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Lay Summary13

An outstanding challenge for the study of colour traits is how best to use "colour14

spaces" to represent their visual perception, particularly when asking questions15

of colour-difference (e.g. the (dis)similarity of males and females, mimics and16

models, or sister species, to a given viewer). We use simulations to show that17

existing methods fail to statistically and biologically estimate the separation of18

groups in colour space, and we suggest a flexible, robust, alternative that avoids19

those pitfalls.20

2

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/175992doi: bioRxiv preprint 

https://doi.org/10.1101/175992


Abstract21

Colour in nature presents a striking dimension of variation, though understanding22

its function and evolution largely depends on our ability to capture the perspec-23

tive of relevant viewers. This goal has been radically advanced by the development24

and widespread adoption of colour spaces, which allow for the viewer-subjective25

estimation of colour appearance. Most studies of colour in camouflage, aposema-26

tism, sexual selection, and other signalling contexts draw on these models, with27

the shared analytical objective of estimating how similar (or dissimilar) colour28

samples are to a given viewer. We summarise popular approaches for estimating29

the separation of samples in colour space, and use a simulation-based approach30

to test their efficacy with common data structures. We show that these meth-31

ods largely fail to estimate the separation of colour samples by neglecting (i) the32

statistical distribution and within-group variation of the data, and/or (ii) the dis-33

criminability of groups relative to the observer’s visual capabilities. Instead, we34

formalize the two questions that must be answered to establish both the statistical35

presence and theoretical magnitude of colour differences, and propose a two-step,36

permutation-based approach that achieves this goal. Unlike previous methods,37

our suggested approach accounts for the multidimensional nature of visual model38

data, and is robust against common colour-data features such as heterogeneity39

and outliers. We demonstrate the pitfalls of current methods and the flexibility of40

our suggested framework using an example from the literature, with recommen-41

dations for future inquiry.42
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Introduction43

The study of colour in nature has driven fundamental advances in ecology and44

evolutionary biology (Cuthill et al., 2017). Colour is a subjective experience, how-45

ever, so substantial effort has been dedicated to measuring and representing colours46

“objectively” (Garcia et al., 2014; Johnsen, 2016) through visual models that con-47

sider the perspective of ecologically relevant viewers (Kemp et al., 2015; Renoult48

et al., 2017). These models have significantly advanced the study of colour traits49

by allowing researchers to account for the factors influencing the generation and50

reception of visual information, such as the structure of signals and viewing back-51

grounds, the properties of veiling and incident light, and the attributes of visual52

systems (Chittka, 1992; Endler & Mielke, 2005; Kelber et al., 2003; Vorobyev &53

Osorio, 1998).54

Several forms of visual models are currently used, which vary in their assump-55

tions about the nature of visual processing (Chittka, 1992; Endler & Mielke, 2005;56

Vorobyev & Osorio, 1998). These models function by delimiting a colour space57

informed by the number and sensitivity of photoreceptors in an animal’s retina58

(Renoult et al., 2017). Individual colours are then represented in this space as59

points, with their location determined by the differential stimulation of the view-60

ers’ receptors.61

This colour space representation is convenient for several reasons. It offers an62

intuitive way of analysing phenotypes that we cannot measure directly: we can63

estimate how animals with different visual systems “see” different colours by rep-64

resenting them in a Cartesian coordinate system, producing a receiver-dependent65

morphospace (Kelber et al., 2003; Renoult et al., 2017). Further, it allows estimating66

how similar or dissimilar colours are to a given observer, by measuring the distance67

between colour points in its colour space (Endler & Mielke, 2005; Vorobyev et al.,68

1998; Vorobyev & Osorio, 1998). Crucially, we can test and refine these mod-69

els using psychophysical data (e.g. Dyer & Neumeyer, 2005; Garcia et al., 2017;70
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Maier, 1992; Vorobyev et al., 2001), to estimate the magnitude of colour-differences71

and ultimately predict whether an observer could effectively discriminate pairs72

of colours (Chittka, 1992; Vorobyev & Osorio, 1998). This final point is critical to73

many tests of ecological and evolutionary hypotheses, such as the efficacy of cam-74

ouflage (Pessoa et al., 2014; Troscianko et al., 2016), the presence of polymorphism75

or dichromatism (Schultz & Fincke, 2013; Whiting et al., 2015), the accuracy of76

mimicry (O’Hanlon et al., 2014; White et al., 2017), the extent of signal variability77

among populations or species (Delhey & Peters, 2008; Rheindt et al., 2014), or the78

effect of experimental manipulations (Barry et al., 2015; White & Kemp, 2017). At79

the heart of these inquiries lies the same question: how different are these colours to80

the animal viewing them?.81

Challenges in estimating the discriminability of colour samples82

The receptor noise-limited model of Vorobyev & Osorio (1998) has proven partic-83

ularly useful for addressing questions of discriminability and colour-difference.84

The model is focused on receptor-level processes, and assumes that chromatic85

and achromatic channels operate independently (which does not necessarily hold86

beyond the receptor level in some species, such as humans; Nathans, 1999), that87

colour is coded by n− 1 unspecified opponent mechanisms (where n is the number88

of receptor channels), and that the limits to colour discrimination are set by noise89

arising in receptors (Vorobyev et al., 1998; Vorobyev & Osorio, 1998). This noise90

is dependent on the receptor type and abundance on the retina which, along with91

Weber’s law (k = ∆I/I) more generally, ultimately establishes the unit of Just No-92

ticeable Differences (JND Vorobyev et al., 2001). Distances calculated in this man-93

ner correspond to the Mahalanobis Distance DM, and represent distances between94

points standardized by the Weber fraction; i.e.
signal
noise

(Clark et al., 2017). It follows95

that values lower than 1 JND (
signal
noise

< 1) are predicted to be indistinguishable,96

while values greatly above this threshold are likely distinct. This provides a use-97

ful standard for estimating the similarity of groups of points in colour space: the98

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/175992doi: bioRxiv preprint 

https://doi.org/10.1101/175992


greater the distance between colours, the less alike they are. If differences are,99

on average, above an established threshold, then we can consider the groups dif-100

ferent: sexes dichromatic, mimetism imperfect, crypsis ineffective. This offers a101

clear link between variation and classification within a sensory framework, and102

has been widely used for this purpose (Barry et al., 2015; Delhey & Peters, 2008;103

O’Hanlon et al., 2014; Schultz & Fincke, 2013; White et al., 2017; White & Kemp,104

2017).105

To adequately compare samples of colours, however, it is necessary to deter-106

mine if the average distance between them is both statistically and biologically107

meaningful (i.e. above-threshold; Endler & Mielke, 2005). Commonly, an “average108

colour” for each group is derived by taking a mean reflectance spectrum or by109

averaging their position in colour space. In either case, the colour distance be-110

tween groups is then calculated from these mean quantum catches per-receptor111

per-group — their centroids in multivariate space (Fig. 1, bold arrow). However,112

the centroid obtained from arithmetic means of receptor coordinates is not an113

appropriate measure of location for this purpose, since colour distances are per-114

ceived in a ratio scale (Cardoso & Gomes, 2015). Instead, the geometric mean must115

be used. Further, since the result is a single value representing the multivariate116

distance between group means, there is no associated measure of uncertainty or117

precision that would allow for the statistical testing of differences between samples118

(e.g. Avilés et al., 2011; Burns & Shultz, 2012; Maia et al., 2016).119

An alternative approach calculates the pairwise distances between all points120

in group A and group B, then averages these distances to obtain a mean distance121

between groups ( Fig. 1, thin arrows; e.g. Barry et al., 2015; Dearborn et al., 2012).122

In cluster analyses, this is called the “average linkage” between groups (Hair et al.,123

1998). This is an appealing method, providing measures of variation among dis-124

tances, and thus a t-test or equivalent can be used to test if differences are greater125

than a given threshold. The average linkage, however, is also inadequate because126

it conflates within- and among-group variation. This is because Euclidean dis-127
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tances (and by extension JND’s) are translation-invariant: they ignore the position128

of points in colour space and the direction of the distance vectors, reflecting only129

the magnitude of differences between two points. Therefore, the average linkage130

reduces to a measure of spread, and will scale with both within- and between-131

group distances (Fig. 1, insert).132

As these issues show, hypotheses of discriminability and colour-difference have133

primarily focused on testing whether the difference between samples is above a134

theoretical threshold. However, the convenience of such thresholds belies fact that135

simply comparing means between groups is not sufficient to infer, statistically,136

whether samples are different. To answer if two groups are different, one must137

compare the variation between- and within-groups. This is particularly problem-138

atic in the case of colours that function as signals in social interactions (e.g. Kemp139

& Rutowski, 2011). For a trait to function in this context, the observer must be140

able to tell signals of ’low’ and ’high’ quality apart. This means that, by defi-141

nition, most pairs of individuals should be readily distinguishable. The trait must be142

highly variable and colour distances should be above the threshold of discrimina-143

tion (Delhey et al., 2017), otherwise no information can be extracted by an observer144

comparing phenotypes.145

Consider a hypothetical species that uses colour in mate choice, but is not sex-146

ually dichromatic (Fig. 1). In this species colour is highly variable and, on average,147

pairs of individuals are discriminable, but there is no consistent male-female dif-148

ference. Therefore, if a researcher sampled this species and calculated the average149

distance between all pairs of individuals, regardless of sex, these should be largely150

greater than 1 JND. However, if they took separate samples of males and females,151

then all pairwise distances (the average linkage) between sexes will be also greater152

than 1 JND, despite them being sampled from the same (statistical) population.153
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Figure 1: The link distance (i.e. average pairwise distance between groups) con-
flates within- and among-group variation. Here, two samples were drawn from
the same simulated distribution. Thin arrows represent distances between a ran-
dom point in the first sample (blue) and all points from the second sample (red),
all of which are greater than the distance between the geometric means of the
two samples (“x”, bold arrows). Inset shows the histogram of pairwise distances
among groups, and how their average (dashed line) is greater than the mean dis-
tance (bold line).

The limitations of current methods for comparing colour space distributions154

Several methods have been proposed to avoid the aforementioned issues by ac-155

counting for the relative distributions of samples in colour space. Eaton (2005),156

for example, noted that within-group variation influenced the conclusions on the157

extent of avian dichromatism, and thus tested for intersexual differences in pho-158

ton catches separately for each receptor. However, this ignores the multivariate159

nature of visual model data by failing to account for multiple comparisons and160

correlations among receptor catches (which are critical, since any n-receptor vi-161

sual system can be represented in n− 1 dimensions; Kelber et al., 2003).162

An alternative, multivariate metric suggested by Stoddard & Prum (2008) is163

the volume overlap. In this approach, the volume occupied by a sample of colours164

is estimated from its enveloping convex hull, and separation between samples is165
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inferred from their overlap. Stoddard & Stevens (2011) used this metric to show166

that a greater overlap in colour volume between cuckoo and host eggs is associ-167

ated with lower rejection of parasitic eggs. This approach is appealing because it168

considers the distribution of colour points in multivariate space, though there are169

limits to its interpretation: (i) there is a lower bound to group separation (i.e. if170

samples do not overlap, there is no distinction between cases where samples are171

near or far apart) and (ii) it is unclear how variation in volume overlap should be172

interpreted biologically (e.g. how biologically relevant is the difference between173

20% or 40% overlap?). It is also particularly sensitive to outliers, because the vol-174

ume defined by a convex hull does not lend itself to a probabilistic interpretation,175

leading to the often unacknowledged assumption that the sampled data reflects176

the true boundaries of the population (however, “loose wrap” hypervolumetric177

methods exist; to our knowledge, these have not been applied to colour stud-178

ies; Blonder et al., 2017). Finally, in its original implementation this method does179

not consider receptor noise or discrimination thresholds (but incorporating this is180

straightforward; see below).181

The most robust attempt at comparing distributions of colours was proposed182

by Endler & Mielke (2005), who devised a non-parametric rank distance-based183

approach based on the least sum of Euclidean distances, compared through multi-184

response permutation procedures (LSED-MRPP). This multivariate approach is185

powerful because it calculates an effect size based on the relationship of between-186

and within-group distances. However, this single statistic captures differences be-187

tween samples not only in their means, but also in their dispersion and correlation188

structure (i.e. shape; Endler & Mielke, 2005). Like other distance-based methods,189

it is sensitive to confounding heterogeneity among samples when testing for dif-190

ferences in location (Anderson & Walsh, 2013; Warton et al., 2012). Despite its191

considerable strengths, this method has seen little adoption over the last decade,192

largely due to limitations in implementation and accessibility.193

The shortcomings of these methods reflect the fundamental fact that the ques-194
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tion of discriminability actually represents a test of two hypotheses that are seldom195

formally distinguished: (i) that the focal samples are statistically distinct, and (ii)196

that the magnitude of their difference is greater than a psychophysical threshold197

of detection. Most approaches will test one, but not both, of these hypotheses198

through their respective nulls, and often with no estimate of variation or uncer-199

tainty in estimates. We explore these issues using a simulation-based approach200

by testing the efficacy of popular methods in detecting the separation of groups201

in colour space. We then propose a flexible solution that avoids these problems,202

demonstrating its utility using an example from the literature.203

Methods204

Simulation procedures205

To compare methods for detecting group separation in colour space, we simu-206

lated data analogous to that obtained from applying an avian visual model to207

spectral reflectance data. Birds are tetrachromatic (Hart, 2001), and colours will208

thus be represented by the quantum catches of its four photoreceptors (though209

the procedure followed here can be applied to visual systems with any number210

of receptors). For each replicate, we simulated two samples defined by four vari-211

ables (USML photoreceptors) taken from log-normal distributions (since quantum212

catches are non-negative and noise-corrected distances follow a ratio scale, as de-213

fined by the Weber fraction, described above). We generated samples following214

two different scenarios: first, we simulated varying degrees of separation (i.e. ef-215

fect sizes) to evaluate the power and Type I error rates of the approaches tested.216

Second, we simulated threshold conditions to evaluate the performance of differ-217

ent approaches in correctly classifying whether samples are above-threshold.218

For the first set of simulations (power and error-rates) we simulated the quantal219

catch of each photoreceptor i for the first sample (group A) by drawing from a log-220

normal distribution with mean µiA seeded from a uniform distribution U (0, 10),221
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and standard deviation proportional to the mean: σi = aiµiA, with ai ∼ U (0, 0.5)222

(note that, for these simulations, µ and σ refer to the mean and standard deviation223

of the random variable itself, not in log scale). To generate two samples with224

varying degrees of separation proportional to the within-group variance, we used225

a multivariate effect size S obtained by calculating a constant di =
S√
n σ̄i, where n226

is the number of photoreceptors (in this case, 4) and σ̄i is the standard deviation227

of the sample. We then drew a second sample (group B) defined by µiB = µiA + di228

and σi. Thus, our simulations effectively produced two samples with Mahalanobis229

Distance DM ∼ S (calculated as the distance between centroids of the two groups230

weighted by their pooled variance-covariance matrix). We simulated data for S =231

{0, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2, 2.5, 3.0} (Fig. 2), replicated 200 times for sample232

sizes N = {10, 20, 50, 100} each.233

●

●

●

●

A

●

●

●

●

B

Figure 2: Example simulated data for the two groups (red, blue) in a tetrahedral
colourspace. Shown here are data with sample size N = 50 and effect size (A)
S = 0 and (B) S = 3.

For the second set of simulations (threshold conditions across a range of within-234

sample variation), we followed a similar procedure. Group A was sampled from a235

log-normal distribution with µiA ∼ U (0, 10), while σi was taken from an exponen-236
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tial distribution σi ∼ Exp(λ = 1). To obtain a second sample, group B, that was237

separated from group A with an average approximate distance of ∼ 1 JND given a238

Weber fraction of 0.1 for the long-wavelength photoreceptor (Vorobyev et al., 1998),239

we drew from log-normal distributions with µiB = diµiA, where di ∼ U (0.88, 1.12),240

resulting in an average distance between geometric means (hereafter, “mean dis-241

tance”) of 1.11 (95% quantiles: 0.35− 2.77 JND) and within-group average pairwise242

distance of 4.46 (95% quantiles: 1.03− 11.10 JND) after 1000 replicates.243

After the two groups were simulated, we used the R package pavo (Maia et al.,244

2013) to calculate colour distances using relative receptor densities of {U, S, M, L} =245

{1, 2, 2, 4} and Weber fraction for L = 0.1. We calculated the within-group average246

pairwise distance, as well as the distance between sample geometric means.247

We then used four procedures to test for differences between groups. First,248

we used a distance-based PERMANOVA (hereafter “distance PERMANOVA”) us-249

ing the adonis function from the R package vegan (Oksanen et al., 2007). This250

non-parametric approach uses distances to calculate a pseudo-F statistic, simulat-251

ing a null distribution by randomizing distances between observations (Anderson,252

2005). We recorded if the analysis was significant (α = 0.05) using 999 permuta-253

tions for the null, as well as the R2 as an effect size estimate. Second, we obtained254

XYZ Cartesian coordinates based on "perceptually-scaled" (i.e. noise-corrected)255

distances (Pike, 2012; functionally and mathematically equivalent to the receptor-256

noise limited space of de Ibarra et al., 2001) and applied a MANOVA test on these257

coordinates (hereafter “Cartesian MANOVA”). For simplicity, we used a sum of258

squares and cross-products matrix approach and calculated Pillai’s trace and its259

associated P-value (but see discussion for extensions of this approach). Third, we260

calculated the volume overlap between the two samples (relative to their combined261

volumes) in a tetrahedral colour space defined by the receptors’ relative quantum262

catches (thus disregarding receptor noise; Stoddard & Prum, 2008). Finally, we263

calculated the volume overlap for the XYZ Cartesian coordinates based on noise-264

corrected distances, generating a colour volume overlap that accounts for receptor265
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noise.266

Simulation results267

Power and error rates268

Both the distance PERMANOVA and the Cartesian MANOVA showed appropriate269

Type-I error rates, with about 5% of our simulations producing significant results270

when S = 0, even for small sample sizes (Fig. 3). As expected, the power to detect271

small effects steadily increased as a function of sample size, with the distance272

PERMANOVA being overall more conservative than the Cartesian MANOVA (Fig.273

3,4).274
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Figure 3: Power and Type I error rate of the distance PERMANOVA (green) and
Cartesian MANOVA (purple). Panels show the proportion of simulations yielding
significant results for each approach under different sample and effect sizes.

The two approaches showed some disagreement, with between 10 − 15% of275

the simulations significant only in one of the two tests (Fig. 4). This disagreement276

was not random, with the Cartesian MANOVA being more likely to be significant277

when the distance PERMANOVA was not than vice-versa (Fig. 4a), at an approx-278

imately constant rate across sample sizes, and disagreemennt being concentrated279

at smaller effect sizes with increasing sample sizes (Fig. 4b). .280
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Figure 4: The disagreement between multivariate statistical approaches when test-
ing for separation between samples in colour space in relation to sample size (A)
and effect size (B).

Focusing on N = 50 simulations, our results show that mean distance was281

positively associated with the effect size, and the threshold of significance using282

the distance PERMANOVA fell approximately at the 1JND mark (Fig. 5A; equiv-283

alent results are observed with the Cartesian MANOVA, not shown). Still, even284

around that threshold, significance is variable, showing that large within-group285

variation can lead to non-significant differences between groups despite among-286

group distances being above the theoretical perceptual threshold. Volume overlap287

also showed a (negative) association with effect size, but no specific threshold288

for significance is observed (e.g. both significant and non-significant results are289

observed for 20− 60% overlap; Figure 5B).290
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Figure 5: The association between effect size and (A) mean distance and (B) colour
volume overlap. Significant distance PERMANOVA results are in blue, whereas
non-significant results are in red. Dotted line indicates the threshold of 1 JND.

Threshold scenarios291

Since results from the distance PERMANOVA and the Cartesian MANOVA were292

comparable, we focus on the former due to the convenience of the R2 statistic293

describing among-group separation (but see Discussion for comments on the use294

of these approaches). Simulations produced a wide range of outcomes, with non-295

significant and significant tests both above and below the theoretical threshold of 1296

JND (Fig. 6). In contrast with the power simulations above (Fig. 5), the significance297

threshold did not match the theoretical perceptual threshold. As in the hypothet-298

ical example from the introduction, 20.2% of the simulated cases were statistically299

indistinguishable despite having mean above-threshold distances (Fig. 6, dark300

red). Likewise, 15.1% of the simulations produced samples that were statistically301

different, but where this difference was below threshold and was therefore likely302

undetectable to its observer (Fig. 6, dark blue points). These results highlight the303

importance of considering both statistical separation and theoretical perceptual304

thresholds when testing the hypothesis that samples are discriminable.305
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Figure 6: Results from threshold simulation. Red and blue denote non-significant
and significant PERMANOVA tests, respectively, and light colours denote when
that approach would yield the same inference as comparing mean distances to
a threshold of 1JND. Thus, dark blue points indicate a significant statistical test
that does not reach the threshold of discriminability of 1 JND, whereas dark red
points indicate a non-significant statistical test that nonetheless has a mean dis-
tance greater than 1 JND.

Figure 6A shows that, intuitively, tests were significant when within-group306

differences were small relative to among-group differences. However, nearly all307

simulations — including most significant results — fell below the 1:1 line when308
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using the average link distance (i.e. the average pairwise distance) to describe309

intragroup variation. Significant results are obtained when the mean difference is310

up to 0.5 JND smaller than the within-group average link distance (Fig. 6A, grey311

line intercept). Similarly, we can see that significant results can be obtained for312

fairly low levels of among-group separation, with R2 as small as 3 or 4% (Fig. 6B,313

horizontal line at 3%).314

Though there is a negative association between R2 and volume overlap (Fig.315

6C), results show low overall consistency between approaches: for any given value316

of volume overlap, all possible outcomes of significance/threshold occur — even317

when the overlap between samples is zero (Fig. 6C). In other words, even complete318

separation in colour volumes can result in non-significant, below-threshold cases,319

since samples can be contiguous without overlapping in noise-corrected colour320

space . Likewise, samples can have high overlap but be entirely distinguishable321

statistically and perceptually. Further, there is no association between volume322

overlap and mean distance between groups (Fig. 6D). These results were unaltered323

by considering receptor noise in the volume overlap calculation, since these are324

still strongly and positively correlated with their non-noise-corrected counterparts325

(Electronic Supplementary Material.326

A two-step approach to estimate statistical and perceptual separation327

As described previously, questions of discriminability and colour-difference re-328

quire testing two distinct hypotheses: if samples are (i) statistically and (ii) ’percep-329

tually’ distinct. We therefore propose a two-step answer to such questions, which330

explicitly formalizes these hypotheses. For the first question — are the samples331

statistically separate in colour space? — we show that both a PERMANOVA us-332

ing noise-corrected colour distances (Anderson, 2005; Cornuault et al., 2015), and333

a MANOVA using noise-calibrated Cartesian coordinates (de Ibarra et al., 2001;334

Delhey et al., 2015; Pike, 2012) are well suited. Both exclude achromatic variation335

and properly account for the multivariate nature of the data. There is also mini-336
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mal discrepancy between the two (Fig. 3,4), so the decision between them may be337

informed by convenience and the structure of the data at hand.338

Once the separation of samples is established statistically, a second question339

must be answered: is this separation predicted to be perceptually discriminable? The340

statistics calculated above cannot answer this, since effect sizes account for both341

among- and within-group variance. We therefore suggest this be tested indepen-342

dently, by estimating the distance in colour space between group geometric means343

rather than through the average pairwise distance or volume-overlap based met-344

rics, which fail to accurately estimate group separation (Figs. 1,6). One limitation345

to this statistic is the lack of any measure of uncertainty. To circumvent that, we346

suggest a bootstrap procedure in which new samples are produced through re-347

sampling (with replacement) of individuals of each group, from which geometric348

means and their distance are calculated. Repeating this procedure generates a dis-349

tribution of mean distances, from which a confidence interval can be estimated. If350

the groups being compared are statistically different and this bootstrapped con-351

fidence interval does not include the theoretical threshold of adequate biological352

significance, one can conclude that the samples being compared are distinct and353

likely discriminable.354

Empirical example: Sexual dichromatism in the leaf-nosed355

lizard Ceratophora tennentii356

Visually signalling animals often use distinct body parts for different purposes,357

such as social signalling to mates or warning predators (Barry et al., 2015; Grether358

et al., 2004; Johnstone, 1995). The nature of intraspecific variation in colour can359

thus inform their putative function, since selection may act differentially on signals360

used in different contexts. For example, traits subject to strong sexual selection in361

one of the sexes are often dimorphic, with one sex (typically males) expressing a362

conspicuous colour pattern that is reduced or absent in the other (Bell & Zamudio,363
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2012; Kemp & Rutowski, 2011).364

Dragon lizards (Agamidae) are known for variable colouration used in both365

social and anti-predator contexts (Johnston et al., 2013; Somaweera & Somaweera,366

2009). The leaf-nosed lizard Ceratophora tennentii has multiple discrete colour367

patches, with apparent sex differences between body parts (Fig. 7). Here we368

draw on the data of Whiting et al. (2015), who recorded the spectral reflectance of369

29 male and 27 female C. tennentii from four body regions (throat, labials, mouth-370

roof, and tongue). We used a tetrachromatic model of agamid vision to test for371

dichromatism among body regions from the perspective of conspecifics.372

Following standard calculations for the log-linear receptor-noise model, we373

used the spectral sensitivity of Ctenophorus ornatus (λmax = 360, 440, 493, 571 nm)374

as modelled according to a vitamin A1 template (Barbour et al., 2002; Govardovskii375

et al., 2000). We assumed a relative photoreceptor abundance of 1 : 1 : 3.5 : 6,376

and a coefficient of variation of noise yielding a Weber fraction of 0.1 for the377

long-wavelength cone (Fleishman et al., 2011; Loew et al., 2002). We tested each378

body region separately using PERMANOVA. As above, we used the R package379

pavo for visual modelling, and the adonis function in the R package vegan for380

PERMANOVAs.381

We found a statistical difference between male and female throats (PERMANOVA:382

F1,58 = 14.84, P < 0.01) and labials (F1,57 = 13.96, P < 0.01; Fig. 7A,B), but not for383

tongues (F1,58 = 1.63, P = 0.22) or mouth-roofs (F1,55 = 0.52, P = 0.50; Fig. 7C,D).384

However, bootstraps of group separation suggest that intersexual differences in385

labial colour are likely imperceptible to conspecifics (Fig. 7E; though like all such386

predictions this requires behavioural validation). Our results therefore suggest387

the absence of dichromatism in all but throat colour from the lizard perspective,388

despite statistical significance for the labial region. These results thus do not im-389

plicate sexual selection as a strong driver of intersexual colour differences in these390

few body regions of C. ornatus.391
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Figure 7: The mean (± SD) spectral reflectance of female (red) and male (black)
(A) labial, (B) throat, (C) mouth-roof, and (D) tongue (left panels), and their
colourspace distribution according in a tetrachromatic model of agamid vision
(middle panels). Inset images indicate approximate sampling regions. The boot-
strapped 95 % C.I’s for mean distances between groups in colour space (right
panels). Partly reproduced, with permission, from Whiting et al. 2015.

Discussion392

Visual models offer a useful tool for quantifying the subjective perception of393

colour, which — as the ultimate canvas for colour-signal evolution — can offer394

valuable insight into a breadth of biological phenomena. It is therefore essential395

that statistical considerations of biological hypotheses take into account both nat-396

ural variation in the compared samples as well as the limits to observer perception397

(as ultimately informed by behavioural and physiological data; Kemp et al., 2015).398
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Here, we show that most methods typically fail to consider these aspects, and pro-399

pose a flexible alternative that explicitly addresses both.400

The use of models that do not explicitly consider discriminability , such as401

the volume-overlap and segment-based analyses, is often justified on the basis of402

simplifying and relaxing assumptions about colour perception, since intricate em-403

pirical work is required to estimate model parameters (Kelber et al., 2017; Olsson404

et al., 2015; Vorobyev & Osorio, 1998). However, we contend that, on the contrary,405

some of these ‘simpler’ methods actually make very strong latent assumptions,406

which are not supported by the empirical evidence. This includes the assumption407

that all cones contribute equally to colour perception, that colour discrimination is408

unequivocal (i.e. the magnitude of colour-difference does not affect discriminabil-409

ity) and that colour differences follow an interval scale (as opposed to a ratio scale).410

Thus, we suggest that considering detectability relative to a threshold is essential411

for tests of discriminability. We emphasise, however, that this does not necessitate412

the use of the receptor-noise model specifically. Although we have focused on this413

popular approach here, particularly due to its utility for non-model organisms, a414

breadth of available modelling tools are capable of offering similar, and in some415

cases superior, insight (Kemp et al., 2015; Price & Fialko, 2017; Renoult et al., 2017).416

The hexagon model of Chittka (1992), for example, has been extensively tested417

and validated in honeybees, and may outperform the receptor-noise model when418

suitably parameterised (Garcia et al., 2017). It too offers a psychophysiologically-419

informed measure of perceptual distance, as well as discrimination thresholds,420

and so may be readily applied within our suggested framework. The two-step421

approach we propose can be easily and directly extended to these models.422

Our simulations show that both the distance PERMANOVA and Cartesian423

MANOVA perform similarly well in statistically differentiating colours in percep-424

tual space (Fig. 3). Studies have pointed out that distance-based methods perform425

poorly when the experimental design is unbalanced or when there is heteroscedas-426

ticity (though, among distance-based methods, PERMANOVA outperforms other427
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approaches; Anderson & Walsh, 2013; Warton et al., 2012). It is important to note428

that these are often common features of, and applicable to, colour data (Endler429

& Mielke, 2005), and that these assumptions should be considered and verified.430

However, this might still be the most robust option for high-dimensional visual431

systems (e.g. Arikawa et al., 1987; Cronin & Marshall, 1989), by reducing data432

to a single metric of distance. Recently, Delhey et al. (2015) advocated a similar433

MANOVA approach, by applying a Principal Component Analysis (PCA) to the434

noise-corrected Cartesian coordinates prior to the test. However, if all the princi-435

pal components are used in the MANOVA, results will be numerically identical to436

directly using the XYZ coordinates (which is preferable, since it is often tempting437

to discard PC axes of low variance, which could be problematic given that those438

axes may be involved in group differentiation). While we have focused on tests439

of differences in the location of colours in colour space, we recognise that other440

characteristics — such as differences in dispersion and correlation structure, and441

to identify the direction of variation among groups — might themselves be of442

biological interest, for which a PCA approach may be particularly useful.443

The MANOVA approach can be extended to multivariate generalizations of444

generalized linear models by using the noise-corrected Cartesian coordinates as445

response variables (Hadfield, 2010). These models can also relax the assumptions446

of heteroscedasticity by estimating the variance-covariance of the responses (Had-447

field, 2010), and can be extended to include various error and model structures,448

such as hierarchical and phylogenetic models (Hadfield & Nakagawa, 2010). Still,449

these approaches will only test for the statistical separation in colour space, so450

estimating the magnitude of that separation is still necessary. The bootstrapped451

distance provides an easy to interpret measure of uncertainty to the mean dis-452

tance estimate. Under a Bayesian approach, the mean distance bootstrap can be453

substituted by estimating credible intervals for the distance between perceptually-454

corrected Cartesian centroids from the posterior distribution, though this will be455

influenced by the priors adopted (Hadfield, 2010, see Electronic Supplementary456

23

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/175992doi: bioRxiv preprint 

https://doi.org/10.1101/175992


Material for an example analysis).457

Irrespective of the method used, it is essential to parametrize the underly-458

ing visual model appropriately (Garcia et al., 2017; Olsson et al., 2017). The Weber459

fraction and receptor densities chosen will strongly affect noise-corrected distances460

since they directly scale with the JND unit (Bitton et al., 2017). Further, even under461

adequate values of the Weber fraction it is important to realize that the unit JND462

usually reflects psychophysical performance under extremely controlled condi-463

tions (Kelber et al., 2003; Olsson et al., 2015), and that more conservative estimates464

of 2-4+ JND may be more appropriate for ecological and evolutionary questions465

(Osorio et al., 2004; Schaefer et al., 2007). Sensitivity analyses are also useful for466

exploring the robustness of conclusions against parameter variation, particularly467

in the case of non-model systems where such values are often assumed or drawn468

from related species (Bitton et al., 2017; Olsson et al., 2017). More broadly, we af-469

firm recent (and ongoing) calls for pragmatism when drawing inferences from470

any such model (Marshall & Simmons, 2017; Olsson et al., 2017; Vasas et al., 2017).471

Colour spaces are valuable tools, but ultimately demand ongoing feedback from472

physiological and behavioural tests to improve our understanding of complex bi-473

ological phenomena.474

Our results show that insight into the biology of colour and its role in commu-475

nication is best achieved by disentangling the implicit assumptions in questions476

of discriminability. By bringing these assumptions to light, our two-step approach477

offers a flexible procedure for examining the statistical presence and theoretical478

magnitude of differences between colour samples. We expect it will bring exciting479

new perspectives on the role of colour in intra- and interspecific interactions, and480

provide an efficient analytical framework for the study of colour in nature.481
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Implementation and data accessibility482

Analyses and simulations can be found in https://github.com/rmaia/msdichromatism/,483

and the described methods are fully implemented in the R package pavo as of ver-484

sion 1.3.1, available via CRAN. Key functions include bootcoldist which calcu-485

lates the bootstrapped confidence intervals for mean distances, while jnd2xyz486

converts chromatic distances in JNDs to noise-corrected Cartesian coordinates487

. Multi-dimensional plotting options for noise-converted coordinates are also488

available. Lizard colour data from Whiting et al. 2015 are available at http:489

//dx.doi.org/10.6084/m9.figshare.1452908.490
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