMR1 decreases neuronal activity-dependent translation of 20 

FMRP by disrupting the binding of HuR, leading to developmental delay in 21 

patients 10. Some attempts have been undertaken to better understand the 22 

interactions between mutations and binding of noncoding RNAs or RBPs. 23 

Maticzka et al. developed a machine learning-based approach to predict protein 24 

binding sites on RNA from crosslinking immunoprecipitation (CLIP) data using 25 

both RNA structure and sequence features 12. Fukunaga et al. developed the CapR 26 
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algorithm based on the probability of secondary structure of an RNA for RBP 1 

binding 13. However, identifying the network between single nucleotide mutations 2 

and post-transcriptional regulation remains challenging because of the complexity 3 

of the underlying interaction networks. Our and other’s methods named RBP-Var 14 4 

and POSTAR15 represent initial efforts to systematically annotate post-5 

transcriptional regulatory maps, which hold great promise for exploring the effect 6 

of single nucleotide mutations on post-transcriptional regulation in human diseases. 7 

      Increasing prevalence of neuropsychiatric disorders in children with unclear 8 

etiology has been reported during the past three decades 16. Whole-exome 9 

sequencing of pediatric neuropsychiatric disorders uncovered the critical role of 10 

DNMs in the pathogenesis of these disorders 1. However, previous studies of these 11 

disorders have focused on mutations in coding region 1, cis-regulation 17, 18, 12 

epigenome 19, transcriptome 20, 21, and proteome 22, very few is known about the 13 

effect of DNMs on post-transcriptional regulation. Recently, more attentions have 14 

been paid on DNMs in regulatory elements and non-coding regions in 15 

neurodevelopmental disorders as it is indispensable to combine functional and 16 

evolutionary evidence to identify regulatory causes of genetic disorders 23, 24. Most 17 

recently, a deep-learning-based framework illuminates involvement of noncoding 18 

DNMs in synaptic transmission and neuronal development in autism spectrum 19 

disorder 25. Therefore, it is imperative to identify the post-transcriptionally 20 

regulation-disrupting DNMs related to pathology and clinical treatment of 21 

neuropsychiatric disorders. 22 

      To test whether post-transcriptionally regulation-disrupting DNMs contribute 23 

to the genetic architecture of psychiatric disorders, we collected whole exome 24 

sequencing data from 7,748 core families (5,677 families were parent-probands 25 

trios and 2,071 families were normal trios) and curated 9,519 de novo mutations 26 
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(6,996 DNMs in probands and 2,523 DNMs in controls) from four kinds of 1 

neuropsychiatric disorders, including autism spectrum disorder (ASD), epileptic 2 

encephalopathy (EE), intellectual disability (ID), schizophrenia (SCZ), as well as 3 

unaffected control subjects (Supplementary Table 1). By employing our newly 4 

updated workflow RBP-Var2 (Figure 1A, Supplementary Table 2) from our 5 

previously developed RBP-Var 14, we investigated the potential impact of these de 6 

novo mutations involved in post-transcriptional regulation in these four 7 

neuropsychiatric disorders based on experimental data of genome-wide association 8 

studies (GWAS), expression quantitative trait locus (eQTL), CLIP-seq derived 9 

RBP binding sites, RNA editing and miRNA targets, and found that a subset of de 10 

novo mutations could be classified as post-transcriptionally impaired DNMs 11 

(piDNMs). These piDNMs showed significant enrichment in cases after correcting 12 

for multiple testing, and genes hit by these piDNMs were further analyzed for their 13 

properties and relative contribution to the etiology of neuropsychiatric disorders. 14 

Results 15 

The frequency of piDNMs is much higher in probands than that in 16 

controls 17 

To test whether specific subsets of regulatory DNMs contribute to the genetic 18 

architecture of neuropsychiatric disorders, we devised and updated the method, 19 

RBP-Var2 (http://www.rbp-var.biols.ac.cn/), based on experimental data of GWAS, 20 

eQTL, CLIP-seq derived RBP binding sites, RNA editing and miRNA targets. 21 

Subsequently, we used our updated workflow to identify functional piDNMs from 22 

5,677 trios with 6,996 DNMs across four neuropsychiatric disorders as well as 23 

2,071 unaffected controls with 2,523 DNMs (Supplementary Table 1). We 24 

determined DNMs with 1/2 category score predicted by RBP-Var2 as piDNMs 25 
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when considering their impact on RNA secondary structure, the binding of 1 

miRNAs and RBPs, and identified 1,736 piDNMs in probands (Supplementary 2 

Table 3), of which 17,7,7,6 and 1,699 were located in 3' UTRs, 5' UTRs, ncRNA 3 

exons, splicing sites and exons, respectively. In detail, RBP-Var2 identified 1,262 4 

piDNMs in ASD, 281 piDNMs in SCZ, 101 piDNMs in EE, 92 piDNMs in ID and 5 

354 piDNMs in healthy controls (Supplementary Table 3, 4). Interestingly, the 6 

frequency of piDNMs in the four neuropsychiatric disorders were significantly 7 

over-represented compared with those in controls (OR = 1.62, P = 8.19×10-17, 8 

Table 1). We also observed that probands groups have much more abundant 9 

piDNMs compared with controls in four kinds of neuropsychiatric disorders 10 

(Figure 1B; Table 1). Dramatically, we found that synonymous piDNMs were 11 

significantly enriched in probands in contrast to those in controls (P=9.73×10-4). 12 

While in the data set of original DNMs before the evaluated by RBP-Var2, the 13 

enrichment of the synonymous DNMs was not observed in cases, which is 14 

consistent with previous study 1. To eliminate the effects of loss-of-function (LoF) 15 

mutations, we filtered out those LoF mutations from all piDNMs and found the 16 

non-LoF piDNMs also exhibited higher frequency in probands (P=2.36×10-14) 17 

(Table 1, Figure 1C; Supplementary Figure 1). Our analysis found a subset of 18 

DNMs, namely piDNMs, are enriched in probands and may contribute to the 19 

pathogenesis of these disorders although the rate of all de novo synonymous 20 

variants, which as a category, does not contribute significantly to risk for 21 

neurodevelopmental disorders. 22 

The piDNMs outperforms protein-disruptive DNMs in risk 23 

prediction 24 
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To investigate the accuracy and specificity of DNMs in different regulatory 1 

processes, we compared our tool with other three variant effect prediction tools, 2 

including SIFT25, PolyPhen2 (PPH2)26 and RegulomeDB26. We found that the 3 

frequency of the stop gain DNMs is higher in cases than in controls determined by 4 

SIFT (P = 4.83×10-2), and higher frequency of nonsynonymous DNMs was 5 

identified by PPH2 (P = 1.82×10-2) (Figure 2A, B). However, RegulomeDB 6 

determined no significant higher frequency of functional DNMs in any functional 7 

category (Figure 2C) in cases versus controls. In contrast, RBP-Var2 could 8 

determine much more functional DNMs in the categories of frameshift (P = 9 

1.38×10-3), nonsynonymous (P = 8.79×10-15), stopgain (P = 6.42×10-4) and 10 

synonymous (P = 7.30×10-4) (Figure 2D). Then, we performed receiver operating 11 

characteristic (ROC) analysis to systemically evaluate the sensitivity and 12 

specificity of these four prediction methods. We found that area under curve (AUC) 13 

value of SIFT, PPH2, RBP-Var2 and RegulomeDB are 78.27%, 76.57%, 82.89% 14 

and 50.77%, respectively (Supplementary Figure 2), indicating that SIFT, PPH2, 15 

and RBP-Var2 is more sensitive and specific than that of RegulomeDB with P 16 

value 1.63×10-10, 2.40×10-8 and 2.51×10-60, respectively. In addition, the AUC 17 

value of RBP-Var2 is higher than that of SIFT and PPH2 with P value 0.049 and 18 

0.019, respectively. Intriguingly, RBP-Var2 could detect an additional 928 piDNMs 19 

covering 665 genes that were regarded as benign DNMs by other three methods, 20 

accounting for 25.27% of total 3,672 deleterious DNMs detected by all four tools 21 

(Supplementary Figure 3A, B). Especially, the non-LoF piDNMs detected by RBP-22 

Var2 alone account for 52.8% of non-LoF piDNMs, while only 26.2% of non-LoF 23 

piDNMs were classified to be deleterious predicted by both SIFT and Polyphen2 24 

(Supplementary Figure 3C). The top three enriched gene ontology of these 665 25 

genes were intracellular signal transduction (P = 7.41×10-6), organelle organization 26 

(P = 8.90×10-6) and mitotic cell cycle (P = 2.06×10-5) (Supplementary Figure 3D; 27 
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Supplementary Table 5), suggesting dysregulation involved in cell cycle and the 1 

impaired signal transduction may contribute to diverse neural damage, thereby 2 

trigger neurodevelopmental disorders27, 28. Therefore, the piDNMs detected by 3 

RBP-Var2 are distinct, and may play significant roles in the post-transcriptional 4 

processes of the development of neuropsychiatric disorders. 5 

Genes hit by piDNMs are shared across four 6 

neuropsychiatric disorders 7 

Firslty, we identified 13 recurrent piDNMs, including seven piDNMs in ASD and 8 

six piDNMs in ID (Figure 3A). Secondly, we identified 149 genes carrying at least 9 

two piDNMs in all disorders, including 128 genes in ASD, three genes in EE, ten 10 

genes in ID and eight in SCZ. Among these 149 genes, we identified 21 high risk 11 

genes with P value < 1×10-2 derived from our previously published TADA program 12 

(Transmission And De novo Association) 29 (Figure 3B). As our previous study 13 

using the NPdenovo database demonstrated that DNMs predicted as deleterious in 14 

the protein level are shared by four neuropsychiatric disorders30, we then wondered 15 

whether there were common piDNMs among four neuropsychiatric disorders. By 16 

comparing the genes harboring piDNMs across four disorders, we found 86 genes 17 

significantly shared by at least two disorders rather than random overlaps 18 

(permutation test, P <1.00×10-5 based on random resampling, Figure 3C, D). 19 

Similar results have been observed for the overlap between the cross-disorder 20 

genes of any two/three disorders and the genes in control, as well as for the 21 

overlapping genes between each disorder and the control (Supplementary Figure 22 

4B-O). In addition, the numbers of shared genes for any pairwise comparison or 23 

any three disorders are all significantly higher than randomly expected except for 24 

the comparison of EE versus SCZ (P=0.4964) (Supplementary Figure5). Our 25 
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observation revealed the existence of common genes harboring piDNMs among 1 

these four neuropsychiatric disorders. 2 

Genes harboring piDNMs are involved in epigenetic 3 

modification and synaptic functions 4 

The phenomenon of shared genes among the four neuropsychiatric disorders 5 

suggest there may exist common molecular mechanisms underlying their 6 

pathogenesis. Thus, we performed functional enrichment analysis for these shared 7 

genes, and found they were remarkably enriched in biological processes in 8 

chromatin modification like histone methylation, functional classifications of 9 

neuromuscular control and protein localization to synapse (Supplementary Table 5, 10 

Supplementary Figure 6). These epigenetic regulating genes are composed of 11 

CHD5, DOT1L, JARID2, MECP2, PHF19, PRDM4 and TNRC18 (Supplementary 12 

Table 6). Moreover, most of these epigenetic modification genes, have been 13 

previously linked with neuropsychiatric disorders 31-35. Interestingly, shared genes 14 

in enrichment analyses have intensive linkages among these significant pathways 15 

as some of piDNM-containing genes could play roles in more than one of these 16 

pathways (Supplementary Figure 7).  17 

Next, to investigate the biological pathways involved in each group of 18 

disorder-specific genes with piDNMs, we carried out functional enrichment 19 

analysis with terms in biological process (Supplementary Table 7-9). The top three 20 

enriched categories of ASD-specific genes were “macromolecule modification” (P 21 

= 2.90×10-13), “organelle organization” (P = 1.22×10-11) and “cell cycle” (P = 22 

1.17×10-9). With respect to genes specific to SCZ, it is actually no surprise that the 23 

significantly enriched categories are related to protein localization and calcium 24 

transport, which have been revealed to be involved in the pathophysiology of 25 
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schizophrenia 36. Because of the limited number of genes, only two GO terms were 1 

enriched for EE-specific genes, which were “N-glycan processing” (P = 3.65×10-5) 2 

and “protein deglycosylation” (P = 2.17×10-4), while no terms were statistically 3 

enriched for ID-specific genes. Our observation that each group of disorder-4 

specific genes being overrepresented into different biological pathways, suggests 5 

that piDNMs may also play a role in the distinct phenotypes of the four psychiatric 6 

disorders although the explicit underlying mechanisms need to be further explored. 7 

Co-expression modules are convergent for cross-disorder 8 

genes hit by piDNMs 9 

Co-expression of genes can be used to explore the common and distinct molecular 10 

mechanisms in neuropsychiatric disorders 37. Thus, we performed weighted gene 11 

co-expression network analysis (WGCNA) 38 for the 86 cross-disorder piDNMs-12 

containing genes based on gene expression in 16 human brain structures across 31 13 

developmental stages from BrainSpan developmental transcriptome (n=524)39. The 14 

results of WGCNA deciphered two gene modules with distinct spatiotemporal 15 

expression patterns (Figure 4A, B; Supplementary Figure 8). The turquoise module 16 

(n=55 genes) was characterized by high expression during early fetal development 17 

(8-24 postconceptional weeks) in the majority of brain structures (Figure 4C). 18 

Whereas, the blue module (n=22 genes) showed low expression in early fetal 19 

development (8-38 postconceptional weeks) in the majority of brain structures 20 

(Figure 4D). It is also crucial to clarify gene expression of these genes in early 21 

development stages since altered epigenetic regulation in early development has 22 

been shown to be associated with neurodevelopmental disorders 40. We found most 23 

of these 86 genes are highly expressed and may be required for the normal 24 

development of human embryo (Figure 4E, Supplementary Table 10). Our 25 
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observation indicates that these cross-disorder piDNMs-containing genes may play 1 

important roles in not only early brain developmental but also early embryonic 2 

development. 3 

Protein-protein interactions are intensive for cross-disorder 4 

piDNM-containing proteins 5 

The co-expression results indicate that the proteins coded by the 86 cross-disorder 6 

genes may have intensive protein-protein interactions (PPIs). To identify common 7 

biological processes that potentially contribute to disease pathogenesis, we 8 

investigated protein-protein interactions within these 86 cross-disorder piDNM-9 

containing genes. Our results revealed that 56 out of 86 (65.12%) cross-disorder 10 

genes represent an interconnected network on the level of direct/indirect protein-11 

protein interaction relationships (Figure 5A; Supplementary Table 11). 12 

Furthermore, we determined several crucial hub piDNM-containing genes in the 13 

protein-protein interaction network, such as NOTCH1, MTOR, RYR2, and GNAS 14 

(Figure 5A), which may control common biological processes among these four 15 

neuropsychiatric disorders. Besides, these 86 cross-disorder proteins are indeed 16 

enriched in nervous system phenotypes, including abnormal synaptic transmission, 17 

abnormal nervous system development, abnormal neuron morphology and 18 

abnormal brain morphology, and behavior/neurological phenotype such as 19 

abnormal motor coordination/balance (P <0.05, Supplementary Figure 9A). 20 

Similarly, these 56 genes in interaction network are enriched in nervous system 21 

phenotype including abnormal nervous system development and abnormal brain 22 

morphology (P <0.05, Supplementary Figure 9B). By investigating the expression 23 

of these interacting genes in the human cortex of 12 ASD patients and 13 normal 24 

donators from public datasets of GSE64018 41 and GSE76852 42, we identified 45 25 
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(80.35%) of these PPI genes were significantly differentially expressed between 1 

ASD patients and normal controls (Student's t-test, q <0.05, Figure 5B). And 40 2 

(71.42%) of these PPI genes were up-regulated in ASD patients while three (5.35%) 3 

genes were down-regulated in ASD patients when compared with normal controls 4 

(Supplementary Table 12), indicating that the majority of these PPI genes were 5 

abnormally expressed in ASD patients compared with normal controls. 6 

Regulatory networks between RBPs and targeting genes are 7 

potentially disrupted by piDNMs 8 

Dysregulation or mutations of RBPs can cause a range of developmental and 9 

neurological diseases 43, 44. Meanwhile, mutations in RNA targets of RBPs, which 10 

could disturb the interactions between RBPs and their mRNA targets, and affect 11 

mRNA metabolism and protein homeostasis in neurons during the progression of 12 

neuropathological disorders 45-47. Hence, we constructed a regulatory network 13 

between piDNMs and RBPs based on predicted binding sites of RBPs to 14 

investigate the genetic perturbations of mRNA-RBP interactions in the four 15 

disorders (Figure 6). We identified several crucial RBP hubs that may contribute to 16 

the pathogenesis of the four neuropsychiatric disorders, including EIF4A3, FMR1, 17 

PTBP1, AGO1/2, ELAVL1, IGF2BP1/3 and WDR33. Genes with piDNMs in 18 

different disorders could be regulated by the same RBP hub while one candidate 19 

gene may be regulated by different RBP hubs (Figure 6). In addition, all of these 20 

RBP hubs were highly expressed in early fetal development stages (8-37 21 

postconceptional weeks) based on BrainSpan developmental transcriptome 22 

(Supplementary Figure 10), suggesting their essential roles in the early stages of 23 

brain development.  24 

Discussion 25 
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In contrasting with the recognized role of LoF DNMs in conferring risk for 1 

neuropsychiatric disorders, the effect of DNMs on post-transcriptional regulation 2 

in pathogenesis of these disorders remains unknown. In this study, we 3 

systematically analyzed the damaging effect of DNMs on post-transcriptional 4 

regulation in four neuropsychiatric disorders, and observed higher prevalence of 5 

piDNMs in probands than that in controls in four kinds of neuropsychiatric 6 

disorders. 7 

       To date, it has been a challenge to estimate the functions of synonymous and 8 

UTRs mutations though such mutations have been widely acknowledged to alter 9 

protein expression, conformation and function 48. We applied RBP-Var2 algorithm 10 

to annotate and interpret de novo variants in subjects with four neuropsychiatric 11 

disorders based on their impact to RNA secondary structure, the binding of 12 

miRNAs and RBPs. In comparison with accuracy of other prediction algorithms 13 

such as SIFT, PPH2 or RegulomeDB, RBP-Var2 has highest accuracy (AUC: 14 

82.89%) to differentiate affected from the control subjects. Our RBP-Var2 tool 15 

identified 399 synonymous DNMs and 25 UTR’s DNMs, which were extremely 16 

harmful in post-transcriptional regulation. Consistent with previous study 49, 17 

synonymous damaging DNMs were significantly prominent in probands compared 18 

with that in controls. Meanwhile, de novo insertions and deletions (InDels), 19 

especially frameshift patterns are taken for granted to be deleterious. Indeed, de 20 

novo frameshift InDels are more frequent in neuropsychiatric disorders compared 21 

to non-frameshift InDels 50, which were demonstrated by predictions of RBP-Var2 22 

but not SIFT or PPH2. Therefore, the updated version of RBP-Var2 will held great 23 

promise for exploring the effect of mutations on post-transcriptional regulation, 24 

and deciphering multiple biological layers of deleteriousness may improve the 25 

accuracy to predict disease related genetic variations. 26 
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Most interestingly, we found that some epigenetic pathways are enriched 1 

among these piDNM-containing genes, such as those that regulation of gene 2 

expression and histone modification. This finding is consistent with a previous 3 

report in which more than 68% of ASD cases shared a common acetylome 4 

aberrations at >5,000 cis-regulatory regions in prefrontal and temporal cortex 51. 5 

Such common "epimutations" may be induced by either perturbations of epigenetic 6 

regulations, including post-transcriptional regulations due to mutations of 7 

substrates or the disruptions of epigenetic modifications resulting from the 8 

mutation of epigenetic genes. Our observations revealed the association of 9 

alterations of "epimutations" with dysregulation of post-transcription. This 10 

hypothesis is consistent with the observation that several recurrent piDNM-11 

containing genes are non-epigenetic genes, including SYNGAP1, ADNP, POGZ 12 

and ANK2. Moreover, we discovered several recurrent epigenetic genes which 13 

contain piDNMs, including CHD8, EP300, KMT2A, KMT2C, KDM3B, JARID2 14 

and MECP2, and they may play important roles in the genome-wide aberrations of 15 

epigenetic landscapes through disruption of the post-transcriptional regulation. 16 

Furthermore, WGCNA analysis revealed that major hubs of the co-expression 17 

network for these 86 piDNM-containing genes were histone modifiers by using 18 

BrainSpan developmental transcriptome. These data indicate that piDNM-19 

containing genes are co-expressed with genes frequently involved in epigenetic 20 

regulation of common cellular and biological process in neuropsychiatric disorders. 21 

Importantly, these 86 piDNM-containing genes harbor intensive protein-protein 22 

interactions in physics, and shared regulatory networks between piDNMs and 23 

RBPs in four neuropsychiatric disorders. We identified several RBP hubs of 24 

regulatory networks between piDNM-containing genes and RBP proteins, 25 

including EIF4A3, FMRP, PTBP1, AGO1/2, ELAVL1, IGF2BP1/3, WDR33 and 26 

FXR2. Taking FMRP for example, it is a well-known pathogenic gene of Fragile X 27 
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syndrome which co-occurs with autism in many cases and its targets are highly 1 

enriched for DNMs in ASD 52. Our results demonstrated that, like the mutations on 2 

RBP hubs, mutations of RBP-targeting genes through disrupting their interactions 3 

with multiple RBPs may synergistically result in pathogenesis of multiple 4 

neuropsychiatric disorders.  5 

      Alterations in expression or mutations in either RBPs or their binding sites in 6 

target transcripts have been reported to cause several human diseases such as 7 

muscular atrophies, neurological disorders and cancer 53. Although we identified 8 

1,736 piDNMs associated with neuropsychiatric disorders, the cause and explicit 9 

effects of these piDNMs in these disorders need to be further validated and 10 

explored. In this study, our method sheds light on evaluation of post-transcriptional 11 

impact of genetic mutations especially for synonymous mutations. Additionally, as 12 

small molecules can be rapidly designed to selectively target RNAs and affect 13 

RNA-RBP interactions 54, our study provides new insights into RNA-based 14 

therapeutic strategies for the treatment of neuropsychiatric disorders. 15 
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Materials and methods 1 

Data collection and filtration 2 

For this study, 7,748 trios or quartets were recruited from previous whole exome 3 

sequencing (WES) studies (ref), comprising 5,677 parent-probands trios associated 4 

with four neuropsychiatric disorders and 2,071 control trios (Supplementary Table 5 

1). After removing the overlap of DNMs between probands and controls, a total of 6 

6,996 DNMs in probands and 2,523 DNMs in controls were identified for 7 

subsequent analysis.  8 

RBP-Var2 algorithm 9 

To better interpret the catalog of DNMs, we developed a new heuristic scoring 10 

system according to the functional confidence of variants based on experimental 11 

data of GWAS, eQTL, CLIP-seq derived RBP binding sites, RNA editing and 12 

miRNA targets, and machine learning algorithms. The scoring system represents 13 

with increasing confidence if a variant lies in more functional elements 14. For 14 

example, we consider variants that are known eQTLs as significant and label them 15 

as category 1. Within category 1, subcategories indicate additional annotations 16 

ranging from the most informational variants (1a, variant may change the motif for 17 

RBP binding) to the least informational variants (1e, variant only has a motif for 18 

RBP binding). In mathematical algorithms, we employed LS-GKM 55 (10-mer) and 19 

deltaSVM 56 to predict the impact of DNMs on the binding of specific RBPs by 20 

calculating the delta SVM scores. Moreover, for single-base mutations, we 21 

employed the RNAsnp 57 with default parameters to estimate the mutation effects 22 

on local RNA secondary structure and calculated the empirical P values based on 23 

the base pair probabilities of the wild-type and mutant RNA sequences. For 24 

insertions and deletions, we evaluated the effects of DNMs on RNA secondary 25 
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structure using the minimal free energy generated by RNAfold 58 to calculate 1 

empirical P values based on cumulative probabilities of the Poisson distribution. 2 

Only the functional DNM produces >5 change in gkm-SVM scores for the effect of 3 

RBP binding, and P-value < 0.1 or free energy change >1 for the effect of DNMs 4 

on RNA secondary structure change were determined to be a piDNM. Only DNMs 5 

occurred in exonic or UTR regions were included in our analysis. 6 

Identification of piDNMs and comparison with variants predicted by 7 

other methods 8 

To determine the likelihood of a functional mutation in post-transcriptional 9 

regulation for all SNVs and InDels, our newly updated program RBP-Var2 was 10 

utilized to assign an exclusive rank for each mutation and only those mutations 11 

categorized into rank 1 or 2 were considered as piDNMs. In comparison with those 12 

mutations involved in the disruption of gene function or transcriptional regulation, 13 

several programs such as SIFT, PolyPhen2 and RegulomeDB were used to analyze 14 

the same dataset of DNMs as the input for RBP-Var2. We only kept the mutations 15 

qualified as “damaging” from the result of SIFT and “possibly damaging” or 16 

“probably damaging” from PolyPhen2. In the case of RegulomeDB, mutations 17 

labeled as category 1 and 2 were retained. Next, we classified the type of mutation 18 

(frameshift, nonframeshift, nonsynonymous, synonymous, splicing and stop) and 19 

located regions (UTR3, UTR5, exonic, ncRNA exonic and splicing) to determine 20 

the distribution of piDNMs, genetic variants and other regulatory variants. The 21 

number of variants in cases versus controls was illustrated by bar chart (***: P< 22 

0.001, **: 0.001 <P< 0.01, *: 0.01 <P< 0.05, binomial test). 23 

TADA analysis of DNMs in four disorders 24 
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Our previously published TADA program 29, which predicts risk genes accurately 1 

on the basis of allele frequencies, gene-specific penetrance, and mutation rate, was 2 

used to calculate the P value for the likelihood of each gene contributing to the all 3 

four disorders with default parameters. 4 

ROC curves and specificity/sensitivity estimation 5 

We screened a positive (non-neutral) test set of likely casual mutations in 6 

Mendelian disease from the ClinVar database (v20170130). From a total of 7 

237,308 mutations in ClinVar database, we picked up 145 exonic mutations 8 

presented in our curated DNMs in probands. Our negative (neutral) set of likely 9 

non-casual variants was built from DNMs of unaffected controls in four 10 

neuropsychiatric disorders. To exclude rare deleterious DNMs, we selected only 11 

DNMs in controls with a minor allele frequency of at least 0.01 in 1000 genome 12 

(1000g2014oct), and obtained a set of 921 exonic variants. Then, we employed R 13 

package pROC to analyze and compare ROC curves. 14 

Permutation analysis for overlaps of genes with piDNMs 15 

In order to evaluate the overlap of genes among any two set of genes with piDNMs, 16 

we shuffled the intersections of genes and repeated this procedure 100,000 times. 17 

During each permutation, we randomly selected the same number of genes as the 18 

actual situation from the all RefSeq genes for each disorder taking account of gene-19 

level de novo mutation rate, then P values were calculated as the proportion of 20 

permutations during which the simulated number of overlap was greater than or 21 

equal to the actual observed number. 22 

Functional enrichment analysis 23 

A gene harboring piDNMs was selected into our candidate gene set to conduct 24 

functional enrichment analysis if it occurred in at least two of the four disorders. 25 
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GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) 1 

pathway enrichments analyses were implemented by Cytoscape (version 3.4.0) 2 

plugin ClueGO (version 2.3.0) using genome-wide coding genes as background 3 

and P values calculated by hypergeometric test were corrected to be q values by 4 

Benjamini–Hochberg procedure for reducing the false discovery rate resulted from 5 

multiple hypothesis testing. 6 

Co-expression and spatiotemporal specificity 7 

Normalized gene-expression of 16 human brain regions were determined by RNA 8 

sequencing and obtained from database BrainSpan (http://www.brainspan.org). We 9 

extracted expression for 77 out of 86 extreme damaging cross-disorder genes and 10 

employed R-package WGCNA (weighted correlation network analysis) with a 11 

power of five to cluster the spatiotemporal-expression patterns and prenatal 12 

laminar-expression profiles. The expression level for each gene and development 13 

stage (only stages with expression data for all 16 structures were selected, n = 14) 14 

was presented across all brain regions. 15 

Protein-protein interaction network of cross-disorder genes 16 

Protein-protein interactions data of Homo sapiens was collected from the STRING 17 

(v10.5) database with score over 0.8. For the PPI network of all cross-disorder 18 

genes, we only retain the proteins with at least two links. Those nodes with degree 19 

over 30 in the network were considered as hubs. Cytoscape (version3.4.0) was 20 

used to analyze and visualize protein-protein interaction networks. 21 

Overrepresentation of mouse-mutant phenotypes was evaluated by the web tool 22 

MamPhea for the genes in the PPI network and for all cross-disorder genes 23 

containing piDNMs. The rest of genome was used as background and multiple test 24 

adjustment for P values was done by Benjamini-Hochberg method. 25 
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Gene-RBP interaction network 1 

Cytoscape (version 3.4.0) was utilized for visualization of the associations between 2 

genes harboring piDNMs in the four neuropsychiatric disorders and the 3 

corresponding regulatory RBPs. 4 

The available data resources 5 

To make our findings easily accessible to the research community, we have 6 

developed RBP-Var2 platform (http://www.rbp-var.biols.ac.cn/) for storage and 7 

retrieval of piDNMs, candidate genes, and for exploring the genetic etiology of 8 

neuropsychiatric disorders in post-transcriptional regulation. The expression and 9 

epigenetic profiles of genes related to regulatory de novo mutations and early 10 

embryonic development have been deposited in our previously published database 11 

EpiDenovo (http://www.epidenovo.biols.ac.cn/) 40. 12 

URLs 13 

RBP-Var2, http://www.rbp-var.biols.ac.cn/; NPdenovo, 14 

http://www.wzgenomics.cn/NPdenovo/index.php; EpiDenovo: 15 

http://www.epidenovo.biols.ac.cn/; BioGRID, https://thebiogrid.org/;  16 

MamPhea , http://evol.nhri.org.tw/phenome/index.jsp?platform; BrainSpan, 17 

http://www.brainspan.org; ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/; 18 

1000Genomes, http://www.internationalgenome.org/; WGCNA, 19 

https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/;  20 

esyN, http://www.esyn.org/; Cytoscape, http://www.cytoscape.org/; TADA, 21 

http://wpicr.wpic.pitt.edu/WPICCompGen/TADA/TADA_homepage.htm; ClueGO, 22 

http://apps.cytoscape.org/apps/cluego; pROC, http://web.expasy.org/pROC/; R, 23 

https://www.r-project.org/; Perl, https://www.perl.org/. 24 
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Figure legends 18 

Figure 1. The abundance of piDNMs in different disease categories. (A) Schematic 19 

overview of the RBP-Var2 algorithm. (B) The bar plot corresponds to the odds 20 

ratios indicating the enrichment of piDNMs in patients from each of the four 21 

neuropsychiatric disorders. (C) The relative amount of LoF and non-LoF piDNMs 22 

in five neuropsychiatric disorders. 23 
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Figure 2. Performance comparison of the ability to distinguish severe DNMs 1 

between RBP-Var2 and three other tools. (A) Different kinds of DNMs affecting 2 

protein function predicted by SIFT. The Y-axis corresponds to the proportion of 3 

each kind of mutations within the total number of damaging DNMs predicted by 4 

SIFT. (B) Different kinds of DNMs that affect protein function predicted by 5 

PolyPhen2. The Y-axis corresponds to the proportion of each kind of mutations 6 

within the total number of damaging DNMs predicted by PolyPhen2. (C) The 7 

DNMs, predicted as functional elements involved in transcriptional regulation by 8 

RegulomeDB, are categorized into different functional types. The Y-axis 9 

corresponds to the proportion of each kind of mutations within the total number of 10 

damaging DNMs predicted by RegulomeDB. (D) The DNMs classified as either 11 

level 1 or 2 (piDNMs) are categorized into different functional types. The Y-axis 12 

corresponds to the proportion of each kind of mutations within the total number of 13 

damaging piDNMs. The P values were measured by two-sided binomial test. 14 

DNMs predicted in both cases and controls are excluded in the comparison and the 15 

DNMs labeled as “unknown” are not demonstrated in the bar plot.  16 

Figure 3. Genes with piDNMs involved in four neuropsychiatric disorders. (A) 17 

Scatter plot of eight genes harboring recurrent piDNMs among 1,736 piDNMs. 18 

The Y-axis corresponds to the -log10(P value) calculated by TADA. The X-axis 19 

stands for the TADA output of -log10(mutation rate). (B) Scatter plot of 21 20 

recurrent genes with p < 0.01 by TADA. The Y-axis corresponds to the -log10(P 21 

value) calculated by TADA. The X-axis stands for the TADA output of -22 

log10(mutation rate). (C) Venn diagram representing the distribution of candidate 23 

genes shared among the four neuropsychiatric disorders. (D) Permutation test for 24 

the randomness of the overlap between the 86 cross-disorder genes. We shuffled 25 

the genes of each disorder and calculated the shared genes between the four 26 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/175844doi: bioRxiv preprint 

https://doi.org/10.1101/175844
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

disorders, and repeated this procedure for 100,000 times to get the null distribution. 1 

The vertical dash line indicates the observed value. 2 

Figure 4. Weighted co-expression analysis of 86 shared genes. (A) Heatmap 3 

visualization of the co-expression network of 86 shared genes. The more saturated 4 

color corresponds to the more highly expressed genes. (B) Hierarchical clustering 5 

dendrogram of the two color-coded gene modules displayed in (A). (C, D) The two 6 

spatiotemporal expression patterns (Turquoise module and Blue module) for 7 

network genes based on RNA-seq data from BrainSpan, and they correspond to 17 8 

developmental stages across 16 subregions: A1C, primary auditory cortex; AMY, 9 

amygdaloid complex; CBC, cerebellar cortex; DFC, dorsolateral prefrontal cortex; 10 

HIP, hippocampus; IPC, posteroinferior parietal cortex; ITC, inferolateral temporal 11 

cortex; M1C, primary motor cortex; MD, mediodorsal nucleus of thalamus; MFC, 12 

anterior cingulate cortex; OFC, orbital frontal cortex; STC, posterior superior 13 

temporal cortex; STR, striatum; S1C, primary somatosensory cortex; V1C, primary 14 

visual cortex; VFC, ventrolateral prefrontal cortex. 15 

Figure 5. Protein-protein interaction network of the cross-disorder genes. The 16 

network of interactions between pairs of the proteins encoded by the 56 out of 86 17 

cross-disorder genes. 18 

Figure 6. Interaction network of RBPs and genes with piDNMs. Different roles of 19 

the nodes are reflected by distinguishable geometric shapes and colors. The 20 

magenta vertical arrow stands for the RNA binding proteins. Disks with different 21 

colors represent the genes with piDNMs involved in different kinds of disorders.  22 

Supplementary Figure 1. Excess of piDNMs in probands. The odds ratio of 23 

synonymous DNMs and piDNMs were analyzed. The dominance of filtered 24 

piDNMs that not contained LoF mutations were also displayed. 25 
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Supplementary Figure 2. ROC curve showing the performance of the predictions 1 

of SIFT, PPH2, RBP-Var2 and RegulomeDB. 2 

Supplementary Figure 3. Overlap of DNMs identified by different tools. (A) 3 

Venn diagram depicting the overlap between the DNMs predicted by SIFT, PPH2, 4 

RBP-Var2 and RegulomeDB. (B) Venn diagram depicting the overlap between the 5 

genes predicted by SIFT, PPH2, RBP-Var2 and RegulomeDB. (C) The pie chart 6 

shows the distribution of all non-LoF piDNMs. The non-LoF piDNMs detected by 7 

RBP-Var2 alone account for 52.8% of all non-LoF piDNMs (pink), while the non-8 

LoF deleterious DNMs identified by both SIFT and Polyphen2 take up 26.2% of 9 

all (light purple). (D)  Pathway enrichment analysis of the 665 genes unique to the 10 

prediction of RBP-Var2. 11 

Supplementary Figure 4. Permutation test of the randomness of the overlap of 12 

different set of disease genes with control. (A-K) Permutation test for the validity 13 

of the gene overlap between the cross-disorder genes and the control. (L-O) 14 

Permutation for the overlap of genes from each disorder with control. We shuffled 15 

the genes of each disorder and calculated the shared genes between each pair, and 16 

repeated this procedure for 100,000 times to get the null distribution. The vertical 17 

dash line stands for the observed value. 18 

Supplementary Figure 5. Test of the significance of the number of cross-disorder 19 

genes involved in the four neuropsychiatric disorders. (A-J) Permutation test for 20 

the validity of the gene overlap among/between every combination of three/two 21 

disorders.  22 

Supplementary Figure 6. Pie chart of the pathway enrichment analysis for the 86 23 

cross-disorder genes. 24 
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Supplementary Figure 7. Interaction network of the gene enrichment analysis for 1 

the 86 cross-disorder genes.  2 

Supplementary Figure 8. Relationship between Co-expression modules. (A) 3 

MDS plot of genes in turquoise module and blue module. (B) Relationship 4 

between module eigengenes. (C) Clustering tree based of the module eigengenes. 5 

(D) heatmap of adjacency Eigengene. 6 

Supplementary Figure 9. Mammalian phenotype enrichment analysis of selected 7 

genes. (A) Mammalian phenotype enrichment of 86 cross-disorder piDNMs genes. 8 

(B) Mammalian phenotype enrichment of 56 genes in interaction network. 9 

Supplementary Figure 10. Heat map of the expression of the crucial RBP hub 10 

genes during the early fetal development stages. 11 

  12 
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