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Abstract 1 

The global evolutionary dynamics of influenza virus ultimately derive from processes that take 2 

place within and between infected individuals. Here we define the dynamics of influenza A virus 3 

populations in human hosts through next generation sequencing of 249 specimens from 200 4 

individuals collected over 6290 person-seasons of observation. Because these viruses were 5 

collected over 5 seasons from individuals in a prospective community-based cohort, they are 6 

broadly representative of natural human infections with seasonal viruses. We used viral 7 

sequence data from 35 serially sampled individuals to estimate a within host effective population 8 

size of 30-70 and an in vivo mutation rate of 4x10-5 per nucleotide per cellular infectious cycle. 9 

These estimates are consistent across several models and robust to the models’ underlying 10 

assumptions. We also identified 43 epidemiologically linked and genetically validated 11 

transmission pairs. Maximum likelihood optimization of multiple transmission models estimates 12 

an effective transmission bottleneck of 1-2 distinct genomes. Our data suggest that positive 13 

selection of novel viral variants is inefficient at the level of the individual host and that genetic 14 

drift and other stochastic processes dominate the within and between host evolution of influenza 15 

A viruses. 16 

 17 

Introduction 18 

The rapid evolution of influenza viruses has led to reduced vaccine efficacy, widespread drug 19 

resistance, and the continuing emergence of novel strains. Broadly speaking, evolution is the 20 

product of deterministic processes, such as selection, and stochastic processes, such as 21 

genetic drift (Kouyos et al. 2006). The relative contribution of each is greatly affected by the 22 

effective population size, or size of an idealized population whose dynamics are similar to that of 23 

the population in question (Rouzine et al. 2001). If the effective population size of a virus is large, 24 

as in quasispecies models, evolution is largely deterministic and the frequency of a mutation 25 

can be predicted based on its starting frequency and selection coefficient. In small populations, 26 
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selection is inefficient, and changes in mutation frequency are strongly influenced by migration 27 

or genetic drift. 28 

 29 

Viral dynamics may differ across spatial and temporal scales, and a complete understanding of 30 

influenza evolution requires studies at all levels (Nelson & Holmes 2007; Holmes 2009) .The 31 

global evolution of influenza A virus (IAV) is dominated by the positive selection of novel 32 

antigenic variants that circulate in the tropics and subsequently seed annual epidemics in the 33 

Northern and Southern hemisphere (Rambaut et al. 2008). Whole genome sequencing has also 34 

demonstrated the importance of intrasubtype reassortment to the emergence of diverse strains 35 

that differ in their antigenicity. While continual positive selection of antigenically drifted variants 36 

drives global patterns, whole genome sequencing of viruses on more local scales suggests the 37 

importance of stochastic processes such as strain migration and within-clade reassortment 38 

(Nelson et al. 2006). 39 

 40 

It is now feasible to efficiently sequence patient-derived isolates at sufficient depth of coverage 41 

to define the diversity and dynamics of virus evolution within individual hosts (Kao et al. 2014). 42 

Studies of IAV populations in animal and human systems suggest that most intrahost single 43 

nucleotide variants (iSNV) are rare and that intrahost populations are subject to strong purifying 44 

selection (Rogers et al. 2015; Murcia et al. 2010; Iqbal et al. 2009; Poon et al. 2016; Dinis et al. 45 

2016; Debbink et al. 2017). While positive selection of adaptive variants is commonly observed 46 

in cell culture (Doud et al. 2017; ARCHETTI & HORSFALL 1950; Foll et al. 2014), it has only 47 

been documented within human hosts in the extreme cases of drug resistance (Gubareva et al. 48 

2001; Ghedin et al. 2011; Rogers et al. 2015), long-term infection of immunocompromised hosts 49 

(Xue et al. 2017) or experimental infections with attenuated viruses (Sobel Leonard et al. 2016). 50 

Indeed, we and others have been unable to identify evidence for positive selection in natural 51 
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human infections (Debbink et al. 2017; Dinis et al. 2016), and its relevance to within host 52 

processes is unclear. 53 

 54 

Despite limited evidence for positive selection, it is clear that novel mutations do arise within 55 

hosts. Their potential for subsequent spread through host populations is determined by the size 56 

of the transmission bottleneck (Alizon et al. 2011; Zwart & Elena 2015). If the transmission 57 

bottleneck is sufficiently wide, low frequency variants can plausibly be transmitted and spread 58 

through host populations (Geoghegan et al. 2016). Because the transmission bottleneck is 59 

conceptually similar to the effective population size between hosts, its size will also inform the 60 

relative importance of selection and genetic drift in determining which variants are transmitted. 61 

While experimental infections of ferrets suggest a very narrow transmission bottleneck (Varble 62 

et al. 2014; Wilker et al. 2013), studies of equine influenza support a bottleneck wide enough to 63 

allow transmission of rare iSNV (Hughes et al. 2012; Murcia et al. 2010). The only available 64 

genetic study of influenza virus transmission in humans estimated a remarkably large 65 

transmission bottleneck, allowing for transmission of 100-200 genomes (Poon et al. 2016; Sobel 66 

Leonard et al. 2017). 67 

 68 

Here, we use next generation sequencing of within host influenza virus populations to define the 69 

evolutionary dynamics of influenza A viruses (IAV) within and between human hosts. We apply 70 

a benchmarked analysis pipeline to identify iSNV and to characterize the genetic diversity of 71 

H3N2 and H1N1 populations collected over five post-pandemic seasons from individuals 72 

enrolled in a prospective household study of influenza. We use these data to estimate the in 73 

vivo mutation rate and the within and between host effective population size. We find that 74 

intrahost populations are characterized by purifying selection, a small effective population size, 75 

and limited positive selection. Contrary to what has been previously reported for human 76 

influenza transmission (Poon et al. 2016), but consistent with what has been observed in other 77 
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viruses (Zwart & Elena 2015), we identify a very tight effective transmission bottleneck that 78 

limits the transmission of rare variants. 79 

 80 

Results 81 

We used next generation sequencing to characterize influenza virus populations collected from 82 

individuals enrolled in the Household Influenza Vaccine Effectiveness (HIVE) study (Monto et al. 83 

2014; Ohmit et al. 2013; Ohmit et al. 2015; Ohmit et al. 2016; Petrie et al. 2013), a community-84 

based cohort that enrolls 213-340 households of 3 or more individuals in Southeastern Michigan 85 

each year (Table 1). These households are followed prospectively from October to April, with 86 

symptom-triggered collection of nasal and throat swab specimens for identification of respiratory 87 

viruses by RT-PCR (see Methods). In contrast to case-ascertained studies, which identify 88 

households based on an index case who seeks medical care, the HIVE study identifies 89 

symptomatic individuals regardless of illness severity. In the first four seasons of the study 90 

(2010-2011 through 2013-2014), respiratory specimens were collected 0-7 days after illness 91 

onset. Beginning in the 2014-2015 season, each individual provided two samples, a self-92 

collected specimen at the time of symptom onset and a clinic-collected specimen obtained 0-7 93 

days later. Each year, 59-69% of individuals had self-reported or confirmed receipt of that 94 

season’s vaccine prior to local circulation of influenza virus. 95 

 96 

Over five seasons and nearly 6,290 person-seasons of observation, we identified 77 cases of 97 

influenza A/H1N1pdm09 infection and 313 cases of influenza A/H3N2 infection (Table 1). 98 

Approximately half of the cases (n=166) were identified in the 2014-2015 season, in which there 99 

was an antigenic mismatch between the vaccine and circulating strains (Flannery et al. 2016). 100 

All other seasons were antigenically matched. Individuals within a household were considered 101 

an epidemiologically linked transmission pair if they were both positive for the same subtype of 102 
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influenza virus within 7 days of each other. Several households had 3 or 4 symptomatic cases 103 

within this one-week window, suggestive of longer chains of transmission (Table 1). 104 

 105 

Within host populations have low genetic diversity 106 

We processed all specimens for viral load quantification and next generation sequencing. Viral 107 

load measurements (genome copies per µl) were used for quality control in variant calling, 108 

which we have shown is highly sensitive to input titer (McCrone & Lauring 2016) (Figure 1A). 109 

Accordingly, we report data on 249 high quality specimens from 200 individuals, which had a 110 

viral load of >103 copies per microliter of transport media, adequate RT-PCR amplification of all 111 

eight genomic segments, and an average read coverage of >103 across the genome (Table 1, 112 

Supplementary Figure 1).  113 

 114 

We identified intrahost single nucleotide variants (iSNV) using our empirically validated analysis 115 

pipeline (McCrone & Lauring 2016). Our approach relies heavily on the variant caller DeepSNV, 116 

which uses a clonal plasmid control to distinguish between true iSNV and errors introduced 117 

during sample preparation and/or sequencing (Gerstung et al. 2012). Given the diversity of 118 

influenza viruses that circulate locally each season, there were a number of instances in which 119 

our patient-derived samples had mutations that were essentially fixed (>0.95 frequency) relative 120 

to the clonal control. DeepSNV is unable to estimate an error rate for the control or reference 121 

base at these positions. We therefore performed an additional benchmarking experiment to 122 

identify a threshold for majority iSNV at which we could correctly infer whether or not the 123 

corresponding minor allele was also present (see Methods). We found that we could correctly 124 

identify a minor allele at a frequency of ≥2% when the frequency of the major allele was ≤98%. 125 

We therefore report data on iSNV present at frequencies between 2 and 98%. As expected, this 126 

threshold improved the specificity of our iSNV identification and decreased our sensitivity to 127 
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detect variants below 5% compared to our initial validation experiment (McCrone & Lauring 128 

2016), which did not employ a frequency threshold (Supplementary Table 1). 129 

 130 

Consistent with our previous studies and those of others, we found that the within host diversity 131 

of human influenza A virus (IAV) populations is low (Poon et al. 2016; Dinis et al. 2016; Debbink 132 

et al. 2017; Sobel Leonard et al. 2016; McCrone & Lauring 2016). Two hundred forty-three out 133 

of the 249 samples had fewer than 10 minority iSNV (median 2, IQR 1-3). There were 6 134 

samples with greater than 10 minority iSNV. In 3 of these cases, the frequency of iSNVs were 135 

tightly distributed about a mean suggesting that the iSNV were linked and that the samples 136 

represented mixed infections. Consistent with this hypothesis, putative genomic haplotypes 137 

based on these minority iSNV clustered with distinct isolates on phylogenetic trees 138 

(Supplementary Figures 2 and 3). While viral shedding was well correlated with days post 139 

symptom onset (Figure 1A) the number of minority iSNV identified was not affected by the day 140 

of infection, viral load, subtype, or vaccination status (Figure 1B and Supplementary Figure 4). 141 

 142 

The vast majority of minority variants were rare (frequency 0.02-0.07), and iSNV were 143 

distributed evenly across the genome (Figure 1C and 1D). The ratio of nonsynonymous to 144 

synonymous variants was 0.64 and was never greater than 1 in any 5% bin, which suggests 145 

that within host populations were under purifying selection. We also found that minority variants 146 

were rarely shared among multiple individuals. Ninety-five percent of minority iSNV were only 147 

found once, 4.7% were found in 2 individuals, and no minority iSNV were found in more than 3 148 

individuals. The low level of shared diversity suggests that within host populations were 149 

exploring distinct regions of sequence space with little evidence for parallel evolution. Of the 31 150 

minority iSNV that were found in multiple individuals (triangles in Figure 1D), 4 were 151 

nonsynonymous. 152 

 153 
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Although the full range of the H3 antigenic sites have not been functionally defined, it is 154 

estimated that 131 of the 329 amino acids in HA1 lie in or near these sites (Lee & Chen 2004). 155 

We identified 17 minority nonsynonymous iSNV in these regions (Supplementary Table 2). Six 156 

of these were in positions that differ among antigenically drifted viruses (Smith et al. 2004; Wiley 157 

et al. 1981), and two (193S and 189N) lie in the “antigenic ridge” that is a major contributor to 158 

drift (Koel et al. 2013). Three of these have been detected at the global level as consensus 159 

variants since the time of isolation (128A, 193S and 262N) with two (193S and 262N) seemingly 160 

increasing in global frequency (Neher & Bedford 2015) (Supplementary Figure 5). Additionally, 161 

we identified 1 putative H1N1 antigenic variant (208K in Ca) (Caton et al. 1982; Xu et al. 2010). 162 

In total, putative antigenic variants account for 1.0-2.5% of minority iSNV identified and were 163 

found in 3.5-8.0% of infections. None of these iSNV were shared among multiple individuals. 164 

 165 

Estimation of effective population size 166 

Given the above observations, we hypothesized that within host populations of IAV are under 167 

purifying selection and that variants that rise to detectable levels do so by a neutral process as 168 

opposed to positive selection. Consistent with this hypothesis, we found that nonsynonymous 169 

and synonymous iSNV exhibited similar changes in frequency over time in the 35 individuals 170 

who provided serial specimens that contained iSNV (Figure 2A and 2B). We used a maximum 171 

likelihood approach to estimate the within host effective population size (Ne) of IAV by fitting a 172 

diffusion approximation of the Wright-Fisher model (Kimura 1955). This model assumes that 173 

changes in iSNV frequency are due solely to random genetic drift and not selection, that iSNV 174 

are independent of one another, and that the effective population is sufficiently large to justify a 175 

continuous approximation to changes in allele frequency. The diffusion approximation of the 176 

Wright-Fisher model assigns probabilities to frequency changes given an Ne and the number of 177 

generations between sample times. In our model we fixed the within host generation time as 178 

either 6 or 12 hours (Geoghegan et al. 2016) and report the findings for the 6 hour generation 179 
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time below. We then asked what population size makes the observed changes in frequency 180 

most likely (Figure 2B). We restricted this analysis to samples taken at least 1 day apart (n = 29), 181 

as there was very little change in iSNV frequency in populations sampled twice on the same day 182 

(R2 = 0.986, Figure 2B and Supplementary Figure 6). The concordance of same day samples 183 

suggests that our sampling procedure is reproducible and that less than a generation had 184 

passed between samplings. Maximum likelihood optimization of this diffusion model revealed a 185 

within host effective population size of 35 (95% CI 26-46, Table 2).  186 

 187 

The diffusion approximation makes several simplifying assumptions, which if violated could 188 

influence our findings. To ensure our results were robust to the assumption of a large population, 189 

we employed a discrete interpretation of the Wright-Fisher model which makes no assumptions 190 

about population size (Williamson & Slatkin 1999). In this case we found an effective population 191 

size of 32 (95% CI 28-41), very close to our original estimate (Table 2). Both models assume 192 

complete independence of iSNV.  To ensure this assumption did not affect our results, we fit the 193 

discrete model 1000 times, each time randomly subsetting our data such that only one iSNV per 194 

individual was included. This simulates a situation in which all modeled iSNV are independent 195 

and our assumption is met. Under these conditions we found a median effective population size 196 

of 33 (IQR 32-40), demonstrating negligible bias in the initial analysis due to correlation between 197 

iSNV. 198 

 199 

As above, most iSNV in the longitudinal samples were rare (< 10%) and many became extinct 200 

between samplings. To ensure that our models were capable of accurately estimating the 201 

effective population size from such data, we simulated 1000 Wright-Fisher populations with 202 

iSNV present at approximately the same starting frequencies as in our data set and an Ne of 30, 203 

50, or 100. In these simulations, we found mean Ne of 34, 56 and 117 (Figure 2C). These 204 
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simulations suggest that although this method may slightly overestimate the Ne, our results are 205 

not constrained by the data structure. 206 

 207 

To this point, we have assumed that neutral processes are responsible for the observed 208 

changes in iSNV frequency within hosts. Although this assumption seems justified at least in 209 

part by the analysis above, we tested the robustness of our models by fitting the 210 

nonsynonymous (n = 27) and synonymous iSNV (n = 36) separately. Here, we estimated an 211 

effective population size of 30 using the nonsynonymous iSNV and an effective population size 212 

of 37 using the synonymous iSNV (Table 2). These estimates are very close to those derived 213 

from the whole dataset and suggest that nonsynonymous and synonymous mutations are 214 

influenced by similar within host processes. To further ensure that our results were not driven by 215 

a few outliers subject to strong selection, we ranked iSNV by their change in frequency over 216 

time and consecutively removed iSNV with the most extreme changes. We estimated the 217 

effective population size at each iteration and found that removing the top 50% most extreme 218 

iSNV only increased the effective population size to 161 (Figure 2D). Therefore, our estimates 219 

are robust to a reasonable number of non-neutral sites. Finally, we also applied a separate 220 

Approximate Bayesian Computational (ABC) method, which uses a non-biased moment 221 

estimator in conjunction with ABC to estimate the effective population size of a population as 222 

well as selection coefficients for the iSNV present (Foll et al. 2014). This distinct approach 223 

relaxes the previous assumption regarding neutrality. We applied this analysis to the 16 224 

longitudinal pairs that were sampled 1 day apart and estimated an effective population of 69. 225 

We were unable to reject neutrality for just 7 of the 35 iSNV in this data set (Figure 2E). These 226 

seven mutations consisted of 3 nonsynonymous and 4 synonymous mutations and were split 227 

between two individuals. None were putative antigenic variants. 228 

  229 

Identification of forty-three transmission pairs 230 
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We analyzed virus populations from 85 households with concurrent infections to quantify the 231 

level of shared viral diversity and to estimate the size of the IAV transmission bottleneck (Table 232 

1).  Because epidemiological linkage does not guarantee that concurrent cases constitute a 233 

transmission pair (Petrie et al. 2017), we used a stringent rubric to eliminate individuals in a 234 

household with co-incident community acquisition of distinct viruses. We considered all 235 

individuals in a household with symptom onset within a 7-day window to be epidemiologically 236 

linked. The donor in each putative pair was defined as the individual with the earlier onset of 237 

symptoms. We discarded a transmission event if there were multiple possible donors with the 238 

same day of symptom onset. Donor and recipients were not allowed to have symptom onset on 239 

the same day, unless the individuals were both index cases for the household. In these 6 240 

instances, we analyzed the data for both possible donor-recipient directionalities. Based on 241 

these criteria, our cohort had 124 putative household transmission events over 5 seasons 242 

(Table 1). Of these, 52 pairs had samples of sufficient quality for reliable identification of iSNV 243 

from both individuals. 244 

 245 

We next used sequence data to determine which of these 52 epidemiologically linked pairs 246 

represented true household transmission events as opposed to coincident community-acquired 247 

infections. We measured the genetic distance between influenza populations from each 248 

household pair by L1-norm and compared these distances to those of randomly assigned 249 

community pairs within each season (Figure 3A, see also trees in Supplementary Figures 2 and 250 

3). While the L1-norm of a pair captures differences between the populations at all levels, in our 251 

cohort, it was largely driven by differences at the consensus level. We only considered 252 

individuals to be a true transmission pair if they had a genetic distance below the 5th percentile 253 

of the community distribution of randomly assigned pairs (Figure 3A). Forty-seven household 254 

transmission events met this criterion (Figure 3B). Among these 47 sequence-validated 255 

transmission pairs, 3 had no iSNV in the donor and 1 additional donor appeared to have a 256 
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mixed infection. These four transmission events were removed from our bottleneck analysis as 257 

donors without iSNV are uninformative and mixed infections violate model assumptions of site 258 

independence (see Methods). We estimated the transmission bottleneck in the remaining 43 259 

high-quality pairs (37 H3N2, 6 H1N1, Figure 3B). 260 

 261 

A transmission bottleneck restricts the amount of genetic diversity that is shared by both 262 

members of a pair. We found that few minority iSNV where polymorphic in both the donor and 263 

recipient populations (Figure 3C). Minority iSNV in the donor were either absent or fixed in the 264 

recipient (top and bottom of plot). The lack of shared polymorphic sites (which would lie in the 265 

middle of the plot in Figure 3C) suggests a stringent effective bottleneck in which only one allele 266 

is passed from donor to recipient. 267 

 268 

Estimation of the transmission bottleneck 269 

We applied a simple presence-absence model to quantify the effective transmission bottleneck 270 

in our cohort. The presence-absence model considers only whether or not a donor allele is 271 

present or absent in the recipient sample. Under this model, transmission is a neutral, random 272 

sampling process, and the probability of transmission is simply the probability that the iSNV will 273 

be included at least once in the sample given its frequency in the donor and the sample size, or 274 

bottleneck. We estimated a distinct bottleneck for each transmission pair and assumed these 275 

bottlenecks followed a zero-truncated Poisson distribution. This model also assumes that the 276 

sensitivity for detection of transmitted iSNVs is perfect and that each genomic site is 277 

independent of all others. We then used maximum likelihood optimization to determine the 278 

distribution of bottleneck sizes that best fit the data. We found a zero-truncated Poisson 279 

distribution with a mean of 1.66 (lambda = 1.12; 0.51-1.99, 95% CI) best described the data. 280 

This distribution indicates that the majority of bottlenecks are 1, and that very few are greater 281 

than 5 (probability 0.2%). There were no apparent differences between H3N2 and H1N1 pairs. 282 
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The model fit was evaluated by simulating each transmission event 1,000 times. The presence 283 

or absence of each iSNV in the recipient was noted and the probability of transmission given 284 

donor frequency determined. The range of simulated outcomes matched the data well, which 285 

suggests that transmission is a selectively neutral event characterized by a stringent bottleneck 286 

(Figure 3D). 287 

 288 

The majority of transmitted iSNV were fixed in the recipients. Although this trend matches the 289 

expectation given a small bottleneck, these data could also be consistent with a model in which 290 

the probability of transmission is determined by the frequency at which iSNV are found at the 291 

community level. To ensure our bottleneck estimates were an outcome of neutral transmission 292 

and not an artifact of the larger community population structure or selection for the community 293 

consensus, we created a null model by randomly assigning community “recipient-donor” 294 

pairings. Each community “recipient” was drawn from the pool of individuals that were infected 295 

after the “donor” but in the same season and with the same subtype as the donor. We then 296 

identified whether or not each donor iSNV was found in the community recipient and determined 297 

the relationship between “donor” frequency and probability of “transmission” for 1,000 such 298 

simulations. Given the low level of diversity in our cohort, we predicted that rare iSNV would be 299 

unlikely to be found in a random sample, while the major alleles should be fixed in most random 300 

pairs. This trend is clearly demonstrated in Figure 3E. It is also clear that this null model fit the 301 

data much more poorly than the presence/absence model, suggesting that the observed data in 302 

our bona fide transmission pairs were not a product of community metapopulation structure, but 303 

rather an outcome of neutral sampling events. 304 

 305 

Because our bottleneck estimates were much lower than what has previously been reported for 306 

human influenza (Poon et al. 2016), we investigated the impact that our simplifying assumptions 307 

could have on our results. In particular, the presence-absence model assumes perfect detection 308 
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of variants in donor and recipient, and it can therefore underestimate the size of a bottleneck in 309 

the setting of donor-derived variants that are transmitted but not detected in the recipient. These 310 

“false negative” variants can occur when the frequency of an iSNV drifts below the level of 311 

detection (e.g. 2% frequency) or when the sensitivity of sequencing is less than perfect for 312 

variants at that threshold (e.g. 15% sensitivity for variants at a frequency 2-5%). To determine 313 

the impact of sequencing sensitivity and specificity on our bottleneck estimates, we re-called 314 

variants using our original pipeline without the 2% frequency cut-off. As shown in 315 

Supplementary Table 1, this increases the sensitivity of iSNV detection in the 1-5% frequency 316 

range, and also the number of false positive variant calls (McCrone & Lauring 2016). This 317 

analysis only slightly increased average transmission bottleneck to 2.10 (lambda = 1.67; 0.91-318 

2.71, 95% CI), and indicates that our results are not biased by the added stringency used in the 319 

initial analysis (Supplementary Figures 7A and 7B). 320 

 321 

To further investigate the impact of sequencing accuracy on our estimates, we inferred minor 322 

variants in our current pipeline (see above and methods) without a frequency cutoff. Ultimately, 323 

this reduced variant calling to a count method at a number of positions and greatly increased 324 

the number of shared minority iSNV in our samples (Supplementary Figure 7C). Many of these 325 

presumed false positive variant calls were at similar frequencies (0.1-2%) in donor and recipient. 326 

As such, the “apparent transmission” of rare variants drives an inflated estimate of the 327 

transmission bottleneck (118, see Supplementary Figure 7D). Simulation showed that this 328 

inflated bottleneck no longer fit the trend in the data, likely because the model is now forced to 329 

accommodate shared iSNV that are biased toward sequencing error as opposed to the actual 330 

transmission process. 331 

 332 

We also estimated bottleneck size using a beta binomial model, which Leonard et al. have used 333 

to account for the stochastic loss of transmitted variants. This model allows for a limited amount 334 
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of time-independent genetic drift within the recipient (Sobel Leonard et al. 2017), and we 335 

modified it to also account for our benchmarked sensitivity for rare variants (Supplementary 336 

Table 1, Current Pipeline). For all donor-derived iSNV that were absent in the recipient, we 337 

estimated the likelihood that these variants were transmitted but either drifted below our level of 338 

detection or drifted below 10% and were missed by our variant identification. Despite the 339 

relaxed assumptions provided by this modified beta binomial model, maximum likelihood 340 

estimation only marginally increased the average bottleneck size (mean 1.73: lambda 1.22; 341 

0.57-2.17, 95%CI) relative to the simpler presence-absence model. We simulated transmission 342 

and subsequent random drift using the beta binomial model and the estimated bottleneck 343 

distribution as above (Figure 3F). Although the model matched the data well, the fit was not 344 

better than that of the presence-absence model (AIC 83.0 for beta-binomial compared to 76.7 345 

for the presence-absence model). 346 

 347 

The mutation rate of influenza A virus within human hosts 348 

The stringent influenza transmission bottleneck suggests that most infections are founded by 349 

one lineage and develop under essentially clonal processes. The diffusion approximation to the 350 

Wright-Fisher model (see above and Figure 2) can be used to predict the rate at which 351 

homogenous populations diversify from a clonal ancestor as a function of mutation rate and 352 

effective population size (Rouzine et al. 2001). Maximum likelihood optimization of this model 353 

suggested an in vivo neutral mutation rate of 4x10-6 mutations per nucleotide per replication 354 

cycle and a within host effective population size of 36 (given a generation time of 6 hours). 355 

These estimates are consistent with those above (Table 2). As we have recently estimated that 356 

13% of mutations in influenza A virus are neutral (Visher et al. 2016), we estimated that the true 357 

in vivo mutation rate would be approximately 8 fold higher than our neutral rate – on the order of 358 

3-4 x 10-5. This in vivo mutation rate is close to our recently published estimate of influenza A 359 
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mutation rates in epithelial cells by fluctuation test (Pauly et al. 2017) and within the range of 360 

other estimates for IAV (Sanjuán et al. 2010).  361 

 362 

Discussion 363 

We find that seasonal influenza A viruses replicate within and spread among human hosts with 364 

very small effective population sizes. Because we used viruses collected over five influenza 365 

seasons from individuals enrolled in a prospective household cohort, these dynamics are likely 366 

to be broadly representative of many seasonal influenza infections in their natural transmission 367 

context. Our results are further strengthened by the use of a validated sequence analysis 368 

pipeline and models that are robust to the underlying assumptions. The small effective size of 369 

intrahost populations and the tight effective transmission bottleneck suggest that stochastic 370 

processes, such as genetic drift, dominate influenza virus evolution at the level of individual 371 

hosts. This stands in contrast to prominent role of positive selection in the global evolution of 372 

seasonal influenza.  373 

 374 

While influenza virus populations are subject to continuous natural selection, selection is an 375 

inefficient driver of evolution in small populations (Rouzine et al. 2001). Despite a large viral 376 

copy number, our findings demonstrate that intrahost populations of influenza behave like much 377 

smaller populations. We therefore expect stochastic fluctuations to be the major force driving 378 

the fixation of novel variants within human hosts. This finding contradicts previous studies, 379 

which have found signatures of adaptive evolution in infected hosts (Gubareva et al. 2001; 380 

Rogers et al. 2015; Ghedin et al. 2011; Sobel Leonard et al. 2016). However, these studies rely 381 

on data from infections in which selective pressures are likely to be particularly strong (e.g. due 382 

to drug treatment or infection with a poorly adapted virus), or in which the virus has been 383 

allowed to propagate for extended periods of time (Xue et al. 2017). Under these conditions, 384 
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one can identify the action of positive selection on within host populations. We suggest that 385 

these are important and informative exceptions to the drift regime defined here. 386 

  387 

We used both a simple presence-absence model and a more complex beta binomial model to 388 

estimate an extremely tight transmission bottleneck. The estimation of a small bottleneck size is 389 

driven by low within-host diversity and very few minority iSNV shared among individuals in a 390 

transmission pair. While our methods for variant calling may be more conservative than those 391 

used in similar studies, we found that relaxing our variant calling criteria led to the inclusion of 392 

false positive variants that inflated our estimates. Furthermore, the beta binomial model 393 

accounts for false negative iSNV (i.e. variants that are transmitted but not detected in the donor), 394 

which can lead to underestimated transmission bottlenecks (Sobel Leonard et al. 2017). Our 395 

formulation of this model incorporates empirically determined sensitivity and specificity metrics 396 

to account for both false negative iSNV and false positive iSNV (McCrone & Lauring 2016). 397 

Finally, if rare, undetected, iSNV were shared between linked individuals, we would expect to 398 

see transmission of more common iSNV (frequency 5-10%), which we can detect with high 399 

sensitivity. In our data, the transmission probability iSNVs > 5% frequency in the donor were 400 

also well predicted by small bottleneck size (Figure 3D).  401 

 402 

Although the size of our transmission bottleneck is consistent with estimates obtained for other 403 

viruses and in experimental animal models of influenza (Zwart & Elena 2015; Varble et al. 2014), 404 

it differs substantially from the only other study of bottlenecks in natural human infection (Poon 405 

et al. 2016; Sobel Leonard et al. 2017). While there are significant differences in the design and 406 

demographics of the cohorts, the influenza seasons under study, and sequencing methodology 407 

(Kugelman et al. 2017), the bottleneck size estimates are fundamentally driven by the amount of 408 

viral diversity shared among individuals in a household. Importantly, we used both 409 

epidemiologic linkage and the genetic relatedness of viruses in households to define 410 
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transmission pairs and to exclude confounding from the observed background diversity in the 411 

community. We find that household transmission pairs and randomly assigned community pairs 412 

had distinct patterns of shared consensus and minority variant diversity. The comparison to 413 

random community pairs is important, as an unexplained aspect of the work of Poon et al. is 414 

that rare iSNV were frequently shared by randomly selected individuals, and more common 415 

ones were not (Poon et al. 2016). 416 

 417 

Our estimates of IAV population dynamics are consistent across three separate models and 418 

partitions of the data. The measurements of shared diversity are influenced by both between 419 

and within host processes, and the transmission bottleneck is entirely consistent with the small 420 

within host population size derived from the longitudinal samples. We also jointly estimated the 421 

in vivo mutation rate and effective population size based on the frequency distribution of minor 422 

alleles observed in the entire cohort. This model assumed a small transmission bottleneck, 423 

produced a mutation rate that this consistent with previous estimates, and independently 424 

reproduced the within host population size estimate. Given the concordance among these 425 

distinct approaches, it is unlikely that our findings are biased by hidden assumptions or model 426 

limitations.  427 

 428 

Accurately modeling and predicting influenza virus evolution requires a thorough understanding 429 

of the virus’ population structure. Some models have assumed a large intrahost population and 430 

a relatively loose transmission bottleneck (Geoghegan et al. 2016; Russell et al. 2012; Peck et 431 

al. 2015). Here, adaptive iSNV can rapidly rise in frequency and low frequency variants can 432 

have a high probability of transmission. In such a model, it would be possible for the highly 433 

pathogenic H5N1 virus to develop the requisite 4-5 mutations to become transmissible through 434 

aerosols during a single acute infection of a human host (Herfst et al. 2012; Russell et al. 2012). 435 

Although the dynamics of emergent avian influenza and human adapted seasonal viruses likely 436 
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differ (Petrova & Russell 2017), our work suggests that fixation of multiple mutations over the 437 

course of a single acute infection is unlikely.  438 

 439 

While it may seem counterintuitive that influenza evolution is dominated by drift on local scales 440 

and positive selection on global scales, these models are certainly not in conflict. Within 441 

individuals we have shown that the effective population is quite small, which suggests that 442 

selection is inefficient. Indeed, we have deeply sequenced 332 intrahost populations from 283 443 

individuals collected over more than 11,000 person-seasons of observation and only identified a 444 

handful of minority antigenic variants with little evidence for positive selection (this work and 445 

(Debbink et al. 2017)). However, with several million infected individuals each year, even 446 

inefficient processes and rare events are likely to happen at a reasonable frequency on a global 447 

scale. 448 

 449 

Methods 450 

 451 

Description of the cohort 452 

The HIVE cohort (Monto et al. 2014; Ohmit et al. 2013; Ohmit et al. 2015; Ohmit et al. 2016; 453 

Petrie et al. 2013), established at the UM School of Public Health in 2010, enrolled and followed 454 

households of at least 3 individuals with at least two children <18 years of age; households 455 

were then followed prospectively throughout the year for ascertainment of acute respiratory 456 

illnesses. Study participants were queried weekly about the onset of illnesses meeting our 457 

standard case definition (two or more of: cough, fever/feverishness, nasal congestion, sore 458 

throat, body aches, chills, headache if ≥3 yrs old; cough, fever/feverishness, nasal 459 

congestion/runny nose, trouble breathing, fussiness/irritability, decreased appetite, fatigue in <3 460 

yrs old), and the symptomatic participants then attended a study visit at the research clinic on 461 

site at UM School of Public Health for sample collection. For the 2010-2011 through 2013-2014 462 
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seasons, a combined nasal and throat swab (or nasal swab only in children < 3 years of age) 463 

was collected at the onsite research clinic by the study team. Beginning with the 2014-2015 464 

seasons, respiratory samples were collected at two time points in each participant meeting the 465 

case definition; the first collection was a self- or parent-collected nasal swab collected at illness 466 

onset. Subsequently, a combined nasal and throat swab (or nasal swab only in children < 3 467 

years of age) was collected at the onsite research clinic by the study team. Families with very 468 

young children (< 3 years of age) were followed using home visits by a trained medical assistant.  469 

 470 

Active illness surveillance and sample collection for cases were conducted October through 471 

May and fully captured the influenza season in Southeast Michigan in each of the study years. 472 

Data on participant, family and household characteristics, and on high-risk conditions were 473 

additionally collected by annual interview and review of each participant’s electronic medical 474 

record. In the current cohort, serum specimens were also collected twice yearly during fall 475 

(November-December) and spring (May-June) for serologic testing for antibodies against 476 

influenza. 477 

 478 

This study was approved by the Institutional Review Board of the University of Michigan Medical 479 

School, and all human subjects provided informed consent. 480 

 481 

Identification of influenza virus 482 

Respiratory specimens were processed daily to determine laboratory-confirmed influenza 483 

infection. Viral RNA was extracted (Qiagen QIAamp Viral RNA Mini Kit) and tested by RT-PCR 484 

for universal detection of influenza A and B. Samples with positive results by the universal 485 

assay were then subtyped to determine A(H3N2), A(H1N1), A(pH1N1) subtypes and 486 

B(Yamagata) and B(Victoria) lineages. We used primers, probes and amplification parameters 487 

developed by the Centers for Disease Control and Prevention Influenza Division for use on the 488 
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ABI 7500 Fast Real-Time PCR System platform. An RNAseP detection step was run for each 489 

specimen to confirm specimen quality and successful RNA extraction. 490 

 491 

Quantification of viral load 492 

Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was performed on 5μl 493 

RNA from each sample using CDC RT-PCR primers InfA Forward, InfA Reverse, and InfA 494 

probe, which bind to a portion of the influenza M gene (CDC protocol, 28 April 2009). Each 495 

reaction contained 5.4μl nuclease-free water, 0.5μl each primer/probe, 0.5μl SuperScript III 496 

RT/Platinum Taq mix (Invitrogen 111732) 12.5μl PCR Master Mix, 0.1μl ROX, 5μl RNA. The 497 

PCR master mix was thawed and stored at 4°C, 24 hours before reaction set-up. A standard 498 

curve relating copy number to Ct value was generated based on 10-fold dilutions of a control 499 

plasmid run in duplicate. 500 

 501 

Illumina library preparation and sequencing 502 

We amplified cDNA corresponding to all 8 genomic segments from 5μl of viral RNA using the 503 

SuperScript III One-Step RT-PCR Platinum Taq HiFi Kit (Invitrogen 12574). Reactions consisted 504 

of 0.5μl Superscript III Platinum Taq Mix, 12.5μl 2x reaction buffer, 6μl DEPC water, and 0.2μl 505 

of 10μM Uni12/Inf1, 0.3μl of 10μM Uni12/Inf3, and 0.5μl of 10μM Uni13/Inf1 universal influenza 506 

A primers (Zhou et al. 2009). The thermocycler protocol was: 42˚C for 60 min then 94˚C for 2 507 

min then 5 cycles of 94˚C for 30 sec, 44˚C for 30 sec, 68˚C for 3 min, then 28 cycles of 94˚C for 508 

30 sec, 57˚C for 30 sec, 68˚C for 3 min. Amplification of all 8 segments was confirmed by gel 509 

electrophoresis, and 750ng of each cDNA mixture were sheared to an average size of 300 to 510 

400bp using a Covaris S220 focused ultrasonicator. Sequencing libraries were prepared using 511 

the NEBNext Ultra DNA library prep kit (NEB E7370L), Agencourt AMPure XP beads (Beckman 512 

Coulter A63881), and NEBNext multiplex oligonucleotides for Illumina (NEB E7600S). The final 513 

concentration of each barcoded library was determined by Quanti PicoGreen dsDNA 514 
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quantification (ThermoFisher Scientific), and equal nanomolar concentrations were pooled. 515 

Residual primer dimers were removed by gel isolation of a 300-500bp band, which was purified 516 

using a GeneJet Gel Extraction Kit (ThermoFisher Scientific). Purified library pools were 517 

sequenced on an Illumina HiSeq 2500 with 2x125 nucleotide paired end reads. All raw 518 

sequence data have been deposited at the NCBI sequence read archive (BioProject submission 519 

ID: SUB2951236). PCR amplicons derived from an equimolar mixture of eight clonal plasmids, 520 

each containing a genomic segment of the circulating strain were processed in similar fashion 521 

and sequenced on the same HiSeq flow cell as the appropriate patient derived samples. These 522 

clonally derived samples served as internal controls to improve the accuracy of variant 523 

identification and control for batch effects that confound sequencing experiments. 524 

 525 

Identification of iSNV 526 

Intrahost single nucleotide variants were identified in samples that had greater than 103 527 

genomes/μl and an average coverage >1000x across the genome. Variants were identified 528 

using DeepSNV and scripts available at https://github.com/lauringlab/variant_pipeline as 529 

described previously (McCrone & Lauring 2016) with a few minor and necessary modifications. 530 

Briefly, reads were aligned to the reference sequence (H3N2 2010-2011 & 2011-2012 : 531 

GenBank CY121496-503, H3N2 2012-2013:GenBank KJ942680-8, H3N2 2014-2015 : Genbank 532 

CY207731-8, H1N1 GenBank : CY121680-8) using Bowtie2 (35). Duplicate reads were then 533 

marked and removed using Picard (http://broadinstitute.github.io/picard/). We identified putative 534 

iSNV using DeepSNV. Bases with phred <30 were masked. Minority iSNV (frequency <50%) 535 

were then filtered for quality using our empirically determined quality thresholds (p-value <0.01 536 

DeepSNV, average mapping quality >30, average Phred >35, average read position between 537 

31 and 94). To control for PCR errors in samples with lower input titers, all isolates with titers 538 

between 103 and 105 genomes/μl were processed and sequenced in duplicate. Only iSNV that 539 

were found in both replicates were included in down stream analysis. The frequency of the 540 
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variant in the replicate with higher coverage at the iSNV location was assigned as the frequency 541 

of the iSNV. Finally, any SNV with a frequency below 2% was discarded. 542 

 543 

Given the diversity of the circulating strain in a given season, there were a number of cases in 544 

which isolates contained mutations that were essentially fixed (>95%) relative to the plasmid 545 

control. Often in these cases, the minor allele in the sample matched the major allele in the 546 

plasmid control. We were, therefore, unable to use DeepSNV in estimating the base specific 547 

error rate at this site for these minor alleles and required an alternative means of eliminating 548 

true and false minority iSNV. To this end we applied stringent quality thresholds to these 549 

putative iSNV and implemented a 2% frequency threshold. In order to ensure we were not 550 

introducing a large number of false positive iSNV into our analysis, we performed the following 551 

experiment. Perth (H3N2) samples were sequenced on the same flow cell as both the Perth and 552 

Victoria (H3N2) plasmid controls. Minority iSNV were identified using both plasmid controls. This 553 

allowed us to identify rare iSNV at positions in which the plasmid controls differed both with and 554 

without the error rates provided by DeepSNV. We found that at a frequency threshold of 2% the 555 

methods were nearly identical (NPV of 1, and PPV of 0.94 compared to DeepSNV). 556 

 557 

Overview of models for effective population size 558 

We estimated the effective population size using two separate interpretations of a Wright-Fisher 559 

population (Ewens 2004). At its base, the Wright-Fisher model describes the expected changes 560 

in allele frequency of an ideal population, which is characterized by non-overlapping generations, 561 

no migration, no novel mutation, and no population structure. We then asked what size effective 562 

population would make the changes in frequency observed in our dataset most likely. We 563 

calculated these values using two applications of the Wright-Fisher model (i) a diffusion 564 

approximation (Kimura 1955)and (ii) a maximum likelihood approach based on the discrete 565 

interpretation (Williamson & Slatkin 1999). 566 
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 567 

For these estimates we restricted our analysis to longitudinal samples from a single individual 568 

that were separated by at least 1 day and only used sites that were polymorphic in the initial 569 

sample (29 of the 49 total serial sample pairs). We modeled only the iSNV that were the minor 570 

allele at the first time point, and we assumed a within host generation time of either 6 or 12 571 

hours as proposed by Geoghegan et al. (Geoghegan et al. 2016). 572 

 573 

Diffusion approximation 574 

The diffusion approximation was first solved by Kimura in 1955 (Kimura 1955). This 575 

approximation to the discrete Wright-Fisher model has enjoyed widespread use in population 576 

genetics as it allows one to treat the random time dependent probability distribution of final allele 577 

frequencies as a continuous function (e.g. (Zanini et al. 2017; Kimura & Ohta 1969; Kimura 578 

1971; Myers et al. 2008)). Here, we also included the limitations in our sensitivity to detect rare 579 

iSNV by integrating over regions of this probability density that were either below our limit of 580 

detection or within ranges where we expect less than perfect sensitivity as follows. 581 

 582 

Let ����, �� , � � ��� be the time dependent probability of a variant drifting from an initial 583 

frequency of �� at time 0 �� at time  � generations given an effective population size of �� where 584 

0 
 �� 
 1. 585 

 586 

The time dependent derivative of this probability has been defined using the Kolmogorov  587 

forward equation (Kimura 1955) and for haploid populations is: 588 

 589 

�� ��, �� , � �� �� � � 
 ��
�

���
����� � 1��2� � 1���1 � �, � � 2,2, �� � ��1 � �, � � 2,2, �����	�
����


�� ��   
 (1) 590 
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 591 

Where � � 1 � � and � is the hypergeometric function. We approximated the infinite sum by 592 

summing over the first 50 terms. When we added an additional 50 terms (100 in total) we found 593 

no appreciable change in the final log likelihoods. 594 

 595 

We denote the frequency of allele that is not observed at the second time point as �� � 0 and 596 

the probability of such an event as ���� , �� � 0, � � ���. This probability is given in equation 2 as 597 

the sum of the probability that the variant is truly lost by generation � (i.e. the other allele is fixed 598 

����, �� � 1, � � ����, the probability that it is present but below the limit of detection (i.e. 599 

���, �� � 0, � � 0 
 �� 
 0.02, ���) and the probability the variant is not detected due to low 600 

sensitivity for rare variant detection (i.e. ����, �� � 0, � � 0.02 
 �� 
 0.1, ���). The probability of 601 

not observing an allele at the second time is then 602 

 603 

�� ��, �� � 0, � �� �� � � �� ��, 1, � �� �� � � �� �, �� � 0, � �� 0 
 �� 
 0.02, �� � � 
                                                                                ����, �� � 0, � � 0.02 
 �� 
 0.1, ��� 604 

  (2) 605 

 606 

The first term in equation 2 is adapted from Kimura, 1955 as 607 

 608 

����, 1, � � ��� � �� � 
��

���
2� � 1�������1����1 � �, � � 2,2, �������
����/
���� 

 (3)  609 

Where q is defined as above. (Note that this is simply the probability of fixation for a variant at 610 

initial frequency q). As in equation 1 the infinite sum was approximated with a partial sum of 50 611 

terms. 612 

 613 
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The probability of the allele drifting below our limit of detection can be found by integrating 614 

equation 1 between 0 and our limit of detection, 0.02. This was done numerically using the 615 

python package scipy. 616 

 617 

���, �� � 0, � � 0 
 �� 
 0.02, ��� � � ��.�


�
���, �� , �|������ 

 (4) 618 

Finally, the probability of an iSNV being present at the second time point, but escaping detection, 619 

is given by the integral of equation 1 between our benchmarked frequencies (0.02,0.05) times 620 

the false negative rate for that range. Here, we assumed the entire range had the same 621 

sensitivity as the benchmarked frequency at the lower bound and rounded recipient titers down 622 

to the nearest log�� titer (e.g. 10�,10�, 10�). We also assumed perfect sensitivity above 10%. 623 

 624 

����, �� � 0, � � 0.02 
 �� 
 0.1, ���� � 
 ���.�
,�.��,�.���

��
FNR � Titer� , '�� � �����

��
��� , �� , � � ������ 

 (5) 625 

Where �FNR � Titer� , '�� is the false negative rate given the frequency and the sample titer (See 626 

Supplemental Table 1) and ����, �� , � � ��� is defined in equation 1. 627 

 628 

The log likelihood of an effective population size is the sum of the log of ���� , �� , � � ��� for each 629 

minor allele in the data set, where either the position is polymorphic at time � (i.e. equation 1) or 630 

the allele is not observed at time � (i.e. equation 2). 631 

 632 

Discrete Wright-Fisher estimation of �� 633 

The diffusion approximation treats changes in frequency as a continuous process because it 634 

assumes sufficiently large ��. That assumption can be relaxed, and the effective population size 635 
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can be determined, by applying a maximum likelihood method developed by Williamsom and 636 

Slatkin 1999 (Williamson & Slatkin 1999). In this model, the true allele frequencies move 637 

between discrete states (i.e. the frequency must be of the form �/�� where � is a whole number 638 

in the range )0, ��*. In the original application, allele counts were used, and sampling error was 639 

added to the model as a binomial distribution with n determined by the sample size. Here, we 640 

use the frequencies available from next generation sequencing and estimate sampling error as 641 

a normal distribution with mean equal to the observed frequency and a standard deviation equal 642 

to that observed in our benchmarking study for the 10� genomes/+l samples (, � 0.014) 643 

(McCrone & Lauring 2016). 644 

 645 

In this model, the probability of observing an allele frequency shift from �̂� to �̂� in � generations 646 

provided an effective population of �� is the probability of observing �̂� given some initial state 647 

�� and the probability of the population having that state, times the probability of observing �̂� 648 

given some final state �� and the probability of moving from the initial to the final state summed 649 

across all possible states. 650 

���� , �� � ��� � 
 ���,�� ��̂� � ������� � ������̂� � ������� � �� , ��� 

 (6) 651 

  652 

Where �̂� are the observed probabilities and �� are the real ones (of the form �/�� discussed 653 

above). The likelihood of observing a given frequency �̂� given a defined state �� is given by the 654 

likelihood of drawing �̂� from a normal distribution with mean �� and standard deviation 0.014. 655 

 656 

���̂� � ��� � Norm��� , 0.014� 
 (7) 657 
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As in Williamson and Slatkin 1999, we assume a uniform prior on the initial state. Because we 658 

know that our specificity is near perfect (above 2%, Supplemental Table 1) and we restrict our 659 

analysis to only polymorphic sites, the probability of any initial state is given by 660 

 661 

���� � ��� � 1�� � 1 

 (8) 662 

   663 

and finally the probability of moving from one state to another in � generations is given by 664 

 665 

���� , �� � ��� � 0�1�0� 

 (9) 666 

Where M is a square transmission matrix with �� � 1 rows and columns. Where 2�,� is the 667 

probability of going from the ith configuration to the jth or the probability of drawing 3 � 1 out of 668 

binomial distribution with mean �� � 1�/�� and a sample size ��. 0� is a row vector of initial 669 

frequencies �� with 100% chance of initial state ��, and 0� is column vector of the frequencies at 670 

time point � with 100% chance of the final state. In other words 0� is a row vector of �� � 1  671 

states with 0 everywhere except in the ith position where 
���
�� � ��, and 0� is a column vector of 672 

�� � 1  states with 0 everywhere except the jth position where 
���
�� � �� 673 

Using the scalar and cumulative properties of matrix multiplication equation 6 reduces to 674 

  675 

����, �� � ��� � )0, ���� � ��������� � ���, . . . , ���� � ����	��������	� � ���,0*1� 4 ���� � ����5���� � �����6 
 (10) 676 
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The first and last entries in 0� are 0 because we assume all measured sites represent 677 

polymorphisms at the first time of sampling. As above, the log likelihood of a given population 678 

size is then simply the sum of the log of ���̂� , �̂� , � � ��� for each minor allele in the data set. 679 

 680 

Simulations 681 

To simulate within host evolution we set �� in equation 10 to either 30, 50 or 100. For each 682 

minor allele we used the closest available non-zero state given the effective population size as 683 

the starting state. We then calculated the probability of moving to any other state and selected a 684 

final state from this distribution. We then drew a final measured frequency from the normal 685 

distribution to account for measurement errors. 686 

 687 

ABC model 688 

We estimated both the effective population size and selection coefficients using the approximate 689 

Bayesian computation (ABC) described in (Foll et al. 2014) with the WFACB_v1.1 software 690 

provided in (Foll et al. 2015). In its current implementation, this analysis requires the same time 691 

points for each sample, and we restricted this analysis to longitudinal samples taken 1 day apart. 692 

This subset constitutes 16 of the 29 modeled longitudinal samples. Briefly, we subsampled 693 

polymorphic sites to 1,000x coverage to estimate allele counts from frequency data as in (Foll et 694 

al. 2014). We then estimated the prior distribution of the effective population size using 10,000 695 

bootstrap replicates. We selected a uniform distribution on the range [-0.5,0.5] as the prior 696 

distribution for the selection coefficients. The posterior distributions were determined from 697 

accepting the top 0.01% of 100,000 simulations. 698 

 699 

Overview of models used for estimating the transmission bottleneck 700 

We model transmission as a simple binomial sampling process (Sobel Leonard et al. 2017). In 701 

our first model, we assume any transmitted iSNV, no matter the frequency, will be detected in 702 
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the recipient. In the second, we relax this assumption and account for false negative iSNV in the 703 

recipient. To include the variance in the transmission bottlenecks between pairs we use 704 

maximum likelihood optimization to fit the average bottleneck size assuming the distribution 705 

follows a zero-truncated Poisson distribution. 706 

 707 

Presence/Absence model 708 

The presence/absence model makes several assumptions. We assume perfect detection of all 709 

transmitted iSNV in the recipient. For each donor iSNV, we measure only whether or not the 710 

variant is present in the recipient. Any iSNV that is not found in the recipient is assumed to have 711 

not been transmitted. We also assume the probability of transmission is determined only by the 712 

frequency of the iSNV in the donor at the time of sampling (regardless of how much time passes 713 

between sampling and transmission). The probability of transmission is simply the probability 714 

that the iSNV is included at least once in a sample size equal to the bottleneck. Finally, we 715 

assume all genomic sites are independent of one another. For this reason, we discarded the 716 

one case where the donor was likely infected by two strains, as the iSNV were certainly linked. 717 

 718 

In our within host models, we only tracked minor alleles as in our data set we only ever find 2 719 

alleles at each polymorphic site. In this case, the frequency of the major allele is simply one 720 

minus the frequency of the minor allele. Because the presence/absence model is unaware of 721 

the frequency of alleles in the recipient we must track both alleles at each donor polymorphic 722 

site. 723 

 724 

Let 7� and 7
 be alleles in donor 3 at genomic site �. Let ��7�� be the probability that 7� is the 725 

only transmitted allele. There are three possible outcomes for each site. Either only 7� is 726 

transmitted, only 7
 is transmitted, or both 7� and 7
 are transmitted. The probability of only 7� 727 

being transmitted given a bottleneck size of �� is 728 
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 729 

��,��7� � ��� � ��
�
 

 (11) 730 

where �� is the frequency of 7� in the donor. In other words, this is simply the probability of only 731 

drawing 7� in �� draws. The probability that only 7
 is transmitted is similarly defined. 732 

 733 

The probability of both alleles being transmitted is given by 734 

 735 

��,��7�, 7
 � ��� � 1 � ���
�
 � �


�
� 
 (12) 736 

where �� and �
 are the frequencies of the alleles respectively. This is simply the probability of 737 

not picking only 7� or only 7
 in �� draws. 738 

 739 

This system could easily be extended to cases where there are more than 2 alleles present at a 740 

site; however, that never occurs in our data set. 741 

 742 

For ease we will denote the likelihood of observing the data at a polymorphic site � in each 743 

donor 3 given the bottleneck size �� as ��,����� where ��,����� is defined by equation 11 if only 744 

one allele is transmitted and equation 12 if two alleles are transmitted. 745 

 746 

The log likelihood of a bottleneck of size �� is given by 747 

 748 

88���� � 
 
 Ln
��

���,�� 
 (13) 749 

 750 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/176362doi: bioRxiv preprint 

https://doi.org/10.1101/176362
http://creativecommons.org/licenses/by/4.0/


 31

where �, 3 refers to the �th polymorphic site in the 3th donor. This is the log of the probability of 751 

observing the data summed over all polymorphic sites across all donors. 752 

 753 

Because the bottleneck size is likely to vary across transmission events, we used maximum 754 

likelihood to fit the bottleneck distribution as oppose to fitting a single bottleneck value. Under 755 

this model we assumed the bottlenecks were distributed according to a zero-truncated Poisson 756 

distribution parameterized by ;. The likelihood of observing the data given a polymorphic site � 757 

in donor 3 and ; is 758 

��,��;� � 
 ��,�
�

�
��
�������� � ;� 

 (14) 759 

 760 

where ��,����� is defined as above, ���� � ;� is the probability of drawing a bottleneck of size �� 761 

from a zero-truncated Poisson distribution with a mean of 
�

���	�. The sum is across all possible 762 

�� defined on )1, ∞*. For practical purposes, we only investigated bottleneck sizes up to 100, as 763 

initial analyses suggested ; is quite small and the probability of drawing a bottleneck size of 100 764 

from a zero-truncated Poisson distribution with ; � 10 is negligible. We follow this convention 765 

whenever this sum appears. 766 

 767 

The log likelihood of ; for the data set is given by 768 

 769 

88�;� � 
 
 Ln
��

� 
 ��,�
�

�
��
�������� � ;�� 

 (15) 770 

  771 
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Beta Binomial model 772 

The Beta binomial model is explained in detail in Leonard et al. (Sobel Leonard et al. 2017). It is 773 

similar to the presence/absence model in that transmission is modeled as a simple sampling 774 

process; however, it relaxes the following assumptions. In this model, the frequencies of 775 

transmitted variants are allowed to change between transmission and sampling according a 776 

beta distribution. The distribution is not dependent on the amount of time that passes between 777 

transmission and sampling, but rather depends on the size of the founding population (here 778 

assumed to equal to ��) and the number of variant genomes present in founding population =. 779 

Note the frequency in the donor is assumed to be the same between sampling and transmission. 780 

 781 

The equations below are very similar to those presented by Leonard et al. with one exception. 782 

Because we know the sensitivity of our method to detect rare variants based on the expected 783 

frequency and the titer, we can include the possibility that iSNV are transmitted but are missed 784 

due to poor sensitivity. Because the beta binomial model is aware of the frequency of the iSNV 785 

in the recipient, no information is added by tracking both alleles at a genomic site �. 786 

Let ��,�� represent the frequency of the minor allele frequency at position � in the donor of some 787 

transmission pair 3. Similarly, let ��,�
 be the frequency of that same allele in the recipient of the 788 

3th transmission pair. Then, as in Leonard et al., the likelihood of some bottleneck �� for the 789 

data at site � in pair 3 where the minor allele is transmitted is given by 790 

 791 

8�����,� � 
 p_beta�


���
���,�
 � =, �� � =�p_bin�= � �� , ��,��� 

 (16) 792 

 793 

Where p_beta is the probability density function for the beta distribution and p_bin is the 794 

probability mass function for the binomial distribution. 795 
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 796 

This is the probability density that the transmitted allele is found in the recipient at a frequency 797 

of ��,�
 given that the variant was in = genomes in a founding population of size �� times the 798 

probability of drawing = variant genomes in a sample size of �� and a variant frequency of ��,��. 799 

This is then summed for all possible = where 1 B = B ��. 800 

 801 

As in equation 14 the likelihood of a zero truncated Poisson with a mean of 
�

���	� given this 802 

transmitted variants is then given by 803 

 804 

8�;��,� !"#$%&  '( � 
 8�

�
��
�����,����� � ;� 

 (17) 805 

 806 

This is simply the likelihood of each �� weighted by the probability of drawing a bottleneck size 807 

of �� from bottleneck distribution. 808 

 809 

In this model, there are three possible mechanisms for a donor iSNV to not be detected in the 810 

recipient. (i) The variant was not transmitted. (ii) The variant was transmitted but is present 811 

below our level of detection (2%). (iii) The variant was transmitted and present above our level 812 

of detection but represents a false negative in iSNV identification. 813 

 814 

As in Leonard et al., the likelihood of scenarios (i) and (ii) for a given �� are expressed as 815 

 816 

8�����,�)*$ � 
 p_beta_cdf�


���
���,�
 
 0.02 � =, �� � =�p_bin�= � �� , ��,��� 
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 (18) 817 

 818 

Where p_beta_cdf is the cumulative distribution function for the beta distribution. Note that if 819 

= � 0 (i.e. the iSNV was not transmitted) then the term reduces to the probability of not drawing 820 

the variant in �� draws. 821 

 822 

The likelihood of the variant being transmitted but not detected in the recipient given a 823 

bottleneck of �� is described by 824 

 825 

8�����,�%&$$'( � 
 
 p_beta_cdf��.�
,�.��,�.��

��

�


���
�'� 
 ��,�
 
 '��� � =, �� � =� � 

                                                                                    p_bin�= � �� , ��,����FNR � Titer� , '�� 826 

  (19) 827 

 828 

This is the likelihood of the variant existing in the ranges [0.0.2,0.05] or [0.05,0.1] given an initial 829 

frequency of =/�� and a bottleneck size of �� multiplied by the expected false negative rate 830 

(FNR) given the titer of the recipient and the lower frequency bound. As in our diffusion model, 831 

we assumed perfect sensitivity for detection of iSNV present above 10%, rounded recipient 832 

titers down to the nearest log��  titer (e.g. 10�,10�, 10�) and assumed the entire range )'� , '���* 833 

has the same sensitivity as the lower bound. 834 

 835 

The likelihood of ; for iSNV that are not observed in the recipient is then given by summing 836 

equations 18 and 19 across all possible ��. 837 

 838 

8�;��,�#*# !"#$%&  '( � 
 �8�����,�)*$ � 8�����,�%&$$'(����� � ;��

�
��
 

 (20) 839 
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 840 

The log likelihood of the total dataset is then determined by summing log of equations 17 and 20 841 

(as applicable) across all polymorphic sites in each donor. (As before here we sum of �� within 842 

the range )1,100*.) 843 

 844 

Simulation 845 

In order evaluate the fits of the two transmission models, we simulated whether or not each 846 

donor iSNV was transmitted or not. This involved converting each model to a presence absence 847 

model. In each simulation, we assigned a bottleneck from the bottleneck distribution for each 848 

transmission pair. We then determined the probability of only transmitting one allele (7� where 849 

F G )1,2* as in the presence/absence model above) and the probability of transmitted both 850 

alleles (7�, 7
 above) for each polymorphic site. 851 

 852 

For the presence/absence model, the probabilities for each possible outcome are given by 853 

equations 11 and 12. For the beta binomial model, the probability of only observing 7� at site � 854 

is given by 855 

��7� � ��� � 8�����,�)*$ � 8�����,�%&$$'( 

 (21) 856 

 857 

where 8�����,�)*$  and 8�����,�%&$$'( are defined as in equations 18 and 19 respectively, but with 858 

��,�� replaced by 1 � ��,��. This is simply the probability of not observing the other allele in the 859 

recipient. 860 

 861 

Again, the probability of observing both alleles is 862 

 863 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2017. ; https://doi.org/10.1101/176362doi: bioRxiv preprint 

https://doi.org/10.1101/176362
http://creativecommons.org/licenses/by/4.0/


 36

��7�, 7
 � ��� � 1 � ���7�� � ��7
�� 

 (22) 864 

where ��7�� and ��7
� are defined as in equation 21. 865 

 866 

Fitting mutation rate and �� 867 

The diffusion approximation to the Wright - Fischer model allows us to make predictions on the 868 

allele frequency spectrum of a population given a mutation rate and an effective population size. 869 

The probability of observing a mutation at frequency �� given an initial frequency of 0 can be 870 

approximated as in (Rouzine et al. 2001) 871 

 872 

��0, �� , �, � +, ��� � 2+����
��
�����  

 (23) 873 

Where + is the mutation rate. In this model mutation increases an allele’s frequency from 0 but 874 

after that initial jump, drift is responsible for allowing the mutation to reach it’s observed 875 

frequency. Because the limit of equation 23 approaches infinity as �� approaches 0 and for ease 876 

in numerical integration, we assumed that any variant present at less than 0.1% was essentially 877 

at 0%. 878 

 879 

We then assumed each infection began as a clonal infection matching the consensus sequence 880 

observed at the time of sampling. The likelihood of observing minor alleles at the observed 881 

frequency is the given by equation 23. 882 

 883 

As in the other within host models, we can account for nonpolymorphic sites by adding the 884 

likelihood that no mutation is present ��0, �� � 0, � � �� 
 0.001, +, ���, that a mutation is present 885 

but below our level of detection ��0, �� � 0, � � �� 
 0.02, +, ���, and that a mutation is present 886 
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but missed due to low sensitivity at low frequencies ��0, �� � 0, � � 0.02 
 �� 
 0.1, +, ���. In this 887 

model we assumed 13133 mutagenic targets in each sample (the number of coding sites 888 

present in the reference strain from 2014-2015). 889 

 890 

The probability of not observing a mutation is given by 891 

 892 

�� 0, �� � 0, �, �� +, �� � � �� 0, �� � 0, � �� �� 
 0.001, +, �� � � 
                                                                �� 0, �� � 0, � �� �� 
 0.02, +, �� � � 893 

                                                               ��0, �� � 0, � � 0.02 
 �� 
 0.1, +, ��� 894 

 (24) 895 

Where 896 

��0, �� � 0, � � �� 
 0.001, +, ��� � 1 � � ��

�.���
�0, �� , �, � +, ������ 

 (25) 897 

and 898 

��0, �� � 0, � � �� 
 0.02, +, ��� � � ��.�


�.���
�0, �� , �, � +, ������ 

 (26) 899 

and 900 

��0, �� � 0, � � 0.02 
 �� 
 0.1, +, ��� � 
 ���.�
,�.��,�.���

��
FNR � Titer� , '�� � �����

��
���, �� , � � +, ������ 

 (27) 901 

 902 

Where we follow the same convention as in equation 5 for determining the false negative rate. 903 

The log likelihood of a given + and �� pair is then the sum of the log of equations 23 and 24 for 904 

all possible sites in the data set. 905 

 906 
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Annotated computer code for all analyses and for generating the figures can be accessed at 907 

https://github.com/lauringlab/Host_level_IAV_evolution  908 
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Figure Legends 1058 

Figure 1.  Within host diversity of IAV populations. (A) Boxplots (median, 25th and 75th 1059 

percentiles, whiskers extend to most extreme point within median ± 1.5 x IQR) of the number of 1060 

viral genomes per microliter transport media stratified by day post symptom onset. Notches 1061 

represent the approximate 95% confidence interval of the median. (B) Boxplots (median, 25th 1062 

and 75th percentiles, whiskers extend to most extreme point within median ± 1.5 x IQR) of the 1063 

number of iSNV in 249 high quality samples stratified by day post symptom onset. (C) 1064 

Histogram of within host iSNV frequency in 249 high quality samples. Bin width is 0.05 1065 

beginning at 0.02. Mutations are colored nonsynonymous (blue) and synonymous (gold) (D) 1066 

Location of all identified iSNV in the influenza A genome. Mutations are colored 1067 

nonsynonymous (blue) and synonymous (gold) relative to that sample’s consensus sequence. 1068 

Triangles signify mutations that were found in more than one individual in a given season. 1069 

 1070 

Figure 2. Within host dynamics of IAV. (A) Timing of sample collection for 35 paired longitudinal 1071 

samples relative to day of symptom onset. Of the 49 total, 35 pairs had minor iSNV present in 1072 

the first sample. (B) The change in frequency over time for minority nonsynonymous (blue) and 1073 

synonymous (gold) iSNV identified for the paired samples in (A). (C) The distribution of effective 1074 

population sizes estimated from 1,000 simulated populations. Simulations were run on 1075 

populations with characteristics similar to the actual patient-derived populations and with the 1076 

specified effective population size (x-axis). (D) The effect of iteratively removing iSNV with the 1077 

most extreme change in frequency (fraction of iSNV removed, x-axis) on the estimated effective 1078 

population size. The point represents the estimate when all iSNV are included. (E) The posterior 1079 

distributions of selection coefficients estimated for the 35 iSNV present in isolates sampled one 1080 

day apart. Distributions are colored according to class relative to the sample consensus 1081 

sequence, nonsynonymous (blue) synonymous (gold). Variants for which the 95% highest 1082 
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posterior density intervals exclude 0.0 are noted in the margin.  1083 

 1084 

Figure 3. Between host dynamics of IAV. (A) The distribution of pairwise L1-norm distances for 1085 

household (blue) and randomly-assigned community (gold) pairs. The bar heights are 1086 

normalized to the height of the highest bar for each given subset (47 for household, 1,592 for 1087 

community). The red line represents the 5th percentile of the community distribution. (B) Timing 1088 

of symptom onset for 52 epidemiologically linked transmission pairs. Day of symptom onset for 1089 

both donor and recipient individuals is indicated by black dots. Dashed lines represent pairs that 1090 

were removed due to abnormally high genetic distance between isolates, see (A). (C) The 1091 

frequency of donor iSNV in both donor and recipient samples. Frequencies below 2% and 1092 

above 98% were set to 0% and 100% respectively. (D) The presence-absence model fit 1093 

compared with the observed data. The x-axis represents the frequency of donor iSNV with 1094 

transmitted iSNV plotted along the top and nontransmitted iSNV plotted along the bottom. The 1095 

black line indicates the probability of transmission for a given iSNV frequency as determined by 1096 

logistic regression. Similar fits were calculated for 1,000 simulations with a mean bottleneck size 1097 

of 1.66. Fifty percent of simulated outcomes lie in the darkly shaded region and 95% lie in the 1098 

lightly shaded regions. (E) The outcome from 1,000 simulated “transmission” events with 1099 

randomly assigned pairings. The black line represents the observed data, as in (D) the shaded 1100 

regions represent the middle 50% and 95% of simulated outcomes. The results from the 1101 

simulated logit models were smoothed by plotting the predicted probability of transmission at 1102 

0.02 intervals. (F) The beta-binomial model fit. Similar to (D) except the simulated outcomes are 1103 

the based on a beta-binomial model using a mean bottleneck of 1.73. 1104 

 1105 

Figure 4. Combined estimates of within host mutation rate and effective population size. 1106 

Contour plot shows the log likelihood surface for estimates of the effective population size and 1107 
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neutral mutation rate. The point represents the peak (μ = 4x10-6, Ne = 36, log likelihood = -1108 

4,687 ). Log likelihoods for each contour are indicated. 1109 

 1110 

Supplementary Figure 1. Sequence coverage for all samples. For each sample, the sliding 1111 

window mean coverage was calculated using a window size of 200 and a step of 100. The 1112 

distributions of these means are plotted as box plots (median, 25th and 75th percentiles, 1113 

whiskers extend to most extreme point within median ± 1.5 x IQR) where the y-axis represents 1114 

the read depth and the x-axis indicates the position of the window in a concatenated IAV 1115 

genome. 1116 

 1117 

Supplementary Figure 2. Approximate maximum likelihood trees of the concatenated coding 1118 

sequences for high quality H1N1 samples. The branches are colored by season; the tip 1119 

identifiers are colored by household. Arrows with numbers indicate consensus and putative 1120 

minor haplotypes for samples with greater than 10 iSNV. Trees were made using FastTree. 1121 

 1122 

Supplementary Figure 3. Approximate maximum likelihood trees of the concatenated coding 1123 

sequences for high quality H3N2 samples. The branches are colored by season; the tip 1124 

identifiers are colored by household. Arrows with numbers indicate consensus and putative 1125 

minor haplotypes for samples with greater than 10 iSNV. Trees were made using FastTree.  1126 

 1127 

Supplementary Figure 4. The effect of titer and vaccination on the number of iSNV identified. 1128 

(A) The number of iSNV identified in an isolate (y-axis) plotted against the titer (x-axis, 1129 

genomes/μl transport media).  (B) The number of iSNV identified in each isolate stratified by 1130 

whether that individual was vaccinated or not. Red bars indicate the median of each distribution. 1131 

 1132 

Supplementary Figure 5. Minority nonsynonymous iSNV in global circulation. 1133 
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The global frequencies of the amino acids that were found as minority variants in sample 1134 

isolates (x-axis) plotted overtime  (y-axis). Each amino acid trace is labeled according to the H3 1135 

number scheme. All samples were isolated in December of 2014 (gray line).  1136 

 1137 

Supplementary Figure 6. Reproducibility of iSNV identification for paired samples acquired on 1138 

the same day. The x-axis represents iSNV frequencies found in the home-acquired nasal swab. 1139 

The y-axis represents iSNV frequencies found the clinic-acquired combined throat and nasal 1140 

swab. 1141 

 1142 

Supplementary Figure 7. Estimate of effective bottleneck size with relaxed variant calling 1143 

criteria. (A) The frequency of iSNV in both recipient and donor isolates. iSNV were identified 1144 

using the original variant calling pipeline. (B) The presence-absence model fit compared to the 1145 

observed data for iSNV identified using the original variant calling pipeline. The x-axis 1146 

represents the frequency of donor iSNV with transmitted iSNV plotted along the top and 1147 

nontransmitted iSNV plotted along the bottom. The black line indicates the probability of 1148 

transmission for a given iSNV frequency as determined by logistic regression. Similar fits were 1149 

calculated for 1,000 simulations with a mean bottleneck size of 2.10. Fifty percent of simulated 1150 

outcomes lie in the darkly shaded region and 95% lie in the lightly shaded regions. (C) Similar to 1151 

(A) but with minority iSNV identified using the current analytical framework without a frequency 1152 

threshold. (D) Similar to B but with minority iSNV identified using the current analytical 1153 

framework without a frequency threshold.  1154 

  1155 
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Table 1. Influenza viruses over five seasons in a household cohort 1156 

 
1157 

a Self reported or confirmed receipt of vaccine prior to the specified season. 1158 
b RT-PCR confirmed infection. 1159 
c Households in which two individuals were positive within 7 days of each other. In cases of trios and quartets, the 1160 
putative chains could have no pair with onset >7 days apart. 1161 
d Samples with >103 genome copies per µl of transport medium, adequate amplification of all 8 genomic segments, 1162 
and average sequencing coverage >103 per nucleotide. 1163 

  1164 

 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 
Households 328 213 321 232 340 
Participants 1441 943 1426 1049 1431 
Vaccinated, n (%)a 934 (65) 554 (59) 942 (66) 722 (69) 992 (69) 
IAV Positive Individualsb 86 23 69 48 166 
    H1N1 26 1 3 47 0 
    H3N2 58 22 66 1 166 
IAV Positive Householdsc  
   Two individuals 
   Three individuals 
   Four individuals 

 
13 
5 
- 

 
2 
2 
- 

 
9 
3 
1 

 
7 
3 
2 

 
23 
11 
4 

High Quality NGS Pairsd 4 1 2 6 39 
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Table 2. Within host effective population size of IAV 1165 
  1166 
 1167 

 1168 Model SNV Used 
Generation 

Time (h) 
Effective Population 

Size (95% CI) 

Diffusion approximation All 6 35 (26-46) 

 
All 

 12 17 (13-23) 

Discrete model All 6 32 (28-41) 

  Nonsynonymous 6 30 (21-40) 

      Synonymous 6 37 (27-54) 

      All 12 23 (23-29) 

 Nonsynonymous 12 19 (19-21) 

 Synonymous 12 27 (22-33) 
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Supplementary Table 1. Sensitivity and specificity of variant detection 1169 

 1170 

Copy Variant Original Pipelineb  Current Pipelinec 

Numbera Frequency Sensitivity Specificity Sensitivity Specificity 

>105 0.05 1 >0.9999 0.85 1.000 

0.02 0.85 0.9999 0.15 1.000 

0.01 0.95 0.9995 - - 
0.005 0.35 0.9999 - - 

104-105 0.05 0.95 0.9999 0.85 1.000 

0.02 0.9 0.9999 0.15 1.000 

0.01 0.8 0.9998 - - 
0.005 0.4 0.9999 - - 

103-104 0.05 0.8 >0.9999 0.70 1.000 

0.02 0.45 0.9999 0.15 1.000 

0.01 0.2 0.9997 - - 
0.005 0.1 0.9999 - - 

 1171 
a Per µl transport media 1172 
b As described in McCrone JT and Lauring AS, J. Virol. 90(15):6884, 2016. 1173 
c As described in Methods, benchmarked for frequencies 0.02-0.98 only  1174 
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 1175 
Supplementary Table 2. Nonsynonymous substitutions in HA antigenic sites 1176 
 1177 

House 
ID 

Enrolment 
ID 

Symptom 
Onset 

Subtype Frequency Amino Acid 
Change 

Antigenic 
Site 

Vaccinated Day of 
Symptoms 

1111 300481 3-30-2011 H3N2 0.071 E62G E* No 0 

2166 320661 2-13-2012 H3N2 0.071 V297A C Yes 1 

1302 301355 3-20-2011 H3N2 0.088 L86I E Yes 1 

3075 331045 12-10-2012 H3N2 0.066 I214T D Yes 1 

5219 50935 12-5-2014 H3N2 0.175 F193S B*† No 3 

5263 51106 12-6-2014 H3N2 0.111 T128A B Yes 3 

5290 51225 12-15-2014 H3N2 0.405 I260V E* Yes 1 

5302 51273 12-13-2014 H3N2 0.030 S262N E* Yes 0 

5098 50419 12-22-2014 H3N2 0.364 G208R D Yes 4 

5033 50141 12-3-2014 H3N2 0.032 A163T B Yes 2 

5034 50143 1-11-2015 H3N2 0.119 I307R C Yes 1 

5289 51220 12-13-2014 H3N2 0.038 K189N B*† Yes -1 

5033 50141 12-3-2014 H3N2 0.025 D53E C* Yes 1 

5033 50141 12-3-2014 H3N2 0.023 S312G C Yes 1 

5269 51132 12-6-2014 H3N2 0.028 I242T D Yes 2 

5147 50630 11-18-2014 H3N2 0.164 I242L D Yes 1 

5034 50143 1-11-2015 H3N2 0.161 I307R C Yes 2 

4185 UM40738 12-14-2013 H1N1 0.021 R208K Ca No 2 
 1178 

* Sites observed to vary between antigenically distinct strains in Wiley et al., 1981 and Smith DJ et al., 2004.  1179 

† Sites located in the “antigenic ridge” identified in Koel et al., 2013. 1180 
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Figure 1.  Within host diversity of IAV populations. (A) Boxplots (median, 25th and 75th percentiles, whiskers extend to most extreme point within median ± 1.5 x IQR) of the number of viral genomes per microliter transport media stratified by day post symptom onset. Notches represent the approximate 95% confidence interval of the median. (B) Boxplots (median, 25th and 75th percentiles, whiskers extend to most extreme point within median ± 1.5 x IQR) of the number of iSNV in 249 high quality samples stratified by day post symptom onset. (C) Histogram of within host iSNV frequency in 249 high quality samples. Bin width is 0.05 beginning at 0.02. Mutations are colored nonsynonymous (blue) and synonymous (gold) (D) Location of all identified iSNV in the influenza A genome. Mutations are colored nonsynonymous (blue) and synonymous (gold) relative to that sample’s consensus sequence. Triangles signify mutations that were found in more than one individual in a given season.
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Figure 2. Within host dynamics of IAV. (A) Timing of sample collection for 35 paired longitudinal samples relative to day of symptom onset. Of the 49 total, 35 pairs had minor iSNV present in the first sample. (B) The change in frequency over time for minority nonsynonymous (blue) and synonymous (gold) iSNV identified for the paired samples in (A). (C) The distribution of effective population sizes estimated from 1,000 simulated populations. Simulations were run on populations with characteristics similar to the actual patient-derived populations and with the specified effective population size (x-axis). (D) The effect of iteratively removing iSNV with the most extreme change in frequency (fraction of iSNV removed, x-axis) on the estimated effective population size. The point represents the estimate when all iSNV are included. (E) The posterior distributions of selection coefficients estimated for the 35 iSNV present in isolates sampled one day apart. Distributions are colored according to class relative to the sample consensus sequence, nonsynonymous (blue) synonymous (gold). Variants for which the 95% highest posterior density intervals exclude 0.0 are noted in the margin. 
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Figure 3. Between host dynamics of IAV. (A) The distribution of pairwise L1-norm distances for household (blue) and randomly-assigned community (gold) pairs. The bar heights are normalized to the height of the highest bar for each given subset (47 for household, 1,592 for community). The red line represents the 5th percentile of the community distribution. (B) Timing of symptom onset for 52 epidemiologically linked transmission pairs. Day of symptom onset for both donor and recipient individuals is indicated by black dots. Dashed lines represent pairs that were removed due to abnormally high genetic distance between isolates, see (A). (C) The frequency of donor iSNV in both donor and recipient samples. Frequencies below 2% and above 98% were set to 0% and 100% respectively. (D) The presence-absence model fit compared with the observed data. The x-axis represents the frequency of donor iSNV with transmitted iSNV plotted along the top and nontransmitted iSNV plotted along the bottom. The black line indicates the probability of transmission for a given iSNV frequency as determined by logistic regression. Similar fits were calculated for 1,000 simulations with a mean bottleneck size of 1.66. Fifty percent of simulated outcomes lie in the darkly shaded region and 95% lie in the lightly shaded regions. (E) The outcome from 1,000 simulated “transmission” events with randomly assigned pairings. The black line represents the observed data, as in (D) the shaded regions represent the middle 50% and 95% of simulated outcomes. The results from the simulated logit models were smoothed by plotting the predicted probability of transmission at 0.02 intervals. (F) The beta-binomial model fit. Similar to (D) except the simulated outcomes are the based on a beta-binomial model using a mean bottleneck of 1.73.
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Figure 4. Combined estimates of within host mutation rate and effective population size. Contour plot shows the log likelihood surface for estimates of the effective population size and neutral mutation rate. The point represents the peak (μ = 4x10-6, Ne = 36, log likelihood = -4,687 ). Log likelihoods for each contour are indicated.
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Supplementary Figure 1. Sequence coverage for all samples. For each sample, the sliding window mean coverage was calculated using a window size of 200 and a step of 100. The distributions of these means are plotted as box plots (median, 25th and 75th percentiles, whiskers extend to most extreme point within median ± 1.5 x IQR) where the y-axis represents the read depth and the x-axis indicates the position of the window in a concatenated IAV genome.
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Supplementary Figure 2. Approximate maximum likelihood trees of the concatenated coding sequences for high quality H1N1 samples. The branches are colored by season; the tip identifiers are colored by household. Arrows with numbers indicate consensus and putative minor haplotypes for samples with greater than 10 iSNV. Trees were made using FastTree.
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Supplementary Figure 3. Approximate maximum likelihood trees of the concatenated coding sequences for high quality H3N2 samples. The branches are colored by season; the tip identifiers are colored by household. Arrows with numbers indicate consensus and putative minor haplotypes for samples with greater than 10 iSNV. Trees were made using FastTree. 
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Supplementary Figure 4. The effect of titer and vaccination on the number of iSNV identified. (A) The number of iSNV identified in an isolate (y-axis) plotted against the titer (x-axis, genomes/μl transport media). (B) The number of iSNV identified in each isolate stratified by whether that individual was vaccinated or not. Red bars indicate the median of each distribution.
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Supplementary Figure 5. Minority nonsynonymous iSNV in global circulation. The global frequencies of the amino acids that were found as minority variants in sample isolates (x-axis) plotted overtime  (y-axis). Each amino acid trace is labeled according to the H3 number scheme. All samples were isolated in December of 2014 (gray line).
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Supplementary Figure 6. Reproducibility of iSNV identification for paired samples acquired on the same day. The x-axis represents iSNV frequencies found in the home-acquired nasal swab. The y-axis represents iSNV frequencies found the clinic-acquired combined throat and nasal swab.
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Supplementary Figure 7. Estimate of effective bottleneck size with relaxed variant calling criteria. (A) The frequency of iSNV in both recipient and donor isolates. iSNV were identified using the original variant calling pipeline. (B) The presence-absence model fit compared to the observed data for iSNV identified using the original variant calling pipeline. The x-axis represents the frequency of donor iSNV with transmitted iSNV plotted along the top and nontransmitted iSNV plotted along the bottom. The black line indicates the probability of transmission for a given iSNV frequency as determined by logistic regression. Similar fits were calculated for 1,000 simulations with a mean bottleneck size of 2.10. Fifty percent of simulated outcomes lie in the darkly shaded region and 95% lie in the lightly shaded regions. (C) Similar to (A) but with minority iSNV identified using the current analytical framework without a frequency threshold. (D) Similar to B but with minority iSNV identified using the current analytical framework without a frequency threshold. 
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