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Abstract 1 

A complete understanding of influenza virus evolution requires studies at all levels, as viral 2 

evolutionary dynamics may differ across spatial and temporal scales. The relative contribution of 3 

deterministic processes, such as selection, and stochastic processes, such as genetic drift, is 4 

influenced by the virus’ effective population size. While the global evolution of influenza A virus 5 

(IAV) is dominated by the positive selection of novel antigenic variants that circulate in the 6 

tropics, much less is known about the virus’ evolution within and between human hosts. With 7 

few exceptions, most of the available data derive from studies of chronically infected, 8 

immunocompromised hosts, experimental infections with attenuated viruses, or animal models. 9 

Here we define the evolutionary dynamics of IAV in human hosts through next generation 10 

sequencing of 249 upper respiratory specimens from 200 individuals collected over 6290 11 

person-seasons of observation. Because these viruses were collected over 5 seasons from 12 

individuals in a prospective community-based cohort, they are broadly representative of natural 13 

human infections with seasonal viruses. Within host genetic diversity was low, and we found 14 

little evidence for positive selection of minority variants. We used viral sequence data from 35 15 

serially sampled individuals to estimate a within host effective population size of 30-50. This 16 

estimate is consistent across several models and robust to the models’ underlying assumptions. 17 

We also identified 43 epidemiologically linked and genetically validated transmission pairs. 18 

Maximum likelihood optimization of multiple transmission models estimates an effective 19 

transmission bottleneck of 1-2 distinct genomes. Our data suggest that positive selection of 20 

novel viral variants is inefficient at the level of the individual host and that genetic drift and other 21 

stochastic processes dominate the within and between host evolution of influenza A viruses. 22 

 23 

Introduction 24 

The rapid evolution of influenza viruses has led to reduced vaccine efficacy, widespread drug 25 

resistance, and the continuing emergence of novel strains. Broadly speaking, evolution is the 26 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2017. ; https://doi.org/10.1101/176362doi: bioRxiv preprint 

https://doi.org/10.1101/176362
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

product of deterministic processes, such as selection, and stochastic processes, such as 27 

genetic drift (1). The relative contribution of each is greatly affected by the effective population 28 

size, or size of an idealized population whose dynamics are similar to that of the population in 29 

question (2). If the effective population size of a virus is large, as in quasispecies models, 30 

evolution is largely deterministic and the frequency of a mutation can be predicted based on its 31 

starting frequency and selection coefficient. In small populations, selection is inefficient, and 32 

changes in mutation frequency are strongly influenced by genetic drift. 33 

 34 

Viral dynamics may differ across spatial and temporal scales, and a complete understanding of 35 

influenza evolution requires studies at all levels (3, 4) .The global evolution of influenza A virus 36 

(IAV) is dominated by the positive selection of novel antigenic variants that circulate in the 37 

tropics and subsequently seed annual epidemics in the Northern and Southern hemisphere (5). 38 

Whole genome sequencing has also demonstrated the importance of intrasubtype reassortment 39 

to the emergence of diverse strains that differ in their antigenicity. While continual positive 40 

selection of antigenically drifted variants drives global patterns, whole genome sequencing of 41 

viruses on more local scales suggests the importance of stochastic processes such as strain 42 

migration and within-clade reassortment (6). 43 

 44 

With the advent of next generation sequencing, it is now feasible to efficiently sequence patient-45 

derived isolates at sufficient depth of coverage to define the diversity and dynamics of virus 46 

evolution within individual hosts (7). Studies of IAV populations in animal and human systems 47 

suggest that most intrahost single nucleotide variants (iSNV) are rare and that intrahost 48 

populations are subject to strong purifying selection (8-14). While positive selection of adaptive 49 

variants is commonly observed in cell culture (15-17), it has only been documented within 50 

human hosts in the extreme cases of drug resistance (8, 18, 19), long-term infection of 51 

immunocompromised hosts (20) or experimental infections with attenuated viruses (21). Indeed, 52 
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we and others have been unable to identify evidence for positive selection in natural human 53 

infections (13, 14), and its relevance to within host processes is unclear. 54 

 55 

Despite limited evidence for positive selection, it is clear that novel mutations do arise within 56 

hosts. Their potential for subsequent spread through host populations is determined by the size 57 

of the transmission bottleneck (22, 23). If the transmission bottleneck is sufficiently wide, low 58 

frequency variants can plausibly be transmitted and spread through host populations (24). 59 

Because the transmission bottleneck is conceptually similar to the effective population size 60 

between hosts, its size will also inform the relative importance of selection and genetic drift in 61 

determining which variants are transmitted. While experimental infections of guinea pigs and 62 

ferrets suggest a very narrow transmission bottleneck (25, 26), studies of equine influenza 63 

support a bottleneck wide enough to allow transmission of rare iSNV (9, 27). The only available 64 

genetic study of influenza virus transmission in humans estimated a remarkably large 65 

transmission bottleneck, allowing for transmission of 100-200 genomes (11, 28). 66 

 67 

Here, we use next generation sequencing of within host influenza virus populations to define the 68 

evolutionary dynamics of influenza A viruses (IAV) within and between human hosts. We apply 69 

a benchmarked analysis pipeline to identify iSNV and to characterize the genetic diversity of 70 

H3N2 and H1N1 populations collected over five post-pandemic seasons from individuals 71 

enrolled in a prospective household study of influenza. We use these data to estimate the in 72 

vivo mutation rate and the within and between host effective population size. We find that 73 

intrahost populations are characterized by purifying selection, a small effective population size, 74 

and limited positive selection. Contrary to what has been previously reported for human 75 

influenza transmission (11), but consistent with what has been observed in other viruses (23), 76 

we identify a very tight transmission bottleneck that limits the transmission of rare variants. 77 

 78 
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Results 79 

We used next generation sequencing to characterize influenza virus populations collected from 80 

individuals enrolled in the Household Influenza Vaccine Effectiveness (HIVE) study (29-32), a 81 

community-based cohort that enrolls 213-340 households of 3 or more individuals in 82 

Southeastern Michigan each year (Table 1). These households are followed prospectively from 83 

October to April, with symptom-triggered collection of nasal and throat swab specimens for 84 

identification of respiratory viruses by RT-PCR (see Methods). In contrast to case-ascertained 85 

studies, which identify households based on an index case who seeks medical care, the HIVE 86 

study identifies individuals regardless of illness severity. In the first four seasons of the study 87 

(2010-2011 through 2013-2014), respiratory specimens were collected 0-7 days after illness 88 

onset. Beginning in the 2014-2015 season, each individual provided two samples, a self-89 

collected specimen at the time of symptom onset and a clinic-collected specimen obtained 0-7 90 

days later. Each year, 59-69% of individuals had self-reported or confirmed receipt of that 91 

season’s vaccine prior to local circulation of influenza virus. 92 

 93 

Over five seasons and nearly 6,290 person-seasons of observation, we identified 77 cases of 94 

influenza A/H1N1pdm09 infection and 313 cases of influenza A/H3N2 infection (Table 1). 95 

Approximately half of the cases (n=166) were identified in the 2014-2015 season, in which there 96 

was an antigenic mismatch between the vaccine and circulating strains (33). All other seasons 97 

were antigenically matched. Individuals within a household were considered an 98 

epidemiologically linked transmission pair if they were both positive for the same subtype of 99 

influenza virus within 7 days of each other. Several households had 3 or 4 symptomatic cases 100 

within this one-week window, suggestive of possible transmission chains (Table 1). 101 

 102 

Within host populations have low genetic diversity 103 
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We processed all specimens for viral load quantification and next generation sequencing. Viral 104 

load measurements (genome copies per µl) were used for quality control in variant calling, 105 

which we have shown is highly sensitive to input titer (34) (Figure 1A). Accordingly, we report 106 

data on 249 high quality specimens from 200 individuals, which had a viral load of >103 copies 107 

per microliter of transport media, adequate RT-PCR amplification of all eight genomic segments, 108 

and an average read coverage of >103 across the genome (Table 1, Supplemental Figure 1).  109 

 110 

We identified intrahost single nucleotide variants (iSNV) using our empirically validated analysis 111 

pipeline (34). Our approach relies heavily on the variant caller DeepSNV, which uses a clonal 112 

plasmid control to distinguish between true iSNV and errors introduced during sample 113 

preparation and/or sequencing (35). Given the diversity of influenza viruses that circulate locally 114 

each season, there were a number of instances in which our patient-derived samples had 115 

mutations that were essentially fixed (>0.95 frequency) relative to the clonal control. DeepSNV 116 

is unable to estimate an error rate for the control or reference base at these positions. We 117 

therefore performed an additional benchmarking experiment to identify a threshold for majority 118 

iSNV at which we could correctly infer whether or not the corresponding minor allele was also 119 

present (see Methods). We found that we could correctly identify a minor allele at a frequency of 120 

≥2% when the frequency of the major allele was ≤98%. We therefore report data on iSNV 121 

present at frequencies between 2 and 98%. As expected, this threshold improved the specificity 122 

of our iSNV identification and decreased our sensitivity to detect variants below 5% compared to 123 

our initial validation experiment (34), which did not employ a frequency threshold (Supplemental 124 

Table 1). 125 

 126 

Consistent with our previous studies and those of others, we found that the within host diversity 127 

of human influenza A virus (IAV) populations is low (11, 13, 14, 21, 34). Two hundred forty-three 128 

out of the 249 samples had fewer than 10 minority iSNV (median 2, IQR 1-3). There were 6 129 
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samples with greater than 10 minority iSNV. In 3 of these cases, the frequency of iSNVs were 130 

tightly distributed about a mean suggesting that the iSNV were linked and that the samples 131 

represented mixed infections. Consistent with this hypothesis, putative genomic haplotypes 132 

based on these minority iSNV clustered with distinct isolates on phylogenetic trees 133 

(Supplemental Figures 2 and 3). While viral shedding was well correlated with days post 134 

symptom onset (Figure 1A) the number of minority iSNV identified was not affected by the day 135 

of infection, viral load, subtype, or vaccination status (Figure 1B and Supplemental Figure 4). 136 

 137 

The vast majority of minority variants were rare (frequency 0.02-0.07), and iSNV were 138 

distributed evenly across the genome (Figure 1C and 1D). The ratio of nonsynonymous to 139 

synonymous variants was 0.64 and was never greater than 1 in any 5% bin, which suggests 140 

that within host populations were under purifying selection. We also found that minority variants 141 

were rarely shared among multiple individuals. Ninety-five percent of minority iSNV were only 142 

found once, 4.7% were found in 2 individuals, and no minority iSNV were found in more than 3 143 

individuals. The low level of shared diversity suggests that within host populations were 144 

exploring distinct regions of sequence space with little evidence for parallel evolution. Of the 31 145 

minority iSNV that were found in multiple individuals (triangles in Figure 1D), 4 were 146 

nonsynonymous. 147 

 148 

Although the full range of the H3 antigenic sites have not been functionally defined, it is 149 

estimated that 131 of the 329 amino acids in HA1 lie in or near these sites (36). We identified 17 150 

minority nonsynonymous iSNV in these regions (Supplemental Table 2). Six of these were in 151 

positions that differ among antigenically drifted viruses (37, 38), and two (193S and 189N) lie in 152 

the “antigenic ridge” that is a major contributor to drift (39). Three of these have been detected 153 

at the global level as consensus variants since the time of isolation (128A, 193S and 262N) with 154 

two (193S and 262N) seemingly increasing in global frequency (40) (Supplemental Figure 5). 155 
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Additionally, we identified 1 putative H1N1 antigenic variant (208K in Ca) (41, 42). In total, 156 

putative antigenic variants account for 1.0-2.5% of minority iSNV identified and were found in 157 

3.5-7.5% of infections. None of these iSNV were shared among multiple individuals. 158 

 159 

Estimation of effective population size 160 

Given the above observations, we hypothesized that within host populations of IAV are under 161 

purifying selection and that variants that rise to detectable levels do so by a neutral process as 162 

opposed to positive selection. Consistent with this hypothesis, we found that nonsynonymous 163 

and synonymous iSNV exhibited similar changes in frequency over time in the 35 individuals 164 

who provided serial specimens that contained iSNV (Figure 2A and 2B). We used the diffusion 165 

approximation to the Wright-Fisher model in conjunction with maximum likelihood estimation to 166 

determine the within host effective population size (Ne) of IAV (43). This model assumes that 167 

changes in iSNV frequency are due solely to random genetic drift and not selection, that iSNV 168 

are independent of one another, and that the effective population is sufficiently large to justify a 169 

continuous approximation to changes in allele frequency. While it is impossible to predict with 170 

certainty the trajectory of allele frequencies under random genetic drift, the Wright-Fisher model, 171 

and the diffusion approximation in particular, assigns probabilities to frequency changes given 172 

an Ne and the number of generations between sample times. In our model we fixed the within 173 

host generation time as either 6 or 12 hours (24) and report the findings for the 6 hour 174 

generation time below. We then asked what population size makes the observed changes in 175 

frequency most likely (Figure 2B). We restricted this analysis to samples taken at least 1 day 176 

apart (n = 29), as there was very little change in iSNV frequency in populations sampled twice 177 

on the same day (R = 0.990, Figure 2B and Supplemental Figure 6). The concordance of same 178 

day samples suggests that our sampling procedure is reproducible and that less than a 179 

generation had passed between samplings. Maximum likelihood optimization of this diffusion 180 

model revealed a within host effective population size of 35 (95% CI 26-46, Table 2).  181 
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 182 

The diffusion approximation makes several simplifying assumptions, which if violated could 183 

influence our findings. In particular, the model assumes a large population. To ensure our 184 

results were robust to this assumption, we employed a discrete interpretation of the Wright-185 

Fisher model which makes no assumptions about population size (44). In this case we found an 186 

effective population size of 32 (95% CI 28-41), very close to our original estimate (Table 2). 187 

Both models assume complete independence of iSNV.  To ensure this assumption did not affect 188 

our results, we fit the discrete model 1000 times, each time randomly subsetting our data such 189 

that only one iSNV per individual was included. This simulates a situation in which all modeled 190 

iSNV are independent and our assumption is met. Under these conditions we found a median 191 

effective population size of 33 (IQR 32-40), demonstrating negligible bias in the initial analysis 192 

due to correlation between iSNV. 193 

 194 

As above, most iSNV in the longitudinal samples were rare (< 10%) and many became extinct 195 

between samplings. To ensure that our models were capable of accurately estimating the 196 

effective population size from such data, we simulated 1000 Wright-Fisher populations with 197 

iSNV present at approximately the same starting frequencies as in our data set an Ne of 30, 50, 198 

or 100. In these simulations, we found mean Ne of 34, 56 and 117 (Figure 2C), which suggests 199 

that our estimate is not an artifact of the underlying data structure. 200 

 201 

To this point, we have assumed that neutral processes are responsible for the observed 202 

changes in iSNV frequency within hosts. Although this assumption seems justified at least in 203 

part by the analysis above, we tested the robustness of our models by fitting the 204 

nonsynonymous (n = 27) and synonymous iSNV (n = 36) separately. Here, we estimated an 205 

effective population size of 30 using the nonsynonymous iSNV and an effective population size 206 

of 37 using the synonymous iSNV (Table 2). These estimates are very close to that derived 207 
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from the whole dataset and suggest that nonsynonymous and synonymous mutations are 208 

influenced by similar within host processes. To further ensure that our results were not driven by 209 

a few outliers subject to strong selection, we ranked iSNV by their change in frequency over 210 

time and consecutively removed iSNV with the most extreme changes. We estimated the 211 

effective population size at each iteration and found we would have to remove the top 75% most 212 

extreme iSNV to increase the effective population size by a factor of 10 (Figure 2D). Therefore, 213 

our estimates are robust to a reasonable number of non-neutral sites. Finally, we also applied a 214 

separate Approximate Bayesian Computational (ABC) method, which uses a non-biased 215 

moment estimator in conjunction with ABC to estimate the effective population size of a 216 

population as well as selection coefficients for the iSNV present (17, 45). This distinct approach 217 

relaxes our assumption regarding neutrality. We applied this analysis to the 16 longitudinal pairs 218 

that were sampled 1 day apart and estimated an effective population of 54. We were unable to 219 

reject neutrality for just 4 of the 35 iSNV in this data set (Figure 2E). These four mutations were 220 

distributed between 2 individuals. Each individual had one nonsynonymous iSNV and one 221 

synonymous iSNV. Neither were putative antigenic variants. 222 

  223 

Identification of forty-three transmission pairs 224 

The amount of diversity that passes between individuals during transmission determines the 225 

extent to which within host evolution can affect larger evolutionary trends. We analyzed virus 226 

populations from 85 households with concurrent infections to quantify the level of shared viral 227 

diversity and to estimate the size of the IAV transmission bottleneck (Table 1).  Because 228 

epidemiological linkage does not guarantee that concurrent cases constitute a transmission pair 229 

(46), we used a stringent rubric to eliminate individuals in a household with co-incident 230 

community acquisition of distinct viruses. We considered all individuals in a household with 231 

symptom onset within a 7-day window to be epidemiologically linked. The donor in each putative 232 

pair was defined as the individual with the earlier onset of symptoms. We discarded a 233 
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transmission event if there were multiple possible donors with the same day of symptom onset. 234 

Donor and recipients were not allowed to have symptom onset on the same day, unless the 235 

individuals were both index cases for the household. In these 6 instances, we analyzed the data 236 

for both possible donor-recipient directionalities. Based on these criteria, our cohort had 124 237 

putative household transmission events over 5 seasons (Table 1). Of these, 52 pairs had 238 

samples of sufficient quality for reliable identification of iSNV from both individuals. 239 

 240 

We next used sequence data to determine which of these 52 epidemiologically linked pairs 241 

represented true household transmission events as opposed to coincident community-acquired 242 

infections. We measured the genetic distance between influenza populations from each 243 

household pair by L1-norm and compared these distances to those of randomly assigned 244 

community pairs within each season (Figure 3A, see also trees in Supplemental Figures 2 and 245 

3). While the L1-norm of a pair captures differences between the populations at all levels, in our 246 

cohort, it was largely driven by differences at the consensus level. We only considered 247 

individuals to be a true transmission pair if they had a genetic distance below the 5th percentile 248 

of the community distribution of randomly assigned pairs (Figure 3A). Forty-seven household 249 

transmission events met this criterion (Figure 3B). Among these 47 sequence-validated 250 

transmission pairs, 3 had no iSNV in the donor and 1 additional donor appeared to have a 251 

mixed infection. These four transmission events were removed from our bottleneck analysis as 252 

donors without iSNV are uninformative and mixed infections violate model assumptions of site 253 

independence (see Methods). We estimated the transmission bottleneck in the remaining 43 254 

high-quality pairs (37 H3N2, 6 H1N1, Figure 3B). 255 

 256 

A transmission bottleneck restricts the amount of genetic diversity that is shared by both 257 

members of a pair. We found that few minority iSNV where polymorphic in both the donor and 258 

recipient populations (Figure 3C). Minority iSNV in the donor were either absent or fixed in the 259 
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recipient (top and bottom of plot). The lack of shared polymorphic sites (which would lie in the 260 

middle of the plot in Figure 3C) suggests a stringent effective bottleneck in which only one allele 261 

is passed from donor to recipient. 262 

 263 

Estimation of the transmission bottleneck 264 

We applied a simple presence-absence model to quantify the effective transmission bottleneck 265 

in our cohort. True to its name, the presence-absence model simply measures whether or not a 266 

donor allele is present or absent in the recipient sample. Under this model, transmission is a 267 

neutral, random sampling process, and the probability of transmission is simply the probability 268 

that the iSNV will be included at least once in the sample given its frequency in the donor and 269 

the sample size, or bottleneck. We estimated a distinct bottleneck for each transmission pair 270 

and assumed these bottlenecks followed a zero-truncated Poisson distribution. This model also 271 

assumes that the sensitivity for detection of transmitted iSNVs is perfect and that each genomic 272 

site is independent of all others. We then used maximum likelihood optimization to determine 273 

the distribution of bottleneck sizes that best fit the data. We found a zero-truncated Poisson 274 

distribution with a mean of 1.66 (lambda = 1.12; 0.51-1.99, 95% CI) best described the data. 275 

This distribution indicates that the majority of bottlenecks are 1, and that very few are greater 276 

than 5 (probability 0.2%). There were no apparent differences between H3N2 and H1N1 pairs. 277 

The model fit was evaluated by simulating each transmission event 1,000 times. The presence 278 

or absence of each iSNV in the recipient was noted and the probability of transmission given 279 

donor frequency determined. The range of simulated outcomes matched the data well, which 280 

suggests that transmission is a selectively neutral event characterized by a stringent bottleneck 281 

(Figure 3D). 282 

 283 

The majority of transmitted iSNV were fixed in the recipients. Although this trend matches the 284 

expectation given a small bottleneck, these data could also be consistent with a model in which 285 
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the probability of transmission is determined by the frequency at which iSNV are found at the 286 

community level. To ensure our bottleneck estimates were an outcome of neutral transmission 287 

and not an artifact of the larger community population structure or selection for the community 288 

consensus, we created a null model by randomly assigning community “recipients” to each 289 

donor in our transmission pairings. Each community “recipient” was drawn from the pool of 290 

individuals that were infected after the donor but in the same season and with the same subtype 291 

as the donor. We then identified whether or not each donor iSNV was found in the community 292 

recipient and determined the relationship between donor frequency and probability of 293 

“transmission” for 1,000 such simulations. Given the low level of diversity in our cohort, we 294 

predicted that rare iSNV would be unlikely to be found in a random sample, while the major 295 

alleles should be fixed in most random samples. This trend is clearly demonstrated in Figure 3E. 296 

It is also clear that this null model fit the data much more poorly than the presence/absence 297 

model, suggesting that the observed data in our bona fide transmission pairs were not a product 298 

of community metapopulation structure, but rather an outcome of neutral sampling events. 299 

 300 

Because our bottleneck estimates were much lower than what has previously been reported for 301 

human influenza (11), we investigated the impact that our simplifying assumptions could have 302 

on our results. In particular, the presence-absence model assumes perfect detection of variants 303 

in donor and recipient, and it can therefore underestimate the size of a bottleneck in the setting 304 

of donor-derived variants that are transmitted but not detected in the recipient. These “false 305 

negative” variants can occur when the frequency of an iSNV drifts below the level of detection 306 

(e.g. 2% frequency) or when the sensitivity of sequencing is less than perfect for variants at that 307 

threshold (e.g. 15% sensitivity for variants at a frequency 2-5%). Leonard et al. recently 308 

suggested that a beta binomial transmission model can account for the stochastic loss of 309 

transmitted variants, by allowing for a limited amount of time-independent genetic drift within the 310 

recipient (28). We modified this model to also account for our benchmarked sensitivity for rare 311 
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variants (Supplemental Table 1). For all donor-derived iSNV that were absent in the recipient, 312 

we estimated the likelihood that these variants were transmitted but either drifted below our 313 

level of detection or drifted below 10% and were missed by our variant identification. Despite the 314 

relaxed assumptions provided by this modified beta binomial model, maximum likelihood 315 

estimation only marginally increased the average bottleneck size (mean 1.71: lambda 1.19; 316 

0.55-2.12, 95%CI) relative to the simpler presence-absence model. We simulated transmission 317 

and subsequent random drift using the beta binomial model and the estimated bottleneck 318 

distribution as above (Figure 3F). Although the model matched the data well, the fit was not 319 

substantially better than that of the presence-absence model (AIC 75.5 for beta-binomial 320 

compared to 76.7 for the presence-absence model). 321 

 322 

The mutation rate of influenza A virus within human hosts 323 

The stringent influenza transmission bottleneck suggests that most infections are founded by 324 

one lineage and develop under essentially clonal processes. The diffusion approximation to the 325 

Wright-Fisher model (see above and Figure 2) can be used to predict the rate at which 326 

homogenous populations diversify from a clonal ancestor as a function of mutation rate and 327 

effective population size (2). By applying maximum likelihood optimization to the model and the 328 

frequency distribution of observed alleles (Figure 1C) we estimated an in vivo neutral mutation 329 

rate of 4x10-6 mutations per nucleotide per replication cycle and a within host effective 330 

population size of 33 (given a generation time of 6 hours). This is consistent with the estimates 331 

above. As we have recently estimated that 13% of mutations in influenza A virus are neutral 332 

(47), we estimated that the true in vivo mutation rate would be approximately 8 fold higher than 333 

our neutral rate – on the order of 3-4 x 10-5. This in vivo mutation rate is close to our recently 334 

published estimate of influenza A mutation rates in epithelial cells by fluctuation test (48).  335 

 336 

Discussion 337 
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We find that seasonal influenza A viruses replicate within and spread among human hosts with 338 

very small effective population sizes. Because we used viruses collected over five influenza 339 

seasons from individuals enrolled in a prospective household cohort, these dynamics are likely 340 

to be broadly representative of many seasonal influenza infections. Other notable strengths of 341 

our study include a validated sequence analysis pipeline and the use of models that are robust 342 

to the underlying assumptions. The small effective size of intrahost populations and the tight 343 

transmission bottleneck suggest that stochastic processes, such as genetic drift, dominate 344 

influenza virus evolution at the level of individual hosts. This stands in contrast to prominent role 345 

of positive selection in the global evolution of seasonal influenza.  346 

 347 

While influenza virus populations are subject to continuous natural selection, selection is an 348 

inefficient driver of evolution in small populations (2). Despite a large census, our findings 349 

indicate that intrahost populations of influenza virus behave like much smaller populations. We 350 

therefore expect random drift to be the major force driving the evolution of influenza virus within 351 

human hosts. This finding contradicts previous studies, which have found signatures of adaptive 352 

evolution in infected hosts (8, 19, 21, 49). However, these studies rely on data from infections in 353 

which selective pressures are likely to be particularly strong (e.g. due to drug treatment or 354 

infection with a poorly adapted virus), or in which the virus has been allowed to propagate for 355 

extended periods of time. Under these conditions, one can identify the action of positive 356 

selection on within host populations. We suggest that these are important exceptions to the drift 357 

regime defined here. 358 

  359 

We used both a simple presence-absence model and a more complex beta binomial model to 360 

estimate an extremely tight transmission bottleneck. The small bottleneck size is driven by the 361 

fact that within host diversity was low, and there were very few minority iSNV shared among 362 

individuals in a transmission chain. While our methods for variant calling may be more 363 
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conservative than those used in similar studies, it is unlikely that our small bottleneck is an 364 

artifact of this stringency. The beta binomial model accounts for false negative iSNV (i.e. 365 

variants that are transmitted but not detected in the donor), which can lead to underestimated 366 

transmission bottlenecks (28). Our formulation of this model incorporates empirically determined 367 

sensitivity and specificity metrics to account for both false negative iSNV and false positive iSNV 368 

(34). Furthermore, if rare, undetected, iSNV were shared between linked individuals, we would 369 

expect to see transmission of more common iSNV (frequency 5-10%), which we can detect with 370 

high sensitivity. In our dataset, however, the majority of minority iSNV above 5% were not 371 

shared. 372 

 373 

Although the size of our transmission bottleneck is consistent with estimates obtained for other 374 

viruses and in experimental animal models of influenza (23, 25), it differs substantially from the 375 

only other study of natural human infection (11, 28). While there are significant differences in the 376 

design and demographics of the cohorts, the influenza seasons under study, and sequencing 377 

methodology, the bottleneck size estimates are fundamentally driven by the amount of viral 378 

diversity shared among individuals in a household. Importantly, we used both epidemiologic 379 

linkage and the genetic relatedness of viruses in households to define transmission pairs and to 380 

exclude confounding from the observed background diversity in the community. Whereas we 381 

find that household transmission pairs and randomly assigned community pairs had distinct 382 

patterns of shared consensus and minority variant diversity, Poon et al. found that rare iSNV 383 

were often shared in both household pairs and randomly assigned community pairs (11). 384 

 385 

Accurately modeling and predicting influenza virus evolution requires a thorough understanding 386 

of the virus’ population structure. Some models have assumed a large intrahost population and 387 

a relatively loose transmission bottleneck (24, 50, 51). Here, adaptive iSNV can rapidly rise in 388 

frequency and low frequency variants can have a high probability of transmission. In such a 389 
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model, it would be possible for the highly pathogenic H5N1 virus to develop the requisite 4-5 390 

mutations to become transmissible through aerosols during a single acute infection of a human 391 

host (50, 52). Although the dynamics of emergent avian influenza and human adapted seasonal 392 

viruses likely differ, our work suggests that fixation of multiple mutations over the course of a 393 

single acute infection is unlikely.  394 

 395 

While it seems counterintuitive that influenza evolution is dominated by drift on local scales and 396 

positive selection on global scales, these models are not necessarily in conflict. Within 397 

individuals we have shown that the effective population is quite small, which suggests that 398 

selection is inefficient. Indeed, we have deeply sequenced 332 intrahost populations from 283 399 

individuals collected over more than 11,000 person-seasons of observation and only identified a 400 

handful of minority antigenic variants with little evidence for positive selection (this work and 401 

(14)). However, with several million infected individuals each year, even inefficient processes 402 

and rare events are likely to happen at a reasonable frequency on a global scale. 403 

 404 

Methods 405 

 406 

Description of the cohort 407 

The HIVE cohort (30, 31), established at the UM School of Public Health in 2010, enrolled and 408 

followed households of at least 3 individuals with at least two children <18 years of age; 409 

households were then followed prospectively throughout the year for ascertainment of acute 410 

respiratory illnesses. Study participants were queried weekly about the onset of illnesses 411 

meeting our standard case definition (two or more of: cough, fever/feverishness, nasal 412 

congestion, sore throat, body aches, chills, headache if ≥3 yrs old; cough, fever/feverishness, 413 

nasal congestion/runny nose, trouble breathing, fussiness/irritability, decreased appetite, fatigue 414 

in <3 yrs old), and the symptomatic participants then attended a study visit at the research clinic 415 
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on site at UM School of Public Health for sample collection. For the 2010-2011 through 2013-416 

2014 seasons, a combined nasal and throat swab (or nasal swab only in children < 3 years of 417 

age) was collected at the onsite research clinic by the study team. Beginning with the 2014-418 

2015 seasons, respiratory samples were collected at two time points in each participant meeting 419 

the case definition; the first collection was a self- or parent-collected nasal swab collected at 420 

illness onset. Subsequently, a combined nasal and throat swab (or nasal swab only in children < 421 

3 years of age) was collected at the onsite research clinic by the study team. Families with very 422 

young children (< 3 years of age) were followed using home visits by a trained medical assistant.  423 

 424 

Active illness surveillance and sample collection for cases were conducted October through 425 

May and fully captured the influenza season in Southeast Michigan in each of the study years. 426 

Data on participant, family and household characteristics, and on high-risk conditions were 427 

additionally collected by annual interview and review of each participant’s electronic medical 428 

record. In the current cohort, serum specimens were also collected twice yearly during fall 429 

(November-December) and spring (May-June) for serologic testing for antibodies against 430 

influenza. 431 

 432 

This study was approved by the Institutional Review Board of the University of Michigan Medical 433 

School, and all human subjects provided informed consent. 434 

 435 

Identification of influenza virus 436 

Respiratory specimens were processed daily to determine laboratory-confirmed influenza 437 

infection. Viral RNA was extracted (Qiagen QIAamp Viral RNA Mini Kit) and tested by RT-PCR 438 

for universal detection of influenza A and B. Samples with positive results by the universal 439 

assay were then subtyped to determine A(H3N2), A(H1N1), A(pH1N1) subtypes and 440 

B(Yamagata) and B(Victoria) lineages. We used primers, probes and amplification parameters 441 
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developed by the Centers for Disease Control and Prevention Influenza Division for use on the 442 

ABI 7500 Fast Real-Time PCR System platform. An RNAseP detection step was run for each 443 

specimen to confirm specimen quality and successful RNA extraction. 444 

 445 

Quantification of viral load 446 

Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was performed on 5μl 447 

RNA from each sample using CDC RT-PCR primers InfA Forward, InfA Reverse, and InfA 448 

probe, which bind to a portion of the influenza M gene (CDC protocol, 28 April 2009). Each 449 

reaction contained 5.4μl nuclease-free water, 0.5μl each primer/probe, 0.5μl SuperScript III 450 

RT/Platinum Taq mix (Invitrogen 111732) 12.5μl PCR Master Mix, 0.1μl ROX, 5μl RNA. The 451 

PCR master mix was thawed and stored at 4°C, 24 hours before reaction set-up. A standard 452 

curve relating copy number to Ct value was generated based on 10-fold dilutions of a control 453 

plasmid run in duplicate. 454 

 455 

Illumina library preparation and sequencing 456 

We amplified cDNA corresponding to all 8 genomic segments from 5μl of viral RNA using the 457 

SuperScript III One-Step RT-PCR Platinum Taq HiFi Kit (Invitrogen 12574). Reactions consisted 458 

of 0.5μl Superscript III Platinum Taq Mix, 12.5μl 2x reaction buffer, 6μl DEPC water, and 0.2μl 459 

of 10μM Uni12/Inf1, 0.3μl of 10μM Uni12/Inf3, and 0.5μl of 10μM Uni13/Inf1 universal influenza 460 

A primers (53). The thermocycler protocol was: 42˚C for 60 min then 94˚C for 2 min then 5 461 

cycles of 94˚C for 30 sec, 44˚C for 30 sec, 68˚C for 3 min, then 28 cycles of 94˚C for 30 sec, 462 

57˚C for 30 sec, 68˚C for 3 min. Amplification of all 8 segments was confirmed by gel 463 

electrophoresis, and 750ng of each cDNA mixture were sheared to an average size of 300 to 464 

400bp using a Covaris S220 focused ultrasonicator. Sequencing libraries were prepared using 465 

the NEBNext Ultra DNA library prep kit (NEB E7370L), Agencourt AMPure XP beads (Beckman 466 

Coulter A63881), and NEBNext multiplex oligonucleotides for Illumina (NEB E7600S). The final 467 
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concentration of each barcoded library was determined by Quanti PicoGreen dsDNA 468 

quantification (ThermoFisher Scientific), and equal nanomolar concentrations were pooled. 469 

Residual primer dimers were removed by gel isolation of a 300-500bp band, which was purified 470 

using a GeneJet Gel Extraction Kit (ThermoFisher Scientific). Purified library pools were 471 

sequenced on an Illumina HiSeq 2500 with 2x125 nucleotide paired end reads. All raw 472 

sequence data have been deposited at the NCBI sequence read archive (BioProject submission 473 

ID: SUB2951236). PCR amplicons derived from an equimolar mixture of eight clonal plasmids, 474 

each containing a genomic segment of the circulating strain were processed in similar fashion 475 

and sequenced on the same HiSeq flow cell as the appropriate patient derived samples. These 476 

clonally derived samples served as internal controls to improve the accuracy of variant 477 

identification and control for batch effects that confound sequencing experiments. 478 

 479 

Identification of iSNV 480 

Intrahost single nucleotide variants were identified in samples that had greater than 103 481 

genomes/μl and an average coverage >1000x across the genome. Variants were identified 482 

using DeepSNV and scripts available at https://github.com/lauringlab/variant_pipeline as 483 

described previously (34) with a few minor and necessary modifications. Briefly, reads were 484 

aligned to the reference sequence (H3N2 2010-2011 & 2011-2012 : GenBank CY121496-503, 485 

H3N2 2012-2013:GenBank KJ942680-8, H3N2 2014-2015 : Genbank CY207731-8, H1N1 486 

GenBank : CY121680-8) using Bowtie2 (54). Duplicate reads were then marked and removed 487 

using Picard (http://broadinstitute.github.io/picard/). We identified putative iSNV using DeepSNV. 488 

Bases with phred <30 were masked. Minority iSNV (frequency <50%) were then filtered for 489 

quality using our empirically determined quality thresholds (p-value <0.01 DeepSNV, average 490 

mapping quality >30, average Phred >35, average read position between 31 and 94). To control 491 

for PCR errors in samples with lower input titers, all isolates with titers between 103 and 105 
492 

genomes/μl were processed and sequenced in duplicate. Only iSNV that were found in both 493 
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replicates were included in down stream analysis. The frequency of the variant in the replicate 494 

with higher coverage at the iSNV location was assigned as the frequency of the iSNV. Finally, 495 

any SNV with a frequency below 2% was discarded. 496 

 497 

Given the diversity of the circulating strain in a given season, there were a number of cases in 498 

which isolates contained mutations that were essentially fixed (>95%) relative to the plasmid 499 

control. Often in these cases, the minor allele in the sample matched the major allele in the 500 

plasmid control. We were, therefore, unable to use DeepSNV in estimating the base specific 501 

error rate at this site for these minor alleles and required an alternative means of eliminating 502 

true and false minority iSNV. To this end we applied stringent quality thresholds to these 503 

putative iSNV and implemented a 2% frequency threshold. In order to ensure we were not 504 

introducing a large number of false positive iSNV into our analysis, we performed the following 505 

experiment. Perth (H3N2) samples were sequenced on the same flow cell as both the Perth and 506 

Victoria (H3N2) plasmid controls. Minority iSNV were identified using both plasmid controls. This 507 

allowed us to identify rare iSNV at positions in which the plasmid controls differed both with and 508 

without the error rates provided by DeepSNV. We found that at a frequency threshold of 2% the 509 

methods were nearly identical (NPV of 1, and PPV of 0.94 compared to DeepSNV). 510 

 511 

Overview of models for effective population size 512 

We estimated the effective population size using two separate interpretations of a Wright-Fisher 513 

population. At its base, the Wright-Fisher model describes the expected changes in allele 514 

frequency of an ideal population, which is characterized by non-overlapping generations, no 515 

migration, no novel mutation, and no population structure. We then asked what size effective 516 

population would make the changes in frequency observed in our dataset most likely. We 517 

calculated these values using two applications of the Wright-Fisher model (i) a diffusion 518 
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approximation (43) and (ii) a maximum likelihood approach based on the discrete interpretation 519 

(44). 520 

 521 

For these estimates we restricted our analysis to longitudinal samples from a single individual 522 

that were separated by at least 1 day and only used sites that were polymorphic in the initial 523 

sample (29 of the 49 total serial sample pairs). We modeled only the iSNV that were the minor 524 

allele at the first time point, and we assumed a within host generation time of either 6 or 12 525 

hours as proposed by Geoghegan et. al (24). 526 

 527 

Diffusion approximation 528 

The diffusion approximation was first solved by Kimura in 1955 (43). This approximation to the 529 

discrete Wright-Fisher model has enjoyed widespread use in population genetics as it allows 530 

one to treat the random time dependent probability distribution of final allele frequencies as a 531 

continuous function (e.g. (55-60)). Here, we also included the limitations in our sensitivity to 532 

detect rare iSNV by integrating over regions of this probability density that were either below our 533 

limit of detection or within ranges where we expect less than perfect sensitivity. Our adaptation 534 

of Kimura’s original work is below. 535 

 536 

Let ����, �� , � � ��� be the time dependent probability of a variant drifting from an initial 537 

frequency of �� to �� over the course of � generations given an effective population size of �� 538 

where 0 
 �� 
 1. 539 

 540 

The time dependent derivative of this probability has been defined using the forward 541 

Kolmogorov equation and the solution is here adapted from Kimura, 1955 (43). 542 

 543 
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�� ��, �� , � �� �� � �  ��
�

���
����� � 1��2� � 1���1 � �, � � 2,2, �� � ��1 � �, � � 2,2, �����	�
����

�� ��   
 (1) 544 

 545 

Where � � 1 � � and � is the hypergeometric function. We approximated the infinite sum by 546 

summing over the first 50 terms. When we added an additional 50 terms (100 in total) we found 547 

no appreciable change in the final log likelihoods. 548 

 549 

We denote the event that an allele is not observed at the second time point as �� � 0 and the 550 

probability of such an event as ���� , �� � 0, � � ���. This probability is given in equation 2 as the 551 

sum of the probability that the variant is lost by generation � (i.e. the other allele is fixed 552 

����, 1, � � ����, the probability that it is not detected due to the limit of detection (i.e. ���, �� �553 

0, � � 0 
 �� 
 0.02, ���) and the probability the variant is not detected due to low sensitivity for 554 

rare variant detection (i.e. ����, �� � 0, � � 0.02 
 �� 
 0.1, ���). The probability of not observing 555 

an allele at the second time is then 556 

 557 

�� ��, �� � 0, � �� �� � � �� ��, 1, � �� �� � � �� �, �� � 0, � �� 0 
 �� 
 0.02, �� � � 
                                                                                ����, �� � 0, � � 0.02 
 �� 
 0.1, ��� 558 

  (2) 559 

 560 

The first term in equation 2 is adapted from Kimura, 1955 as 561 

 562 

����, 1, � � ��� � �� � ��

���
2� � 1�������1����1 � �, � � 2,2, �������
����/���� 

 (3)  563 
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Where q is defined as above. (Note that this is simply the probability of fixation for a variant at 564 

initial frequency q). As in equation 1 the infinite sum was approximated with a partial sum of 50 565 

terms. 566 

 567 

The probability of the allele drifting below our limit of detection can be found by integrating 568 

equation 1 between 0 and our limit of detection, 0.02. This was done numerically using the 569 

python package scipy (61). 570 

 571 

���, �� � 0, � � 0 
 �� 
 0.02, ��� � � ��.�

�
���, �� , �|������ 

 (4) 572 

Finally, the probability of an iSNV being present at the second time point, but escaping detection, 573 

is given by the integral of equation 1 between our benchmarked frequencies (0.02,0.05) times 574 

the false negative rate for that range. Here, we assumed the entire range had the same 575 

sensitivity as the benchmarked frequency at the lower bound and rounded recipient titers down 576 

to the nearest log�� titer (e.g. 10�,10�, 10�). We also assumed perfect sensitivity above 10%. 577 

 578 

����, �� � 0, � � 0.02 
 �� 
 0.1, ���� �  ���.�,�.��,�.���

��
FNR � Titer� , '�� � �����

��
��� , �� , � � ������ 

 (5) 579 

Where �FNR � Titer� , '�� is the false negative rate given the frequency and the sample titer (See 580 

Supplemental Table 1) and ����, �� , � � ��� is defined in equation 1. 581 

 582 

The log likelihood of a given population size is then simply the sum of the log of ����, �� , � � ��� 583 

for each minor allele in the data set, where either the position is polymorphic at time � (i.e. 584 

equation 1) or the allele is observed as lost at time � (i.e. equation 2) 585 
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 586 

Discrete Wright-Fisher estimation of �� 587 

The diffusion approximation treats changes in frequency as a continuous process because it 588 

assumes sufficiently large ��. That assumption can be relaxed, and the effective population size 589 

can be determined, by applying a maximum likelihood method developed by Williamsom and 590 

Slaktin 1999 (44). In this model, the true allele frequencies move between discrete states (i.e. 591 

the frequency must be of the form �/�� where � is a whole number in the range )0, ��*. In the 592 

original application, allele counts were used, and sampling error was added to the model as a 593 

binomial distribution with n determined by the sample size. Here, we use the frequencies 594 

available from next generation sequencing and estimate sampling error as a normal distribution 595 

with mean equal to the observed frequency and a standard deviation equal to that observed in 596 

our benchmarking study for the 10� genomes/+l samples (, � 0.014) (34). 597 

 598 

In this model, the probability of observing an allele frequency shift from �� to �� in � generations 599 

provided an effective population of �� is the probability of observing �� given some initial state 600 

�� and the probability of the population having that state, times the probability of observing �� 601 

given some final state �� and the probability of moving from the initial to the final state summed 602 

across all possible states. 603 

���� , �� � ��� �  ��� ,�� ��� � ������� � ������� � ������� � ��, ��� 
 (6) 604 

  605 

Where p are the observed probabilities and q are the real ones (of the form �/�� discussed 606 

above). The likelihood of observing a given frequency �� given a defined state �� is given by the 607 

likelihood of drawing �� from a normal distribution with mean �� and standard deviation 0.014. 608 

 609 
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���� � ��� � Norm��� , 0.014� 
 (7) 610 

As in Williamson and Slatkin 1999, we assume a uniform prior on the initial state. Because we 611 

know that our specificity is near perfect (Supplemental Table 1) and we restrict our analysis to 612 

only polymorphic sites, the probability of any initial state is given by 613 

 614 

���� � ��� � 1�� � 1 

 (8) 615 

   616 

and finally the probability of moving from one state to another in � generations is given by 617 

 618 

���� , �� � ��� � /�0�/� 

 (9) 619 

Where M is a square transmission matrix with 1 � �� � 1 rows and columns. Where 2�,� is the 620 

probability of going from the ith configuration to the jth or the probability of drawing 3 � 1 out of 621 

binomial distribution with mean �� � 1�/�� and a sample size ��. /� is a row vector of initial 622 

frequencies �� with 100% chance of initial state ��, and /� is column vector of the frequencies at 623 

time point � with 100% chance of the final state. In other words /� is a row vector of 1 states 624 

with 0 everywhere except in the ith position where 
���
�� � ��, and /� is a column vector of 1 625 

states with 0 everywhere except the jth position where 
���
�� � �� 626 

Using the scalar and cumulative properties of matrix multiplication equation 6 reduces to 627 

  628 

����, �� � ��� � )0, ���� � ��������� � ���, . . . , ���� � ����	��������	� � ���,0*0� 4 ���� � ����5���� � �����6 
 (10) 629 
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The first and last entries in /� are 0 because we assume all measured sites represent 630 

polymorphisms at the first time of sampling. As above, the log likelihood of a given population 631 

size is then simply the sum of the log of ���� , �� , � � ��� for each minor allele in the data set. 632 

 633 

Simulations 634 

To simulate within host evolution we set �� in equation 10 to either 30, 50 or 100. For each 635 

minor allele we used the closest available non-zero state given the effective population size as 636 

the starting state. We then calculated the probability of moving to any other state and selected a 637 

final state from this distribution. We then drew a final measured frequency from the normal 638 

distribution accounting for measurement errors. 639 

 640 

ABC model 641 

We estimated both the effective population size and selection coefficients using the approximate 642 

Bayesian computation (ABC) described in (17, 45) with the scripts provided in (45). In its current 643 

implementation, this analysis requires the same time points for each sample, and we restricted 644 

this analysis to longitudinal samples taken 1 day apart. This subset constitutes 16 of the 29 645 

modeled longitudinal samples. Briefly, we subsampled polymorphic sites to 1,000x coverage to 646 

estimate allele counts from frequency data as in (17). We then estimated the prior distribution of 647 

the effective population size using 10,000 bootstrap replicates. We selected a uniform 648 

distribution on the range [-0.5,0.5] as the prior distribution for the selection coefficients. The 649 

posterior distributions were determined from accepting the top 0.01% of 100,000 simulations. 650 

 651 

Overview of models used for estimating the transmission bottleneck 652 

We model transmission as a simple binomial sampling process (28). In our first model, we 653 

assume any transmitted iSNV, no matter the frequency, will be detected in the recipient. In the 654 

second, we relax this assumption and account for false negative iSNV in the recipient. To 655 
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include the variance in the transmission bottlenecks between pairs we use maximum likelihood 656 

optimization to fit the average bottleneck size assuming the distribution follows a zero-truncated 657 

Poisson distribution. 658 

 659 

Presence/Absence model 660 

The presence/absence model makes many simplifying assumptions. We assume perfect 661 

detection of all transmitted iSNV in the recipient. For each donor iSNV, we measure only 662 

whether or not the variant is present in the recipient. Any iSNV that is not found in the recipient 663 

is assumed to have not been transmitted. We also assume the probability of transmission is 664 

determined only by the frequency of the iSNV in the donor at the time of sampling (regardless of 665 

how much time passes between sampling and transmission). The probability of transmission is 666 

simply the probability that the iSNV is included at least once in a sample size equal to the 667 

bottleneck. Finally, we assume all genomic sites are independent of one another. For this 668 

reason, we discarded the one case where the donor was likely infected by two strains as the 669 

iSNV were certainly linked. 670 

 671 

In our within host models, we only tracked minor alleles as in our data set we only ever find 2 672 

alleles at each polymorphic site. In this case, the frequency of the major allele is simply one 673 

minus the frequency of the minor allele. Because the presence/absence model is unaware of 674 

the frequency of alleles in the recipient we must track both alleles at each donor polymorphic 675 

site. 676 

 677 

Let 7� and 7 be alleles in some donor 3 at some genomic site �. Let ��7�� be the probability 678 

that the 8 allele is the only transmitted allele. There are then three possible outcomes for each 679 

site. Either only 7� is transmitted, only 7 is transmitted, or both 7� and 7 are transmitted. The 680 

probability of only one allele being transmitted given a bottleneck size of �� is 681 
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 682 

��,��7� � ��� � ��
�
 

 (11) 683 

where �� is the frequency of the 8 allele in the donor. In other words, this is simply the 684 

probability of only drawing 7� in �� draws. 685 

 686 

The probability of both alleles being transmitted is given by 687 

 688 

��,��7�, 7 � ��� � 1 � ���
�
 � �

�
� 
 (12) 689 

where �� and � are the frequencies of the alleles respectively. This is simply the probability of 690 

not picking only 7� or only 7 in �� draws. 691 

 692 

This system could easily be extended to cases where there are more than 2 alleles present at a 693 

site; however, that never occurs in our data set. 694 

 695 

For ease we will denote the likelihood of observing the data at a polymorphic site � in each 696 

donor 3 given the bottleneck size �� as ��,����� where ��,����� � ��,��7� � ��� if only one allele is 697 

transmitted and ��,���� � ��,��7�, 7 � ��� if two alleles are transmitted. 698 

 699 

The log likelihood of a bottleneck of size �� is given by 700 

 701 

99���� �   Ln
��

���,�� 
 (13) 702 

 703 
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where Ln is the natural log, and �, 3 refers to the �th polymorphic site in the 3th donor. This is the 704 

log of the probability of observing the data summed over all polymorphic sites across all donors. 705 

Because the bottleneck size is likely to vary between individuals, we used maximum likelihood 706 

to fit the bottleneck distribution as oppose to fitting a single bottleneck value. Under this model 707 

we assumed the bottlenecks were distributed according to a zero-truncated Poisson distribution 708 

parameterized by <. The likelihood of observing the data given a polymorphic site � in donor 3 709 

and < is 710 

��,��<� �  ��,�
�

�
��
�������� � <� 

 (14) 711 

 712 

where ��,����� is defined as above, ���� � <� is the probability of drawing a bottleneck of size �� 713 

from a zero-truncated Poisson distribution with a mean of 
�

���	�. The sum is across all possible 714 

�� defined on )1, ∞*. For practical purposes, we only investigated bottleneck sizes up to 100, as 715 

< is quite small and the probability of drawing a bottleneck size of 100 from a zero-truncated 716 

Poisson distribution with < � 10 is negligible. We follow this convention whenever this sum 717 

appears. 718 

 719 

The log likelihood of < for the data set is given by 720 

 721 

99�<� �   Ln
��

�  ��,�
�

�
��
�������� � <�� 

 (15) 722 

  723 

Beta Binomial model 724 
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The Beta binomial model is explained in detail in Leonard et al. (28). It is similar to the 725 

presence/absence model in that transmission is modeled as a simple sampling process; 726 

however, it loosens a few restricting assumptions. In this model, the frequencies of transmitted 727 

variants are allowed to change between transmission and sampling according a beta distribution. 728 

The distribution is not dependent on the amount of time that passes between transmission and 729 

sampling, but rather depends on the size of the founding population (here assumed to equal to 730 

��) and the number of variant genomes present in founding population >. Note the frequency in 731 

the donor is assumed to be the same between sampling and transmission. 732 

 733 

The equations below are very similar to those presented by Leonard et al. with two exceptions. 734 

First, we fit a distribution to the bottleneck sizes in our cohort instead of fitting a single value, 735 

and second because we know the sensitivity of our method to detect rare variants based on the 736 

expected frequency and the titer, we can include the possibility that iSNV are transmitted but 737 

are missed due to poor sensitivity. Because the beta binomial model is aware of the frequency 738 

of the iSNV in the recipient, no information is added by tracking both alleles at a genomic site �. 739 

Let ��,�� represent the frequency of the minor allele frequency at position � in the donor of some 740 

transmission pair 3. Similarly, let ��,� be the frequency of that same allele in the recipient of the 741 

3th transmission pair. Then, as in Leonard et al., the likelihood of some bottleneck �� for the 742 

data at site � in pair 3 where the minor allele is transmitted is given by 743 

 744 

9�����,� �  p_beta�


���
���,� � >, �� � >�p_bin�> � �� , ��,��� 

 (16) 745 

 746 

Where p_beta is the probability density function for the beta distribution and p_bin is the 747 

probability mass function for the binomial distribution. 748 
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 749 

This is the probability density that the transmitted allele is found in the recipient at a frequency 750 

of ��,� given that the variant was in > genomes in a founding population of size �� times the 751 

probability > variant genomes would be drawn in a sample size of �� from the donor where the 752 

variant frequency was ��,��. This is then summed for all possible > where 1 
 > C ��. 753 

As in equation 14 the likelihood of a zero truncated Poisson with a mean of 
�

���	� given this 754 

transmitted variants is then given by 755 

 756 

9�<��,� !"#$%&  '( �  9�

�
��
�����,����� � <� 

 (17) 757 

 758 

This is simply the likelihood of each �� weighted by the probability of drawing a bottleneck size 759 

of �� from bottleneck distribution. 760 

In this model, there are three possible mechanisms for a donor iSNV to not be detected in the 761 

recipient. (i) The variant was not transmitted. (ii) The variant was transmitted but is present 762 

below our level of detection (2%). (iii) The variant was transmitted and present above our level 763 

of detection but represents a false negative in iSNV identification. 764 

 765 

As in Leonard et al., the likelihood of scenarios (i) and (ii) for a given �� are expressed as 766 

 767 

9�����,�)*$ �  p_beta_cdf�


���
���,� 
 0.02 � >, �� � >�p_bin�> � �� , ��,��� 

 (18) 768 

 769 
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Where p_beta_cdf is the cumulative distribution function for the beta distribution. Note that if 770 

> � 0 (i.e. the iSNV was not transmitted) then the term reduces to the probability of not drawing 771 

the variant in �� draws. 772 

 773 

The likelihood of the variant being transmitted but not detected in the recipient given a 774 

bottleneck of �� is described by 775 

 776 

9�����,�%&$$'( �   p_beta_cdf��.�,�.��,�.��

��

�


���
�'� 
 ��,� 
 '��� � >, �� � >� � 

                                                                                    p_bin�> � �� , ��,����FNR � Titer� , '�� 777 

  (19) 778 

 779 

This is the likelihood of the variant existing in the ranges [0.0.2,0.05] or [0.05,0.1] given an initial 780 

frequency of >/�� and a bottleneck size of �� multiplied by the expected False Negative Rate 781 

(FNR) given the titer of the recipient and the lower frequency bound. As in our diffusion model, 782 

we assumed perfect sensitivity for detection of iSNV present above 10%, rounded recipient 783 

titers down to the nearest log��titer (e.g. 10�,10�, 10�) and assumed the entire range )'� , '���* 784 

has the same sensitivity as the lower bound. 785 

 786 

The likelihood of < for iSNV that are not observed in the recipient is then given by summing 787 

equations 18 and 19 across all possible ��. 788 

 789 

9�<��,�#*# !"#$%&  '( �  �9�����,�)*$ � 9�����,�%&$$'(����� � <��

�
��
 

 (20) 790 

 791 
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The log likelihood of the total dataset is then determined by summing log of equations 17 and 20 792 

(as applicable) across all polymorphic sites in each donor. (As before here we sum of �� within 793 

the range )1,100*.) 794 

 795 

Simulation 796 

In order evaluate the fits of the two transmission models, we simulated whether or not each 797 

donor iSNV was transmitted or not. This involved converting each model to a presence absence 798 

model. In each simulation, we assigned a bottleneck from the bottleneck distribution for each 799 

transmission pair. We then determined the probability of only transmitting one allele (7� where 800 

8 G )1,2* as in the presence/absence model above) and the probability of transmitted both 801 

alleles (7�, 7 above) for each polymorphic site. 802 

 803 

For the presence/absence model, the probabilities for each possible outcome are given by 804 

equations 11 and 12. For the beta binomial model, the probability of only observing 7� at site � 805 

is given by 806 

��7� � ��� � 9�����,�)*$ � 9�����,�%&$$'( 

 (21) 807 

 808 

where 9�����,�)*$  and 9�����,�%&$$'( are defined as in equations 18 and 19 respectively, but with 809 

��,�� replaced by 1 � ��,��. This is simply the probability of not observing the other allele in the 810 

recipient. 811 

 812 

Again, the probability of observing both alleles is 813 

 814 

��7�, 7 � ��� � 1 � ���7�� � ��7�� 
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 (22) 815 

where ��7�� and ��7� are defined as in equation 21. 816 

 817 

Fitting mutation rate and �� 818 

The diffusion approximation to the Wright - Fischer model allows us to make predictions on the 819 

allele frequency spectrum of a population given a mutation rate and an effective population size. 820 

The probability of observing a mutation at frequency �� given an initial frequency of 0 can be 821 

approximated as in (2) 822 

 823 

��0, �� , �, � +, ��� � 2+����
����+��  

 (23) 824 

Where + is the mutation rate. In this model mutation increases an allele’s frequency from 0 but 825 

after that initial jump, drift is responsible for allowing the mutation to reach it’s observed 826 

frequency. Because the limit of equation 23 approaches infinity as �� approaches 0 and for ease 827 

in numerical integration, we assumed that any variant present at less than 0.1% was essentially 828 

at 0%. 829 

 830 

We then assumed each infection began as a clonal infection matching the consensus sequence 831 

observed at the time of sampling. The likelihood of observing minor alleles at the observed 832 

frequency is the given by equation 23. 833 

 834 

As in the other within host models, we can account for nonpolymorphic sites by adding the 835 

likelihood that no mutation is present ��0, �� � 0, � � �� 
 0.001, +, ���, that a mutation is present 836 

but below our level of detection ��0, �� � 0, � � �� 
 0.02, +, ���, and that a mutation is present 837 

but missed due to low sensitivity at low frequencies ��0, �� � 0, � � 0.02 
 �� 
 0.1, +, ���. In this 838 
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model we assumed 13133 mutagenic targets in each sample (the number of coding sites 839 

present in the reference strain from 2014-2015). 840 

 841 

The probability of not observing a mutation is given by 842 

 843 

�� 0, �� � 0, �, �� +, �� � � �� 0, �� � 0, � �� �� 
 0.001, +, �� � � 
                                                                �� 0, �� � 0, � �� �� 
 0.02, +, �� � � 844 

                                                               ��0, �� � 0, � � 0.02 
 �� 
 0.1, +, ��� 845 

 (24) 846 

Where 847 

��0, �� � 0, � � �� 
 0.001, +, ��� � 1 � � ��

�.���
�0, �� , �, � +, ������ 

 (25) 848 

and 849 

��0, �� � 0, � � �� 
 0.02, +, ��� � � ��.�

�.���
�0, �� , �, � +, ������ 

 (26) 850 

and 851 

��0, �� � 0, � � 0.02 
 �� 
 0.1, +, ��� �  ���.�,�.��,�.���

��
FNR � Titer� , '�� � �����

�
���, �� , � � +, ������ 

 (27) 852 

 853 

Where we follow the same convention as in equation 5 for determining the false negative rate. 854 

The log likelihood of a given + and �� pair is then the sum of the log of equations 23 and 24 for 855 

all possible sites in the data set. 856 

 857 

Annotated computer code for all analyses can be accessed at 858 

https://github.com/lauringlab/Host_level_IAV_evolution  859 
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Figure Legends 1009 

Figure 1.  Within host diversity of IAV populations. (A) Boxplots (median, 25th and 75th 1010 

percentiles, whiskers extend to most extreme point within median ± 1.5 x IQR) of the number of 1011 

viral genomes per microliter transport media stratified by day post symptom onset. Notches 1012 

represent the approximate 95% confidence interval of the median. (B) Boxplots (median, 25th 1013 

and 75th percentiles, whiskers extend to most extreme point within median ± 1.5 x IQR) of the 1014 

number of iSNV in 249 high quality samples stratified by day post symptom onset. (C) 1015 

Histogram of within host iSNV frequency in 249 high quality samples. Bin width is 0.05 1016 

beginning at 0.02. Mutations are colored nonsynonymous (blue) and synonymous (gold) (D) 1017 

Location of all identified iSNV in the influenza A genome. Mutations are colored 1018 

nonsynonymous (blue) and synonymous (gold) relative to that sample’s consensus sequence. 1019 

Triangles signify mutations that were found in more than one individual in a given season. 1020 

 1021 

Figure 2. Within host dynamics of IAV. (A) Timing of sample collection for 35 paired longitudinal 1022 

samples relative to day of symptom onset. Of the 49 total, 35 pairs had minor iSNV present in 1023 

the first sample. (B) The change in frequency over time for minority nonsynonymous (blue) and 1024 

synonymous (gold) iSNV identified for the paired samples in (A). (C) The distribution of effective 1025 

population sizes estimated from 1,000 simulated populations. Simulations were run on 1026 

populations with characteristics similar to the actual patient-derived populations and with the 1027 

specified effective population size (x-axis). (D) The effect of iteratively removing iSNV with the 1028 

most extreme change in frequency (fraction of iSNV removed, x-axis) on the estimated effective 1029 

population size. The point represents the estimate when all iSNV are included (32). (E) The 1030 

posterior distributions of selection coefficients estimated for the 35 iSNV present in isolates 1031 

sampled one day apart. Distributions are colored according to class relative to the sample 1032 

consensus sequence, nonsynonymous (blue) synonymous (gold). Variants for which the 95% 1033 
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highest posterior density intervals exclude 0.0 are noted in the margin.  1034 

 1035 

Figure 3. Between host dynamics of IAV. (A) The distribution of pairwise L1-norm distances for 1036 

household (blue) and randomly-assigned community (gold) pairs. The bar heights are 1037 

normalized to the height of the highest bar for each given subset (47 for household, 1,590 for 1038 

community). The red line represents the 5th percentile of the community distribution. (B) Timing 1039 

of symptom onset for 52 epidemiologically linked transmission pairs. Day of symptom onset for 1040 

both donor and recipient individuals is indicated by black dots. Dashed lines represent pairs that 1041 

were removed due to abnormally high genetic distance between isolates, see (A). (C) The 1042 

frequency of donor iSNV in both donor and recipient samples. Frequencies below 2% and 1043 

above 98% were set to 0% and 100% respectively. (D) The presence-absence model fit 1044 

compared with the observed data. The x-axis represents the frequency of donor iSNV with 1045 

transmitted iSNV plotted along the top and nontransmitted iSNV plotted along the bottom. The 1046 

black line indicates the probability of transmission for a given iSNV frequency as determined by 1047 

logistic regression. Similar fits were calculated for 1,000 simulations with a mean bottleneck size 1048 

of 1.66. Fifty percent of simulated outcomes lie in the darkly shaded region and 95% lie in the 1049 

lightly shaded regions. (E) The outcome from 1,000 simulated “transmission” events with 1050 

randomly assigned recipients. The black line represents the observed data, as in (D) the shaded 1051 

regions represent the middle 50% and 95% of simulated outcomes. The results from the 1052 

simulated logit models were smoothed by plotting the predicted probability of transmission at 1053 

0.02 intervals. (F) The beta-binomial model fit. Similar to (D) except the simulated outcomes are 1054 

the based on a beta-binomial model using a mean bottleneck of 1.71. 1055 

 1056 

Figure 4. Combined estimates of within host mutation rate and effective population size. 1057 

Contour plot shows the log likelihood surface for estimates of the effective population size and 1058 

neutral mutation rate. The point represents the peak (μ = 4x10-6, Ne = 33, log likelihood = -1059 
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3,271). Log likelihoods for each contour are indicated. 1060 

 1061 

Supplemental Figure 1. Sequence coverage for all samples. For each sample, the sliding 1062 

window mean coverage was calculated using a window size of 200 and a step of 100. The 1063 

distributions of these means are plotted as box plots (median, 25th and 75th percentiles, 1064 

whiskers extend to most extreme point within median ± 1.5 x IQR) where the y-axis represents 1065 

the read depth and the x-axis indicates the position of the window in a concatenated IAV 1066 

genome. 1067 

 1068 

Supplemental Figure 2. Approximate maximum likelihood trees of the concatenated coding 1069 

sequences for high quality H1N1 samples. The branches are colored by season; the tip 1070 

identifiers are colored by household. Arrows with numbers indicate consensus and putative 1071 

minor haplotypes for samples with greater than 10 iSNV. 1072 

 1073 

Supplemental Figure 3. Approximate maximum likelihood trees of the concatenated coding 1074 

sequences for high quality H3N2 samples. The branches are colored by season; the tip 1075 

identifiers are colored by household. Arrows with numbers indicate consensus and putative 1076 

minor haplotypes for samples with greater than 10 iSNV. 1077 

 1078 

Supplemental Figure 4. The effect of titer and vaccination on the number of iSNV identified. 1079 

(A) The number of iSNV identified in an isolate (y-axis) plotted against the titer (x-axis, 1080 

genomes/μl transport media).  (B) The number of iSNV identified in each isolate stratified by 1081 

whether that individual was vaccinated or not. Red bars indicate the median of each distribution. 1082 

 1083 

Supplemental Figure 5. Minority nonsynonymous iSNV in global circulation. 1084 

The global frequencies of the amino acids that were found as minority variants in sample 1085 
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isolates (x-axis) plotted overtime  (y-axis). Each amino acid trace is labeled according to the H3 1086 

number scheme. All samples were isolated in December of 2014 (gray line).  1087 

 1088 

Supplemental Figure 6. Reproducibility of iSNV identification for paired samples acquired on 1089 

the same day. The x-axis represents iSNV frequencies found in the home-acquired nasal swab. 1090 

The y-axis represents iSNV frequencies found the clinic-acquired combined throat and nasal 1091 

swab. 1092 

  1093 
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Table 1. Influenza viruses over five seasons in a household cohort 1094 

 
1095 

a Self reported or confirmed receipt of vaccine prior to the specified season. 1096 
b RT-PCR confirmed infection. 1097 
c Households in which two individuals were positive within 7 days of each other. In cases of trios and quartets, the 1098 
putative chains could have no pair with onset >7 days apart. 1099 
d Samples with >103 genome copies per µl of transport medium, adequate amplification of all 8 genomic segments, 1100 
and average sequencing coverage >103 per nucleotide. 1101 

  1102 

 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 
Households 328 213 321 232 340 
Participants 1441 943 1426 1049 1431 
Vaccinated, n (%)a 934 (65) 554 (59) 942 (66) 722 (69) 992 (69) 
IAV Positive Individualsb 86 23 69 48 166 
    H1N1 26 1 3 47 0 
    H3N2 58 22 66 1 166 
IAV Positive Householdsc  
   Two individuals 
   Three individuals 
   Four individuals 

 
13 
5 
- 

 
2 
2 
- 

 
9 
3 
1 

 
7 
3 
2 

 
23 
11 
4 

High Quality NGS Pairsd 4 1 2 6 39 
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Table 2. Within host effective population size of IAV 1103 
  1104 
 1105 

 1106 Model SNV Used 
Generation 

Time (h) 
Effective Population 

Size (95% CI) 

Diffusion approximation All 6 35 (26-46) 

 
All 

 12 17 (13-23) 

Discrete model All 6 32 (28-41) 

  Nonsynonymous 6 30 (21-40) 

      Synonymous 6 37 (27-54) 

      All 12 23 (23-29) 

 Nonsynonymous 12 19 (19-21) 

 Synonymous 12 27 (22-33) 
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Supplemental Table 1. Sensitivity and specificity of variant detection 1107 

 1108 

Copy Variant Original Pipelineb  Current Pipelinec 

Numbera Frequency Sensitivity Specificity Sensitivity Specificity 

>105 0.05 1 >0.9999 0.85 1.000 

0.02 0.85 0.9999 0.15 1.000 

0.01 0.95 0.9995 - - 
0.005 0.35 0.9999 - - 

104-105 0.05 0.95 0.9999 0.85 1.000 

0.02 0.9 0.9999 0.15 1.000 

0.01 0.8 0.9998 - - 
0.005 0.4 0.9999 - - 

103-104 0.05 0.8 >0.9999 0.70 1.000 

0.02 0.45 0.9999 0.15 1.000 

0.01 0.2 0.9997 - - 
0.005 0.1 0.9999 - - 

 1109 
a Per µl transport media 1110 
b As described in McCrone JT and Lauring AS, J. Virol. 90(15):6884, 2016. 1111 
c As described in Methods, benchmarked for frequencies 0.02-0.98 only  1112 
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 1113 
Supplemental Table 2. Nonsynonymous substitutions in HA antigenic sites 1114 
 1115 

House 
ID 

Enrolment 
ID 

Symptom 
Onset 

Subtype Frequency Amino Acid 
Change 

Antigenic 
Site 

Vaccinated Day of 
Symptoms 

1111 300481 3-30-2011 H3N2 0.071 E62G E* No 0 

2166 320661 2-13-2012 H3N2 0.071 V297A C Yes 1 

1302 301355 3-20-2011 H3N2 0.088 L86I E Yes 1 

3075 331045 12-10-2012 H3N2 0.066 I214T D Yes 1 

5219 50935 12-5-2014 H3N2 0.175 F193S B*† No 3 

5263 51106 12-6-2014 H3N2 0.111 T128A B Yes 3 

5290 51225 12-15-2014 H3N2 0.405 I260V E* Yes 1 

5302 51273 12-13-2014 H3N2 0.030 S262N E* Yes 0 

5098 50419 12-22-2014 H3N2 0.364 G208R D Yes 4 

5033 50141 12-3-2014 H3N2 0.032 A163T B Yes 2 

5034 50143 1-11-2015 H3N2 0.119 I307R C Yes 1 

5289 51220 12-13-2014 H3N2 0.038 K189N B*† Yes -1 

5033 50141 12-3-2014 H3N2 0.025 D53E C* Yes 1 

5033 50141 12-3-2014 H3N2 0.023 S312G C Yes 1 

5269 51132 12-6-2014 H3N2 0.028 I242T D Yes 2 

5147 50630 11-18-2014 H3N2 0.164 I242L D Yes 1 

5034 50143 1-11-2015 H3N2 0.161 I307R C Yes 2 

4185 UM40738 12-14-2013 H1N1 0.021 R208K Ca No 2 
 1116 

* Sites observed to vary between antigenically distinct strains in Wiley et al., 1981 and Smith DJ et al., 2004.  1117 

† Sites located in the “antigenic ridge” identified in Koel et al., 2013. 1118 
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Figure 3
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Figure 4
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