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Abstract

While deleterious de novo mutations (DNMs) in coding region conferring risk in
neuropsychiatric disorders have been revealed by next-generation sequencing, the
role of DNMs involved in post-transcriptional regulation in pathogenesis of these
disorders remains to be elucidated. Here, we identified 1,736 post-transcriptionally
impaired DNMs (piDNMs), and prioritized 1,482 candidate genes in four
neuropsychiatric disorders from 7,748 families. Our results revealed higher
prevalence of piDNMs in the probands than in controls (P = 8.19x10™*"), and
piDNM-harboring genes were enriched for epigenetic modifications and neuronal
or synaptic functions. Moreover, we identified 86 piDNM-containing genes
forming convergent co-expression modules and intensive protein-protein
interactions in at least two neuropsychiatric disorders. These cross-disorder genes
carrying piDNMs could form interaction network centered on RNA binding
proteins, suggesting a shared post-transcriptional etiology underlying these
disorders. Our findings illustrate the significant contribution of piDNMs to four
neuropsychiatric disorders, and lay emphasis on combining functional and

network-based evidences to identify regulatory causes of genetic disorders.


https://doi.org/10.1101/175844
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

bioRxiv preprint doi: https://doi.org/10.1101/175844; this version posted November 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

| ntroduction

Next-generation sequencing, which alows genome-wide detection of rare and de
novo mutations (DNMs), is transforming the pace of genetics of human disease by
identifying protein-coding mutations that confer risk *. Various computational
methods have been developed to predict the effects of amino acid substitutions on
protein function, and to classify corresponding mutations as deleterious or benign,
based on evolutionary conservation or protein structural constraints #°. Beside the
effect on protein structure and function, genetic mutations involve in
transcriptional processes *° viadirect or indirect effects on histone modifications ®,
and enhancers ’ to affect pathogenesis of diseases. However, the majorities of
mutation are located in non-coding regions, and some of them have no relationship
with transcriptional regulation, but can lead to an observable phenotype or disease
® suggesting the existence of another layer of regulatory effect of mutations. It has
been revealed that single nucleotide variants can ater RNA structure, known as
RiboSNitches, and depletion of RiboSNitches result in the alteration of specific
RNA shapes at thousands of sites, including 3'untranslated region, binding sites of
RBPs and microRNAs °. Thus, the mutations can impair post-transcriptional
processes through disrupting the binding of micRNAs and RNA binding proteins
(RBPs) ™, resulting in various human diseases. For example, a variant in the 3
untranslated region of FMR1 decreases neuronal activity-dependent translation of
FMRP by disrupting the binding of HuR, leading to developmental delay in

patients

. Some attempts have been undertaken to better understand the
Interactions between mutations and binding of noncoding RNAs or RBPs.
Maticzka et al. developed a machine learning-based approach to predict protein
binding sites on RNA from crosslinking immunoprecipitation (CLIP) data using

both RNA structure and sequence features *. Fukunaga et al. developed the CapR
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algorithm based on the probability of secondary structure of an RNA for RBP
binding **. However, identifying the network between single nucleotide mutations
and post-transcriptional regulation remains challenging because of the complexity
of the underlying interaction networks. Our and other’s methods named RBP-Var
and POSTAR™ represent initial efforts to systematically annotate post-
transcriptional regulatory maps, which hold great promise for exploring the effect

of single nucleotide mutations on post-transcriptional regulation in human diseases.

Increasing prevalence of neuropsychiatric disorders in children with unclear
etiology has been reported during the past three decades '°. Whole-exome
sequencing of pediatric neuropsychiatric disorders uncovered the critical role of

DNMs in the pathogenesis of these disorders *. However, previous studies of these

1 17, 18
1)

disorders have focused on mutations in coding region -, cis-regulation

2021 and proteome %, very few is known about the

epigenome *°, transcriptome
effect of DNMs on post-transcriptional regulation. Recently, more attentions have
been paid on DNMs in regulatory elements and non-coding regions in
neurodevelopmental disorders as it is indispensable to combine functional and
evolutionary evidence to identify regulatory causes of genetic disorders * **. Most
recently, a deep-learning-based framework illuminates involvement of noncoding
DNMs in synaptic transmission and neuronal development in autism spectrum

disorder %

. Therefore, it is imperative to identify the post-transcriptionally
regulation-disrupting DNMs related to pathology and clinica treatment of

neuropsychiatric disorders.

To test whether post-transcriptionally regulation-disrupting DNMs contribute
to the genetic architecture of psychiatric disorders, we collected whole exome
sequencing data from 7,748 core families (5,677 families were parent-probands

trios and 2,071 families were normal trios) and curated 9,519 de novo mutations


https://doi.org/10.1101/175844
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

bioRxiv preprint doi: https://doi.org/10.1101/175844; this version posted November 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

(6,996 DNMs in probands and 2,523 DNMs in controls) from four kinds of
neuropsychiatric disorders, including autism spectrum disorder (ASD), epileptic
encephaopathy (EE), intellectual disability (ID), schizophrenia (SCZ), as well as
unaffected control subjects (Supplementary Table 1). By employing our newly
updated workflow RBP-Var2 (Figure 1A, Supplementary Table 2) from our
previously developed RBP-Var **, we investigated the potential impact of these de
novo mutations involved in post-transcriptional regulation in these four
neuropsychiatric disorders based on experimental data of genome-wide association
studies (GWAS), expression quantitative trait locus (eQTL), CLIP-seq derived
RBP binding sites, RNA editing and miRNA targets, and found that a subset of de
novo mutations could be classified as post-transcriptionally impaired DNMs
(piDNMs). These piDNMs showed significant enrichment in cases after correcting
for multiple testing, and genes hit by these piDNMs were further analyzed for their

properties and relative contribution to the etiology of neuropsychiatric disorders.
Results

The frequency of piDNMs is much higher in probands than that in

controls

To test whether specific subsets of regulatory DNMs contribute to the genetic
architecture of neuropsychiatric disorders, we devised and updated the method,
RBP-Var2 (http://www.rbp-var.biols.ac.cn/), based on experimental data of GWAS,
eQTL, CLIP-seq derived RBP binding sites, RNA editing and miRNA targets.
Subsequently, we used our updated workflow to identify functional piDNMs from

5,677 trios with 6,996 DNMs across four neuropsychiatric disorders as well as
2,071 unaffected controls with 2,523 DNMs (Supplementary Table 1). We
determined DNMs with 1/2 category score predicted by RBP-Var2 as piDNMs
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when considering their impact on RNA secondary structure, the binding of
MiIRNAs and RBPs, and identified 1,736 piDNMs in probands (Supplementary
Table 3), of which 17,7,7,6 and 1,699 were located in 3' UTRs, 5' UTRs, ncRNA
exons, splicing sites and exons, respectively. In detail, RBP-Var2 identified 1,262
piDNMsin ASD, 281 piDNMsin SCZ, 101 piDNMsin EE, 92 piDNMs in ID and
354 piDNMs in healthy controls (Supplementary Table 3, 4). Interestingly, the
frequency of piDNMs in the four neuropsychiatric disorders were significantly
over-represented compared with those in controls (OR = 1.62, P = 8.19x10™",
Table 1). We also observed that probands groups have much more abundant
piDNMs compared with controls in four kinds of neuropsychiatric disorders
(Figure 1B; Table 1). Dramatically, we found that synonymous piDNMs were
significantly enriched in probands in contrast to those in controls (P=9.73x107).
While in the data set of original DNMs before the evaluated by RBP-Var2, the
enrichment of the synonymous DNMs was not observed in cases, which is
consistent with previous study . To eliminate the effects of loss-of-function (LoF)
mutations, we filtered out those LoF mutations from all piDNMs and found the
non-LoF piDNMs also exhibited higher frequency in probands (P=2.36x10™")
(Table 1, Figure 1C; Supplementary Figure 1). Our analysis found a subset of
DNMs, namely piDNMs, are enriched in probands and may contribute to the
pathogenesis of these disorders although the rate of all de novo synonymous
variants, which as a category, does not contribute significantly to risk for

neurodevel opmental disorders.

The piDNMs outperforms protein-disruptive DNMs in risk
prediction
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To investigate the accuracy and specificity of DNMs in different regulatory
processes, we compared our tool with other three variant effect prediction tools,
including SIFT®, PolyPhen2 (PPH2)*® and RegulomeDB?. We found that the
frequency of the stop gain DNMs is higher in cases than in controls determined by
SIFT (P = 4.83x107), and higher frequency of nonsynonymous DNMs was
identified by PPH2 (P = 1.82x10) (Figure 2A, B). However, RegulomeDB
determined no significant higher frequency of functional DNMs in any functional
category (Figure 2C) in cases versus controls. In contrast, RBP-Var2 could
determine much more functional DNMs in the categories of frameshift (P =
1.38x10°), nonsynonymous (P = 8.79x10™), stopgain (P = 6.42x10™%) and
synonymous (P = 7.30x10*) (Figure 2D). Then, we performed receiver operating
characteristic (ROC) anaysis to systemically evaluate the sensitivity and
specificity of these four prediction methods. We found that area under curve (AUC)
value of SIFT, PPH2, RBP-Var2 and RegulomeDB are 78.27%, 76.57%, 82.89%
and 50.77%, respectively (Supplementary Figure 2), indicating that SIFT, PPH2,
and RBP-Var2 is more sensitive and specific than that of RegulomeDB with P
value 1.63x10™°, 2.40x10° and 2.51x10%, respectively. In addition, the AUC
value of RBP-Var2 is higher than that of SIFT and PPH2 with P value 0.049 and
0.019, respectively. Intriguingly, RBP-Var2 could detect an additional 928 piDNMs
covering 665 genes that were regarded as benign DNMs by other three methods,
accounting for 25.27% of total 3,672 deleterious DNMs detected by all four tools
(Supplementary Figure 3A, B). Especially, the non-LoF piDNMs detected by RBP-
Var2 aone account for 52.8% of non-LoF piDNMs, while only 26.2% of non-LoF
piDNMs were classified to be deleterious predicted by both SIFT and Polyphen2
(Supplementary Figure 3C). The top three enriched gene ontology of these 665
genes were intracellular signal transduction (P = 7.41x10°), organelle organization
(P = 8.90x10°®) and mitetic cell cycle (P = 2.06x10™) (Supplementary Figure 3D;

7
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Supplementary Table 5), suggesting dysregulation involved in cell cycle and the
Impaired signal transduction may contribute to diverse neural damage, thereby
trigger neurodevelopmental disorders”” . Therefore, the piDNMs detected by
RBP-Var2 are distinct, and may play significant roles in the post-transcriptional

processes of the development of neuropsychiatric disorders.

Genes hit by piDNMs are shared across four

neuropsychiatric disorders

Firdty, we identified 13 recurrent piDNMs, including seven piDNMsin ASD and
six piDNMs in ID (Figure 3A). Secondly, we identified 149 genes carrying at |east
two piDNMs in al disorders, including 128 genes in ASD, three genes in EE, ten
genesin ID and eight in SCZ. Among these 149 genes, we identified 21 high risk
genes with P value < 1x10?derived from our previously published TADA program
(Transmission And De novo Association) #° (Figure 3B). As our previous study
using the NPdenovo database demonstrated that DNMs predicted as deleterious in
the protein level are shared by four neuropsychiatric disorders®, we then wondered
whether there were common piDNMs among four neuropsychiatric disorders. By
comparing the genes harboring piDNMs across four disorders, we found 86 genes
significantly shared by at least two disorders rather than random overlaps
(permutation test, P <1.00x10° based on random resampling, Figure 3C, D).
Similar results have been observed for the overlap between the cross-disorder
genes of any two/three disorders and the genes in control, as well as for the
overlapping genes between each disorder and the control (Supplementary Figure
4B-0). In addition, the numbers of shared genes for any pairwise comparison or
any three disorders are al significantly higher than randomly expected except for
the comparison of EE versus SCZ (P=0.4964) (Supplementary Figure5). Our
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observation revealed the existence of common genes harboring piDNMs among

these four neuropsychiatric disorders.

Genes harboring piDNMs are involved in epigenetic

modification and synaptic functions

The phenomenon of shared genes among the four neuropsychiatric disorders
suggest there may exist common molecular mechanisms underlying their
pathogenesis. Thus, we performed functional enrichment analysis for these shared
genes, and found they were remarkably enriched in biological processes in
chromatin modification like histone methylation, functiona classifications of
neuromuscular control and protein localization to synapse (Supplementary Table 5,
Supplementary Figure 6). These epigenetic regulating genes are composed of
CHDS5, DOTIL, JARID2, MECP2, PHF19, PRDM4 and TNRC18 (Supplementary
Table 6). Moreover, most of these epigenetic modification genes, have been
previoudly linked with neuropsychiatric disorders **®. Interestingly, shared genes
in enrichment analyses have intensive linkages among these significant pathways
as some of piDNM-containing genes could play roles in more than one of these
pathways (Supplementary Figure 7).

Next, to investigate the biologica pathways involved in each group of
disorder-specific genes with piDNMs, we carried out functional enrichment
analysis with terms in biological process (Supplementary Table 7-9). The top three
enriched categories of ASD-specific genes were “macromolecule modification” (P
= 2.90x10™"), “organelle organization” (P = 1.22x10™) and “cdl cycle’ (P =
1.17x10°®%). With respect to genes specific to SCZ, it is actually no surprise that the
significantly enriched categories are related to protein localization and calcium

transport, which have been revealed to be involved in the pathophysiology of
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schizophrenia *. Because of the limited number of genes, only two GO terms were
enriched for EE-specific genes, which were “N-glycan processing” (P = 3.65x10°)
and “protein deglycosylation” (P = 2.17x10), while no terms were statistically
enriched for ID-specific genes. Our observation that each group of disorder-
specific genes being overrepresented into different biological pathways, suggests
that piDNMs may also play arole in the distinct phenotypes of the four psychiatric

disorders athough the explicit underlying mechanisms need to be further explored.

Co-expresson modules are convergent for cross-disorder

genes hit by piDNMs

Co-expression of genes can be used to explore the common and distinct molecular
mechanisms in neuropsychiatric disorders *. Thus, we performed weighted gene
co-expression network analysis (WGCNA) * for the 86 cross-disorder piDNMs-
containing genes based on gene expression in 16 human brain structures across 31
developmental stages from BrainSpan developmental transcriptome (n=524)*. The
results of WGCNA deciphered two gene modules with distinct spatiotemporal
expression patterns (Figure 4A, B; Supplementary Figure 8). The turquoise module
(n=55 genes) was characterized by high expression during early fetal development
(8-24 postconceptional weeks) in the majority of brain structures (Figure 4C).
Whereas, the blue module (n=22 genes) showed low expression in early fetal
development (8-38 postconceptional weeks) in the majority of brain structures
(Figure 4D). It is also crucid to clarify gene expression of these genes in early
development stages since altered epigenetic regulation in early development has
been shown to be associated with neurodevelopmental disorders “°. We found most
of these 86 genes are highly expressed and may be required for the normal
development of human embryo (Figure 4E, Supplementary Table 10). Our

10
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observation indicates that these cross-disorder piDNMs-containing genes may play
important roles in not only early brain developmental but also early embryonic

devel opment.

Protein-protein interactions are intensive for cross-disorder

pIDNM -containing proteins

The co-expression results indicate that the proteins coded by the 86 cross-disorder
genes may have intengive protein-protein interactions (PPIs). To identify common
biological processes that potentially contribute to disease pathogenesis, we
investigated protein-protein interactions within these 86 cross-disorder piDNM-
containing genes. Our results revealed that 56 out of 86 (65.12%) cross-disorder
genes represent an interconnected network on the level of direct/indirect protein-
protein interaction relationships (Figure 5A; Supplementary Table 11).
Furthermore, we determined several crucial hub piDNM-containing genes in the
protein-protein interaction network, such as NOTCH1, MTOR, RYR2, and GNAS
(Figure 5A), which may control common biological processes among these four
neuropsychiatric disorders. Besides, these 86 cross-disorder proteins are indeed
enriched in nervous system phenotypes, including abnormal synaptic transmission,
abnormal nervous system development, abnormal neuron morphology and
abnormal brain morphology, and behavior/neurological phenotype such as
abnormal motor coordination/balance (P <0.05, Supplementary Figure 9A).
Similarly, these 56 genes in interaction network are enriched in nervous system
phenotype including abnormal nervous system development and abnormal brain
morphology (P <0.05, Supplementary Figure 9B). By investigating the expression
of these interacting genes in the human cortex of 12 ASD patients and 13 normal
donators from public datasets of GSE64018 ** and GSE76852 %, we identified 45

11
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(80.35%) of these PPl genes were significantly differentially expressed between
ASD patients and normal controls (Student's t-test, q <0.05, Figure 5B). And 40
(71.42%) of these PPl genes were up-regulated in ASD patients while three (5.35%)
genes were down-regulated in ASD patients when compared with normal controls
(Supplementary Table 12), indicating that the mgjority of these PPl genes were
abnormally expressed in ASD patients compared with normal controls.

Regulatory networks between RBPs and targeting genes are

potentially disrupted by piDNMs

Dysregulation or mutations of RBPs can cause a range of developmental and
neurological diseases ***. Meanwhile, mutations in RNA targets of RBPs, which
could disturb the interactions between RBPs and their mRNA targets, and affect
MRNA metabolism and protein homeostasis in neurons during the progression of
neuropathological disorders **’. Hence, we constructed a regulatory network
between piDNMs and RBPs based on predicted binding stes of RBPs to
investigate the genetic perturbations of MRNA-RBP interactions in the four
disorders (Figure 6). We identified several crucial RBP hubs that may contribute to
the pathogenesis of the four neuropsychiatric disorders, including EIF4A3, FMR1,
PTBP1, AGO1/2, ELAVL1, IGF2BP1/3 and WDR33. Genes with piDNMs in
different disorders could be regulated by the same RBP hub while one candidate
gene may be regulated by different RBP hubs (Figure 6). In addition, all of these
RBP hubs were highly expressed in early fetal development stages (8-37
postconceptional weeks) based on BrainSpan developmental transcriptome
(Supplementary Figure 10), suggesting their essential roles in the early stages of

brain devel opment.
Discussion

12
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In contrasting with the recognized role of LoF DNMs in conferring risk for
neuropsychiatric disorders, the effect of DNMs on post-transcriptional regulation
in pathogenesis of these disorders remains unknown. In this study, we
systematically analyzed the damaging effect of DNMs on post-transcriptional
regulation in four neuropsychiatric disorders, and observed higher prevaence of
piDNMs in probands than that in controls in four kinds of neuropsychiatric

disorders.

To date, it has been a challenge to estimate the functions of synonymous and
UTRs mutations though such mutations have been widely acknowledged to alter
protein expression, conformation and function “¢. We applied RBP-Var2 a gorithm
to annotate and interpret de novo variants in subjects with four neuropsychiatric
disorders based on their impact to RNA secondary structure, the binding of
MiRNAs and RBPs. In comparison with accuracy of other prediction algorithms
such as SIFT, PPH2 or RegulomeDB, RBP-Var2 has highest accuracy (AUC:
82.89%) to differentiate affected from the control subjects. Our RBP-Var2 tool
identified 399 synonymous DNMs and 25 UTR’s DNMs, which were extremely
harmful in post-transcriptional regulation. Consistent with previous study “*,
synonymous damaging DNMs were significantly prominent in probands compared
with that in controls. Meanwhile, de novo insertions and deletions (InDels),
especially frameshift patterns are taken for granted to be deleterious. Indeed, de
novo frameshift InDels are more frequent in neuropsychiatric disorders compared
to non-frameshift InDels *°, which were demonstrated by predictions of RBP-Var2
but not SIFT or PPH2. Therefore, the updated version of RBP-Var2 will held great
promise for exploring the effect of mutations on post-transcriptional regulation,
and deciphering multiple biological layers of deleteriousness may improve the

accuracy to predict disease related genetic variations.

13
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Most interestingly, we found that some epigenetic pathways are enriched
among these piDNM-containing genes, such as those that regulation of gene
expression and histone modification. This finding is consistent with a previous
report in which more than 68% of ASD cases shared a common acetylome
aberrations at >5,000 cis-regulatory regions in prefrontal and temporal cortex .
Such common "epimutations’ may be induced by either perturbations of epigenetic
regulations, including post-transcriptional regulations due to mutations of
substrates or the disruptions of epigenetic modifications resulting from the
mutation of epigenetic genes. Our observations revedled the association of
dterations of "epimutations' with dysregulation of post-transcription. This
hypothesis is consistent with the observation that several recurrent piDNM-
containing genes are non-epigenetic genes, including SYNGAPL, ADNP, POGZ
and ANK2. Moreover, we discovered severa recurrent epigenetic genes which
contain piDNMs, including CHD8, EP300, KMT2A, KMT2C, KDM3B, JARID2
and MECP2, and they may play important roles in the genome-wide aberrations of
epigenetic landscapes through disruption of the post-transcriptional regulation.
Furthermore, WGCNA analysis revedled that maor hubs of the co-expression
network for these 86 piDNM-containing genes were histone modifiers by using
BrainSpan developmental transcriptome. These data indicate that piDNM-
containing genes are co-expressed with genes frequently involved in epigenetic
regulation of common cellular and biological process in neuropsychiatric disorders.
Importantly, these 86 piDNM-containing genes harbor intensive protein-protein
interactions in physics, and shared regulatory networks between piDNMs and
RBPs in four neuropsychiatric disorders. We identified several RBP hubs of
regulatory networks between piDNM-containing genes and RBP proteins,
including EIF4A3, FMRP, PTBP1, AGO1/2, ELAVL1, IGF2BP1/3, WDR33 and
FXR2. Taking FMRP for example, it is a well-known pathogenic gene of Fragile X
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syndrome which co-occurs with autism in many cases and its targets are highly
enriched for DNMsin ASD *%. Our results demonstrated that, like the mutations on
RBP hubs, mutations of RBP-targeting genes through disrupting their interactions
with multiple RBPs may synergistically result in pathogenesis of multiple

neuropsychiatric disorders.

Alterations in expression or mutations in either RBPs or their binding sites in
target transcripts have been reported to cause several human diseases such as
muscular atrophies, neurologica disorders and cancer *. Although we identified
1,736 piDNMs associated with neuropsychiatric disorders, the cause and explicit
effects of these piDNMs in these disorders need to be further validated and
explored. In this study, our method sheds light on evaluation of post-transcriptional
impact of genetic mutations especially for synonymous mutations. Additionally, as
small molecules can be rapidly designed to selectively target RNAs and affect
RNA-RBP interactions >, our study provides new insights into RNA-based
therapeutic strategies for the treatment of neuropsychiatric disorders.
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M aterials and methods

Data collection and filtration

For this study, 7,748 trios or quartets were recruited from previous whole exome
sequencing (WES) studies (ref), comprising 5,677 parent-probands trios associated
with four neuropsychiatric disorders and 2,071 control trios (Supplementary Table
1). After removing the overlap of DNMs between probands and controls, a total of
6,996 DNMs in probands and 2,523 DNMs in controls were identified for
subsequent analysis.

RBP-Var2 algorithm

To better interpret the catalog of DNMs, we developed a new heuristic scoring
system according to the functional confidence of variants based on experimenta
data of GWAS, eQTL, CLIP-seq derived RBP binding sites, RNA editing and
MiRNA targets, and machine learning algorithms. The scoring system represents
with increasing confidence if a variant lies in more functional elements **. For
example, we consider variants that are known eQTLs as significant and label them
as category 1. Within category 1, subcategories indicate additional annotations
ranging from the most informational variants (1a, variant may change the motif for
RBP binding) to the least informational variants (1e, variant only has a motif for
RBP binding). In mathematical algorithms, we employed LS-GKM > (10-mer) and
deltaSVM *° to predict the impact of DNMs on the binding of specific RBPs by
calculating the delta SVM scores. Moreover, for single-base mutations, we
employed the RNAsnp °” with default parameters to estimate the mutation effects
on local RNA secondary structure and calculated the empirical P values based on
the base pair probabilities of the wild-type and mutant RNA sequences. For
insertions and deletions, we evaluated the effects of DNMs on RNA secondary
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structure using the minimal free energy generated by RNAfold *® to calculate
empirical P values based on cumulative probabilities of the Poisson distribution.
Only the functional DNM produces >5 change in gkm-SVM scores for the effect of
RBP binding, and P-value < 0.1 or free energy change >1 for the effect of DNMs
on RNA secondary structure change were determined to be a piDNM. Only DNMs

occurred in exonic or UTR regions were included in our analysis.

| dentification of piDNMs and comparison with variants predicted by
other methods

To determine the likelihood of a functional mutation in post-transcriptional
regulation for al SNVs and InDels, our newly updated program RBP-Var2 was
utilized to assign an exclusive rank for each mutation and only those mutations
categorized into rank 1 or 2 were considered as piDNMSs. In comparison with those
mutations involved in the disruption of gene function or transcriptional regulation,
severa programs such as SIFT, PolyPhen2 and RegulomeDB were used to analyze
the same dataset of DNMs as the input for RBP-Var2. We only kept the mutations
gualified as “damaging” from the result of SIFT and “possibly damaging” or
“probably damaging” from PolyPhen2. In the case of RegulomeDB, mutations
|abeled as category 1 and 2 were retained. Next, we classified the type of mutation
(frameshift, nonframeshift, nonsynonymous, synonymous, splicing and stop) and
located regions (UTR3, UTR5, exonic, ncRNA exonic and splicing) to determine
the distribution of piDNMs, genetic variants and other regulatory variants. The
number of variants in cases versus controls was illustrated by bar chart (***: P<
0.001, **: 0.001 <P< 0.01, *: 0.01 <P< 0.05, binomial test).

TADA analysisof DNMsin four disorders
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Our previously published TADA program %, which predicts risk genes accurately
on the basis of allele frequencies, gene-specific penetrance, and mutation rate, was
used to calculate the P value for the likelihood of each gene contributing to the all
four disorders with default parameters.

ROC curves and specificity/sensitivity estimation

We screened a positive (non-neutral) test set of likely casual mutations in
Mendelian disease from the ClinVar database (v20170130). From a total of
237,308 mutations in ClinVar database, we picked up 145 exonic mutations
presented in our curated DNMs in probands. Our negative (neutral) set of likely
non-casual variants was built from DNMs of unaffected controls in four
neuropsychiatric disorders. To exclude rare deleterious DNMs, we selected only
DNMs in controls with a minor allele frequency of at least 0.01 in 1000 genome
(1000g2014oct), and obtained a set of 921 exonic variants. Then, we employed R
package pROC to analyze and compare ROC curves.

Permutation analysis for overlaps of geneswith piDNMs

In order to evaluate the overlap of genes among any two set of genes with piDNMs,
we shuffled the intersections of genes and repeated this procedure 100,000 times.
During each permutation, we randomly selected the same number of genes as the
actual situation from the all RefSeq genes for each disorder taking account of gene-
level de novo mutation rate, then P values were calculated as the proportion of
permutations during which the ssmulated number of overlap was greater than or

egua to the actual observed number.

Functional enrichment analysis
A gene harboring piDNMs was selected into our candidate gene set to conduct

functional enrichment analysis if it occurred in at least two of the four disorders.
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GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway enrichments analyses were implemented by Cytoscape (version 3.4.0)
plugin ClueGO (version 2.3.0) using genome-wide coding genes as background
and P values calculated by hypergeometric test were corrected to be g values by
Benjamini—Hochberg procedure for reducing the false discovery rate resulted from

multiple hypothesis testing.

Co-expression and spatiotemporal specificity
Normalized gene-expression of 16 human brain regions were determined by RNA

sequencing and obtained from database BrainSpan (http://www.brainspan.org). We

extracted expression for 77 out of 86 extreme damaging cross-disorder genes and
employed R-package WGCNA (weighted correlation network analysis) with a
power of five to cluster the spatiotemporal-expression patterns and prenatal
laminar-expression profiles. The expression level for each gene and development
stage (only stages with expression data for all 16 structures were selected, n = 14)

was presented across all brain regions.

Protein-protein interaction network of cross-disorder genes

Protein-protein interactions data of Homo sapiens was collected from the STRING
(v10.5) database with score over 0.8. For the PPl network of all cross-disorder
genes, we only retain the proteins with at least two links. Those nodes with degree
over 30 in the network were considered as hubs. Cytoscape (version3.4.0) was
used to anadyze and visualize protein-protein interaction networks.
Overrepresentation of mouse-mutant phenotypes was evaluated by the web tool
MamPhea for the genes in the PPl network and for all cross-disorder genes
containing piDNMs. The rest of genome was used as background and multiple test

adjustment for P values was done by Benjamini-Hochberg method.
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Gene-RBP interaction network

Cytoscape (version 3.4.0) was utilized for visualization of the associations between
genes harboring piDNMs in the four neuropsychiatric disorders and the

corresponding regulatory RBPs.
The available data resources

To make our findings easily accessible to the research community, we have

developed RBP-Var2 platform (http://www.rbp-var.biols.ac.cn/) for storage and

retrieval of piDNMs, candidate genes, and for exploring the genetic etiology of
neuropsychiatric disorders in post-transcriptional regulation. The expression and
epigenetic profiles of genes related to regulatory de novo mutations and early
embryonic development have been deposited in our previously published database

EpiDenovo (http://www.epidenovo.biols.ac.cn/) .

URLSs
RBP-Var2, http://www.rbp-var.biols.ac.cn/; NPdenovo,
http://www.wzgenomi cs.cn/NPdenovo/index.php; EpiDenovo:

http://www.epidenovo.biols.ac.cn/; BioGRID, https://thebiogrid.org/;

MamPhea , http://evol.nhri.org.tw/phenome/index.jsp?platform;  BrainSpan,
http://www.brainspan.orq; ClinVar, https://www.nchi.nlm.nih.gov/clinvar/;
1000Genomes, http://www.international genome.org/; WGCNA,

https://|abs.geneti cs.ucla.edu/horvath/ CoexpressionNetwork/Rpackages’ WGCNA/;

esyN, http://www.esyn.org/; Cytoscape, http://www.cytoscape.org/; TADA,
http://wpicr.wpic.pitt.edu/WPICCompGen/TADA/TADA _homepage.htm; ClueGO,
http://apps.cytoscape.org/apps/cluego; pROC, http://web.expasy.ord/pROC/; R,

https://www.r-project.ora/; Perl, https://www.perl.org/.
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Figurelegends

Figure 1. The abundance of piDNMs in different disease categories. (A) Schematic
overview of the RBP-Var2 agorithm. (B) The bar plot corresponds to the odds
ratios indicating the enrichment of piDNMs in patients from each of the four
neuropsychiatric disorders. (C) The relative amount of LoF and non-LoF piDNMs

in five neuropsychiatric disorders.
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Figure 2. Performance comparison of the ability to distinguish severe DNMs
between RBP-Var2 and three other tools. (A) Different kinds of DNMs affecting
protein function predicted by SIFT. The Y-axis corresponds to the proportion of
each kind of mutations within the total number of damaging DNMs predicted by
SIFT. (B) Different kinds of DNMs that affect protein function predicted by
PolyPhen2. The Y-axis corresponds to the proportion of each kind of mutations
within the total number of damaging DNMs predicted by PolyPhen2. (C) The
DNMs, predicted as functional elements involved in transcriptional regulation by
RegulomeDB, are categorized into different functiona types. The Y-axis
corresponds to the proportion of each kind of mutations within the total number of
damaging DNMs predicted by RegulomeDB. (D) The DNMs classified as either
level 1 or 2 (piDNMs) are categorized into different functiona types. The Y-axis
corresponds to the proportion of each kind of mutations within the total number of
damaging piDNMs. The P values were measured by two-sided binomial test.
DNMs predicted in both cases and controls are excluded in the comparison and the
DNMs |labeled as “unknown” are not demonstrated in the bar plot.

Figure 3. Genes with piDNMs involved in four neuropsychiatric disorders. (A)
Scatter plot of eight genes harboring recurrent piDNMs among 1,736 piDNMSs.
The Y-axis corresponds to the -log,o(P value) calculated by TADA. The X-axis
stands for the TADA output of -logo(mutation rate). (B) Scatter plot of 21
recurrent genes with p < 0.01 by TADA. The Y-axis corresponds to the -log;o(P
value) calculated by TADA. The X-axis stands for the TADA output of -
logio(mutation rate). (C) Venn diagram representing the distribution of candidate
genes shared among the four neuropsychiatric disorders. (D) Permutation test for
the randomness of the overlap between the 86 cross-disorder genes. We shuffled

the genes of each disorder and calculated the shared genes between the four
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disorders, and repeated this procedure for 100,000 times to get the null distribution.
The vertical dash line indicates the observed value.

Figure 4. Weighted co-expression analysis of 86 shared genes. (A) Heatmap
visualization of the co-expression network of 86 shared genes. The more saturated
color corresponds to the more highly expressed genes. (B) Hierarchical clustering
dendrogram of the two color-coded gene modules displayed in (A). (C, D) The two
spatiotemporal expression patterns (Turquoise module and Blue module) for
network genes based on RNA-seq data from BrainSpan, and they correspond to 17
developmental stages across 16 subregions. A1C, primary auditory cortex; AMY,
amygdaloid complex; CBC, cerebellar cortex; DFC, dorsolatera prefrontal cortex;
HIP, hippocampus; IPC, posteroinferior parietal cortex; ITC, inferolateral temporal
cortex; M1C, primary motor cortex; MD, mediodorsal nucleus of thalamus;, MFC,
anterior cingulate cortex; OFC, orbital frontal cortex; STC, posterior superior
temporal cortex; STR, striatum; S1C, primary somatosensory cortex; V1C, primary

visual cortex; VFC, ventrolateral prefrontal cortex.

Figure 5. Protein-protein interaction network of the cross-disorder genes. The
network of interactions between pairs of the proteins encoded by the 56 out of 86

cross-disorder genes.

Figure 6. Interaction network of RBPs and genes with piDNMs. Different roles of
the nodes are reflected by distinguishable geometric shapes and colors. The
magenta vertical arrow stands for the RNA binding proteins. Disks with different

colors represent the genes with piDNMs involved in different kinds of disorders.

Supplementary Figure 1. Excess of piDNMs in probands. The odds ratio of
synonymous DNMs and piDNMs were analyzed. The dominance of filtered
piDNMs that not contained LoF mutations were also displayed.
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Supplementary Figure 2. ROC curve showing the performance of the predictions
of SIFT, PPH2, RBP-Var2 and RegulomeDB.

Supplementary Figure 3. Overlap of DNMs identified by different tools. (A)
Venn diagram depicting the overlap between the DNMs predicted by SIFT, PPH2,
RBP-Var2 and RegulomeDB. (B) Venn diagram depicting the overlap between the
genes predicted by SIFT, PPH2, RBP-Var2 and RegulomeDB. (C) The pie chart
shows the distribution of all non-LoF piDNMs. The non-LoF piDNMs detected by
RBP-Var2 aone account for 52.8% of all non-LoF piDNMs (pink), while the non-
LoF deleterious DNMs identified by both SIFT and Polyphen2 take up 26.2% of
al (light purple). (D) Pathway enrichment analysis of the 665 genes unique to the
prediction of RBP-Var2.

Supplementary Figure 4. Permutation test of the randomness of the overlap of
different set of disease genes with control. (A-K) Permutation test for the validity
of the gene overlap between the cross-disorder genes and the control. (L-O)
Permutation for the overlap of genes from each disorder with control. We shuffled
the genes of each disorder and calculated the shared genes between each pair, and
repeated this procedure for 100,000 times to get the null distribution. The vertical
dash line stands for the observed value.

Supplementary Figure 5. Test of the significance of the number of cross-disorder
genes involved in the four neuropsychiatric disorders. (A-J) Permutation test for
the validity of the gene overlap among/between every combination of three/two

disorders.

Supplementary Figure 6. Pie chart of the pathway enrichment analysis for the 86

cross-disorder genes.

24


https://doi.org/10.1101/175844
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

bioRxiv preprint doi: https://doi.org/10.1101/175844; this version posted November 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Supplementary Figure 7. Interaction network of the gene enrichment analysis for

the 86 cross-disorder genes.

Supplementary Figure 8. Relationship between Co-expresson modules. (A)
MDS plot of genes in turquoise module and blue module. (B) Relationship
between module eigengenes. (C) Clustering tree based of the module eigengenes.

(D) heatmap of adjacency Eigengene.

Supplementary Figure 9. Mammalian phenotype enrichment analysis of selected
genes. (A) Mammalian phenotype enrichment of 86 cross-disorder piDNMs genes.

(B) Mammalian phenotype enrichment of 56 genes in interaction network.

Supplementary Figure 10. Heat map of the expression of the crucial RBP hub
genes during the early fetal development stages.
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