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ABSTRACT 21 

Purpose The majority of cancer patients receive treatments that are minimally informed by omics data. Our goal was to develop a precision 22 

medicine computational framework (PANOPLY: Precision cancer genomic report: single sample inventory) to identify and prioritize drug targets 23 

and cancer therapy regimens.  24 

Methods The PANOPLY approach integrates clinical data with germline and somatic features obtained from multi-omics platforms, and apply 25 

machine learning, and network analysis approaches in the context of the individual patient and matched controls. The PANOPLY workflow 26 

employs four steps  (i) selection of matched controls to the case of interest (ii) identification of case-specific genomic events (iii) identification of 27 

suitable drugs using the driver-gene network and random forest analyses and (iv) provide an integrated multi-omics case report of the patient with 28 

prioritization of anti-cancer drugs.  29 

Results The PANOPLY workflow can be executed on a stand-alone virtual machine and is also available for download as an R package. We 30 

applied the method to an institutional breast cancer neoadjuvant chemotherapy study which collected clinical and genomic data as well as patient-31 

derived xenografts (PDXs) to investigate the prioritization offered by PANOPLY. In a chemotherapy-resistant PDX model, we found that that the 32 

prioritized drug, olaparib, was more effective than placebo at treating the tumor (P < 0.05).  We also applied PANOPLY to in-house and publicly 33 

accessible multi-omics tumor datasets with therapeutic response or survival data available.   34 

Conclusion In summary, PANOPLY prioritizes drugs based on both clinical and multi-omics data, and it can aid oncologists in their decision-35 

making to effectively treat an individual patient. 36 
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INTRODUCTION 37 

There has been substantial progress in the fight against cancer; however, cancer remains the second leading cause of death in the United States 1. A 38 

major focus of cancer research has been the identification of oncogenic drivers and the development of drugs that selectively target those driver 39 

events.  This approach has led to the development of agents that have been shown to successfully target the driver mutational events such as:   40 

trastuzumab, which targets HER2+ breast cancer 2,3,  imatinib, which inhibits the BCR-ABLl tyrosine kinase produced by the Philadelphia 41 

translocation in chronic myelogenous leukemia 4, vemurafenib for the treatment of BRAF V600E mutant malignant melanoma 5,  agents targeting 42 

EGFR mutations non-small cell lung carcinoma and 6, and crizotinib for non-small cell lung cancer with ALK rearrangements 7.   43 

The mapping of the human genome has opened the door to the exploration of the tumor and environmental features to uncover the drivers of 44 

cancer and its resistance to treatment. A number of commercial gene sequencing platforms (e.g., Foundation One, Ambry Genetics) have been 45 

developed to identify tumor mutations used in clinical decision making. Most of these platforms are focused on detecting a limited number of gene 46 

abnormalities in specific genes and do not include comprehensive “multi-omics” data analysis. For many tumor types, this leads to the inability to 47 

link mutational drivers with druggable targets.  A pressing need exists for better approaches to identify right drugs for an individual patient 48 

utilizing multi-omics data. While most of the studies utilize single omics data type to predict drug response, there are algorithms that use two or 49 

more genomic features to predict drug response in cancer cell lines 8-10and in The Cancer Genome Atlas (TCGA) subsets11. There are databases 50 

such as MD Anderson’s Personalized Cancer Therapy 12, Vanderbilt’s My Cancer Genome 13, the Broad Institute’s TARGET 14, TCGA 15, and the 51 

Catalogue of Somatic Mutations in Cancer (COSMIC) 16 containing information on the frequency of alterations in thousands of patients with 52 

cancer. Programs such as DriverNet 17, IntOGen 18, analyze a single type of omics data, such as somatic mutations, to identify potential driver 53 

genes. Other programs, such as XSeq 19, OncoRep 20, OncoIMPACT 21, and iCAGES 22 integrate on somatic mutations and/or copy number 54 
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alterations (CNAs), and/or gene expression. Although integrating these data types represents substantial progress toward the full molecular 55 

characterization needed for precision cancer care, no comprehensive method for integrating clinical and multi-omics data has yet been developed 56 

and validated for selecting the most compatible agents for a given patient’s –omics profile.  Thus, we have developed a workflow called 57 

PANOPLY (Precision cancer genomic report: single sample inventory) that identifies molecular alterations that are unique to a cancer patient 58 

compared to matched-controls with similar disease characteristics who had a favorable clinical course and then performs a comprehensive, 59 

integrated multi-omics analysis to identify druggable genomic events for an individual’s tumor.  The results are summarized in a report which the 60 

patient’s medical oncology team can use the data to choose the particular agent to be administered.   61 

In brief, PANOPLY uses machine learning and knowledge-driven network analysis to analyze patient-specific alterations (CNA, germline and 62 

somatic alterations from DNA, and  RNA gene expression and expressed mutations) driving oncogenesis and prioritizes drugs which target the 63 

networks and pathways associated with these cancer-driving alterations. We describe the workflow and provide examples using both institutional 64 

and publicly-available datasets where PANOPLY was used to identify drugs for individual patients and subgroups of patients whose disease is 65 

resistant to standard chemotherapy. We validated these drugs in a patient with chemo-resistant triple-negative breast cancer (TNBC) using patient-66 

derived xenografts (PDXs) by testing the top drugs for that patient.  67 

 68 
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MATERIALS AND METHODS 73 

Data Sources  74 

Simulation Data:  Data was simulated from multivariate normal (MVN) distribution for samples using the mean and covariance structure based on 75 

20 non-cancer tissue samples. The samples were collected by the Susan G. Komen Tissue Bank (phs000644.v1.p1) and SOLID RNA-Seq data was 76 

normalized and provided by Dr. Milan Radovich from Indiana University23.    77 

 78 

TCGA with a clinical follow-up: Clinical and processed multi-omics data for breast and colon cancers were downloaded from Synapse and CGHub 79 

24 and other TCGA repositories.  Specifically in this study, we utilized 1) 94 breast cancer normal-adjacent samples gene expression data 2) 80 

Normalized copy number and gene expression TCGA colon cancer (COAD) data (https://www.synapse.org/#!Synapse:syn274420). We restricted 81 

the COAD data to male patients age 45-70 with Stage II or higher disease.  We selected a patient who died within 155 days of initial diagnosis of 82 

colon cancer and compared with five disease-free matched-controls.  83 

Mayo Clinic Neo-Adjuvant Triple Negative Breast Cancer (TNBC) Patients (BEAUTY Study): We utilized 36 basal TNBC patients from a 84 

neoadjuvant clinical trial 25 for whom DNA, RNA sequencing and drug response to chemotherapy was available. As described in Goetz et al.2017, 85 

there were 19 chemo-sensitive and 17 chemo-resistant TNBC patients. PDX models were established for 16 TNBC patients before 86 

chemotherapy26,  which were used for experimental validation of PANOPLY.   87 
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Curated Knowledge Datasets for PANOPLY Workflow: We used the three sources to curate cancer-specific knowledge networks in PANOPLY; 88 

briefly, 844 cancer genes 27-29 described in Figure_S1, and gene-gene interactions 30 and cancer drug-gene interactions 31 are described in the 89 

Supplementary Methods.  90 

PANOPLY workflow 91 

The PANOPLY workflow is available for download as an R package from http://bioinformaticstools.mayo.edu/research/panoply/. A high-level 92 

overview of the workflow is shown in Figure 1, which we briefly describe below. The details of each step are provided in the Supplementary 93 

Methods.   94 

 95 

Input: The minimum input required for PANOPLY is normalized gene expression data for a patient and for a set of clinically similar cancer 96 

patients who differ in regards to the phenotype of interest (e.g., response or survival time). Multi-omics data for patients such as CNA, somatic 97 

mutations, and/or germline variants, and expressed variants can be provided as additional inputs to PANOPLY. 98 

Steps: 99 

1. Selection of matched controls for a case: For a patient of interest, the user selects a matched set of controls defined by the phenotype of 100 

interest. Matching algorithms are not provided within the workflow, but we provide examples of how we constructed for our studies. 101 

2. Patient-Specific Genomic Events: Using the pre-processed data provided (mandatory:  expression data, and optional: somatic, germline, copy 102 

number, and/or expressed alterations), patient-specific genomic alterations that are different from the matched-controls are identified. 103 
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3. Identification of suitable drugs using driver-gene networks and random forest analyses: We apply two network-based tests for drugs to be 104 

prioritized for the patient: Drug Network Test (DNT) and Drug Meta Test (DMT). The sum of the negative log10 p-values from these tests is 105 

provided as a score for each drug (P.score). In addition, we apply random forest method to identify multi-omics features that distinguish the 106 

case from the matched-controls, which we aggregate by drugs that target those events into a score (RF.score). These tests are detailed in the 107 

Supplementary Methods. 108 

4. Integrated Multi-Omics Case Report:  The integrated multi-omics and drug prioritization data are presented as actionable information to a 109 

clinician. 110 

False Positive Rate (FPR) Simulations 111 

We used 94 adjacent-normal breast tissue expression from TCGA, and also simulated 500 MVN datasets from normal breast tissues to examine 112 

the false discovery rate (FDR) of drug selection against an incremental matched set of random ‘matched-controls’ (M=2, 4, 8, or 16) within each 113 

set (Supplementary Methods for details). We evaluated FPR under three scenarios of varying levels of correlation between the drug-gene networks 114 

and the gene-gene networks: Sc1) all gene-gene and drug-gene networks; Sc2) reduced gene-gene networks, complete drug-gene networks; and 115 

Sc3) reduced gene-gene and reduced drug-gene networks. We describe the justification for these scenarios in more detail in the Supplementary 116 

Methods, where the binary clustering of the gene-gene and drug-gene networks are illustrated in Figures S2 and S3, respectively. 117 

True Positive Rate (TPR) Simulations 118 

 Using the same MVN simulation framework as the FPR simulations, we changed the mean expression level for a subset of genes for the cases, but 119 

not the matched-controls.  Here, we chose three subsets of genes that are targeted differently by the Olaparib drug-gene network: Set-A) the 120 
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complete drug-gene network for Olaparib; Set-B)  a small network of  BRCA2-specific genes, and Set-C) a mixture of genes that are sub-networks 121 

of the ATM/ATR networks, which are larger than the BRCA2 network (Details in Supplementary Methods). 122 

Validation of PANOPLY’s Drug Predictions With PDXs 123 

To validate PANOPLY’s drug predictions, we tested PDX models obtained from BEAUTY study (BC_051_1_1) for a TNBC patient whose tumor 124 

did not respond to neoadjuvant paclitaxel and anthracycline/cyclophosphamide treatment. PDX tumors created with pre- and post-treatment 125 

samples were studied in female NOD-SCID mice. The tumors were grown to 200–250 mm3, and then the mice were randomized (7 per group) into 126 

olaparib (15 mg/kg, once daily) or vehicle treatment groups. Mouse tumor size and body weight were measured twice per week, and mice were 127 

euthanized after 12 days of treatment. The difference in volume between drug- and vehicle-treated tumors was assessed using Wilcoxon rank-sum 128 

tests. 129 

Mining multiple patient reports  130 

We performed PANOPLY on a group of patients and applied clustering techniques to the results from the patient reports to identify a subset of 131 

patients and drugs that could fit into an on-going bucket trial. We applied non-negative matrix factorization (NMF) (38) to prioritized drugs for the 132 

cases using percentile ranking based on the combination of the RF.score and P.score.   The clusters were evaluated by assessing the cophenetic and 133 

average silhouette scores, and drugs are assessed using Kim’s method (38) to select the most delineating drugs.  A word cloud of genes is 134 

generated using the genomic targets of the clusters of drugs associated with the top 10% of delineating drugs.  135 

 136 
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RESULTS 137 

Statistical Performance of PANOPLY Using Simulated Data 138 

We evaluated the FDR of PANOPLY’s network tests using simulated data constructed following the mean and covariance structure of 20 healthy 139 

breast samples.  Baseline performance was estimated using the complete curated-cancer network; while we evaluated reduced networks to 140 

establish the underlying bias in the network, arising from drug labeling and target annotation which result in redundant gene targets of anti-cancer 141 

therapies. 142 

FPR (Type I error): We evaluated FPR by using both simulated and TCGA non-cancer tissue samples. We observe in Supplementary Figure S4 143 

the FPR for DNT, DMT, and P.score are controlled near the nominal α = 0.05 and 0.01 levels under a typical analysis with PANOPLY. We 144 

evaluated three scenarios (Sc1-Sc3) with varying correlation of the gene-gene and drug-gene networks and with varying matched-control set sizes 145 

M=2, 4, 8, and 16.  A full explanation of these scenarios (Sc1-Sc3) and results are included in the Supplementary Methods. We show in Table 1A, 146 

the results for M=8 for DNT and DMT for all scenarios with the two datasets.  The FPRs is slightly higher in the TCGA breast cancer normal-147 

adjacent samples than the simulated MVN set. The DNT error rates are adequate for all three simulations scenarios Sc1-Sc3, but perhaps too 148 

conservative in Sc2 and Sc3. The DMT was observed to be higher than the nominal levels in all scenarios Sc1-Sc3 in both datasets but is much 149 

closer to the nominal level when the correlation cancer gene networks are reduced in both Sc2 and Sc3. In summary, the suggested setting for 150 

running the workflow is scenario Sc2, where only the patient-specific events are considered for testing all 374 drugs. 151 

TPR (Statistical Power): We similarly evaluated the TPR of the Panoply workflow using just the simulated MVN data, by spiking in increased 152 

amounts of expression for a subset of genes in the Olaparib gene-drug network.  We quantify power as the proportion of simulated datasets for 153 
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which the DNT and DMT p-values for Olaparib are significant in two ways: the p-value is less than α = 0.05, and the p-value is one of the ten 154 

lowest of all drugs.  As shown in Table 1B for M=8, the α = 0.05 power scores for DNT and DMT are comparable with Gene Set-A while DNT 155 

power dramatically drops off with more realistic network-specific gene-gene networks that are activated (Gene Sets B and C), as 156 

expected.   Complete results for DNT, DMT, and P.score are discussed in the Supplementary Material.  Supplementary Figures S5 and S6 show 157 

the TPR is robust to the size of the reference sample population (M=2, 4, 8, and 16), the top-10 metric verifies the α = 0.05 TPR rates, and that 158 

P.score is useful in ranking drugs that perform well across DNT or DMT.     159 

N=1 Case Study 160 

We applied PANOPLY workflow to prioritize drugs for a BEAUTY patient (case BC_051_1_1) who did not respond to neoadjuvant 161 

chemotherapy for whom a set of matched controls (n=9) were found among the BEAUTY TNBC patients who had a pathologic complete response 162 

(pCR) to neoadjuvant chemotherapy.  The PANOPLY report for that patient is available in the Supplementary (file-163 

Supplementary_PANOPLY_BEAUTY_Patient_Report.pdf). Below we have (1) the experimental validation of a PANOPLY-prioritized drug 164 

using PDX models and (2) comparison of PANOPLY analysis for a BC_051_1 patient with other methods. 165 

1. Experiment validation: Somatic, germline mutations, CNA, gene expression, and expressed mutation data for the case was compared and 166 

contrasted with her matched controls using PANOPLY workflow. (Resulting tables for case: BC_051_1_1 are discussed in detail in the 167 

Supplementary Results).  The PANOPLY results indicated that olaparib was the most promising drug for this patient (Table 2).  Figure 2A 168 

shows histologic images of the case’s tumor and a corresponding PDX, both from the pre-NAC and post-NAC time points.  Pre- and post-169 

NAC patient tumor, and its corresponding PDX had similar morphologic features and a triple negative staining pattern (Figure 2A).   For 170 

both the pre-NAC and post-NAC PDXs, tumor volume at day 12 was significantly lower in the olaparib group than in the vehicle group 171 

.CC-BY 4.0 International licensehas granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is the author/funder, whothis version posted March 12, 2018. ; https://doi.org/10.1101/176396doi: bioRxiv preprint 

http://bioinformaticstools.mayo.edu/research/wp-content/plugins/download.php?url=https://s3-us-west-2.amazonaws.com/mayo-bic-tools/panopoly/panoplyLong51BTN.pdf
http://bioinformaticstools.mayo.edu/research/wp-content/plugins/download.php?url=https://s3-us-west-2.amazonaws.com/mayo-bic-tools/panopoly/panoplyLong51BTN.pdf
https://doi.org/10.1101/176396
http://creativecommons.org/licenses/by/4.0/


 11 

(Wilcoxon rank sum test P=0.04 and p <0.001 respectively; Figure 2B). The PDX results show promise that this approach may be 172 

successful in identifying an effective therapy for patients. 173 

2. Comparison of PANOPLY with existing methods: Recent bioinformatics software, such as iCages and oncorep, attempt to incorporate a 174 

tabulation of anti-cancer drug options targeting observed driver genes.  These softwares were developed independently and with their own 175 

design assumptions and intent.  Table 3 presents a summary of these two software implementations, in comparison to Panoply.  We were able 176 

to generate a similar iCages report with default settings for case BC_051_1_1, by providing required somatic mutation (VCF format) and the 177 

copy number alteration data (BED format).  We were not able to configure the current architecture of the Amazon web services, required for 178 

the omics_pipe workflow (which precedes the oncorep analysis module). 179 

Extensibility of the Workflow to Cohort Studies and Public Domain Datasets  180 

PANOPLY Drug Predictions for Patients with Chemo-resistant, TNBC cohort: Panoply provides a prioritized drug list for each patient in the 181 

cohort.  This list corresponds to a unique set of gene targets for each patient, which can be compared and contrasted with similar chemo-resistant 182 

patients using existing clustering methods.  The genomic characteristics of these clusters can be reverse engineered to find qualifying genomic 183 

events which would qualify future patients for drug ‘bucket’ trials.  An illustration of this application of PANAPOLY is provided using the 17 184 

BEAUTY patients with chemoresistant TNBC.   NMF clustering 32 was performed with the drug priority scores of these 17 cases. Based on the 185 

cophenetic and average silhouette scores, two clusters were selected to be optimal.  The percentile ranking of top 10% (35/344) drugs was 186 

aggregated per sample cluster using the median score and presented as a heatmap (Figure 3A). The target genes of the drug clusters were collated, 187 

and a word cloud was generated with the targets (Figure 3B).  As shown in Figure 3A, the cluster 1 consists of nine samples; the patients in that 188 

.CC-BY 4.0 International licensehas granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is the author/funder, whothis version posted March 12, 2018. ; https://doi.org/10.1101/176396doi: bioRxiv preprint 

http://bioinformaticstools.mayo.edu/research/wp-content/plugins/download.php?url=https://s3-us-west-2.amazonaws.com/mayo-bic-tools/panopoly/panoplyLong51BTN.pdf
https://doi.org/10.1101/176396
http://creativecommons.org/licenses/by/4.0/


 12 

group primarily consist of kinase-inhibitors as their top prioritized drugs (drugs=16) and the drugs in that cluster can predominantly target the 189 

PIK3CA-mTOR-AKT signaling pathways. The other cluster from Figure 3A consists of a set of prioritized drugs (drugs=19)  for eight patients, as 190 

shown in Figure 3B these drugs can primarily target genes associated with cell cycle control, specifically targeting the histone deacetylases 191 

(HDAC1) and the Aurora kinases A and B.  192 

PANOPLY drug predictions for public dataset such as TCGA with molecular and clinical data: In here, we present the capability of PANOPLY 193 

workflow to be executed with publically available datasets. An example COAD patient’s (TCGA-AA-3488) report is discussed briefly below and 194 

can be obtained from Supplementary_PANOPLY_TCGA_COAD_Patient_Report.pdf. The case displayed 645 driver genes: 226 CNAs not 195 

present in the case; in addition, 419 genes were over-expressed in the case tumor sample relative to the matched-control samples. Of the 226 196 

CNAs, 113 were amplifications, and 113 were deletions.  Of those BRAF, CDKN2A, CDKN2B, FGF10, IL7R, INHBA, JAK2, KEL, MAFA, 197 

NTRK1, NTRK2, PIK3CA, PRSS1, RBL1, SKIL, SMO, SOX2 and SPTA1 cancer-related genes were both amplified and overexpressed. Of the 198 

case’s 645 events, 53 genes are differentially expressed between the case and matched-controls and can be targeted by antineoplastic drugs. Based 199 

on the network and random forest analysis of driver genes and gene expression data, PANOPLY ranked the following drugs lestaurtinib (JAK2, 200 

NTRK1, NTRK2), LY2784544 (JAK2), GDC-0032(PIK3CA), NVP-BGT226 (MTOR, PIK3CA), regorafenib (MAPK11, RAF1, BRAF, KRAS, 201 

KIT, FGFR1/2,PDGFRA/B, ARAF, KDR, EPHA2, ABL1, NTRK1, CYP3A4, CYP2C8/9, CYP2B6, CYP2C19,ABCB1, ABCG2, 202 

UGT1A1/9,FLT1/4, RET, TEK and DDR2) and ARQ736 (BRAF) as significant for patient TCGA-AA-3488 with significant P.score and RF.score 203 

(Table 4).  204 

Similarly, we have also applied PANOPLY to TCGA breast cancer data (BRCA), and the exemplary report was prepared for a TCGA tumor 205 

(TCGA-AR-A1AR) sample and is presented in the Supplementary.   206 
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DISCUSSION 207 

In creating PANOPLY, our goal was to develop a flexible workflow capable of analyzing multiple forms of -omics and clinical data to identify 208 

driver genes, their effects on gene networks and the drugs capable of targeting altered gene networks in cancer patients. Using gene expression 209 

data, CNA, and DNA variants from publicly available and in-house datasets, we demonstrate that PANOPLY holds promise in identifying agents 210 

capable of targeting driver gene–induced changes, both for individual patients and for subgroups of patients that share a cancer subtype and 211 

response pattern. This is evident in the example where PANOPLY’s prioritization of olaparib as a promising treatment for a patient with 212 

chemoresistant TNBC and that agent was found to reduce tumor size when applied to that patient’s xenografts. When the same patient’s data was 213 

run through iCages, the drug with the highest iCageDrugScore (0.52) was Doxorubicin, the drug administered as part of the patient’s NAC 214 

regimen that failed produce a pCR. While Olaparib scored (1.3 X 10-4) much lower among potential agents.  Doxorubicin intercalates DNA and 215 

thereby indirectly targets TP53 (TOP2A), which is observed in a substantial proportion of cancer patients.  Co-considering associated genes 216 

involved with DNA damage repair and/or active cellular uptake would presumably provide a more accurate prediction of drug efficacy, as 217 

implemented by Panoply. 218 

The PANOPLY workflow currently analyzes the patient's molecular and clinical data together along with the knowledge databases such as 219 

Reactome, DGI-db, and others for drug-gene network analysis. This represents a substantial advancement relative to existing programs, such as 220 

XSeq 19, OncoRep 20, and OncoIMPACT 21, which integrate only molecular data such as somatic mutations or CNAs, and gene expression. 221 

Currently, medical oncologists have access to genomics reports generated a limited target panel for decision making. Working closely with 222 

clinicians, basic scientists, and pharmacologists, we have developed PANOPLY to integrate molecular, clinical, and drug data to prioritize targets 223 
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and facilitate individualized treatment for the patients. Using clinical and molecular profiles of the patient’s disease, PANOPLY provides a 224 

personalized list of prioritized drugs along with links to literature concerning drug efficacy. The oncologist will still have to go through the list and 225 

refine drug selection based on the inherent clinical knowledge, ancillary clinical trials, and insurance coverage availability. Another limitation of 226 

PANOPLY is that the method cannot delineate the clinical effectiveness of a similar class of drugs. We plan to accomplish this in future by 227 

bringing in drug knowledge such as chemical structure, molecular size, and drug dosage. Our method is dependent on drug-gene target annotations 228 

that are heavily biased by product literature and databases. Moreover, clinical translation of PANOPLY results is constrained by the cost-229 

effectiveness in developing PDXs for drug validation. 230 

PANOPLY is a flexible framework that can integrate many other types of –omics data, including protein expression, methylation expression, 231 

structural variants, circular RNAs, long non-coding RNAs, and fusion data with modifications to its code. PANOPLY’s framework can also be 232 

extended to the metastatic setting; additional clinical data such as prior exposure to drugs, features of primary and recurrence disease would be 233 

required. Additional genomics data sets are needed to modify the existing approach for metastatic tumors.  234 

As more is learned about the molecular underpinning of cancer using various resources, we plan to expand our knowledge base to improve 235 

PANOPLY’s predictions using PDX and cell-lines. We have validated PANOPLY’s predictions in a single patient at present using PDXs, in 236 

future, we plan to validate PANOPLY-predicted drugs in PDXs derived from additional patients. Like several other groups and we have shown, 237 

PDX models faithfully represent tumor biology 26,33, so these results should provide insight into PANOPLY’s reliability. In conclusion, our results 238 

indicate that combining multiple sources of -omics and clinical data to predict promising agents for a patient or groups of patients with cancer is 239 

feasible. With further validations, PANOPLY can be a tool to help clinicians in their decision-making process.  240 
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Table 1A. FPR rates for DNT and DMT test p-values at α = 0.05  using simulated MVN (500 sets) and TCGA normal-adjacent data 317 
(94 sets), for matched control size M=8, and scenarios Sc1-Sc3 318 

Scenario 
  

Test 
False Positive Rate  

Drivers Drugs 
Null 

MVN TCGA 
Sc1: All 
Driver 
Genes and 
Drugs 

429 374 
DNT 0.029 0.04 

DMT 0.231 0.208 

Sc2: Patient 
Observed 
Driver 
Genes, all 
Drugs 

120 374 
DNT 0.031 0.038 

DMT 0.065 0.104 

Sc3: 
Reduced 
Correlation 
Drivers and 
Drugs 

175 117 
DNT 0.008 0.01 

DMT 0.08 0.088 

Table 1B.TPR rates of finding Olaparib as a drug target from DNT and DMT test p-values at α = 0.05 using simulated MVN (500 319 
sets) data for matched control size M=8, scenarios Sc1 and Sc2, and up-regulated gene sets A, B, and C. 320 

Simulation 
Scenario 

  

Test 

True Positive Rate (Power) 

Drivers Drugs 
Set A Set B Set C 

MVN (sd 2) MVN (sd 3) MVN (sd 2) MVN (sd 3) MVN (sd 2) MVN (sd 3) 

S1: All Driver Genes 
and Drugs 

429 374 
DNT 0.582 0.926 0.030 0.062 0.108 0.294 

DMT 0.522 0.588 0.496 0.542 0.498 0.544 

S2: Patient Observed 
Driver Genes, all 
Drugs 

120 374 
DNT 0.612 0.942 0.038 0.082 0.132 0.286 

DMT 0.390 0.410 0.320 0.326 0.528 0.590 
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Table 2: Top drugs recommended by PANOPLY for BEAUTY patient (BC_051_1_1) with 322 
chemoresistant triple-negative breast cancer and PDX model.  323 

Drug Case Driver Genesa 
Number 
of  
Pathwaysb  

P.score RF.score 

OLAPARIB ATR,ATM,BRCA2,BRCA1 43 3.009632 0.003743 
BMN673 ATR,ATM,BRCA2,BRCA1 32 2.70456 0.004679 
AMG900 AURKB,AURKA 8 2.610079 0.001857 
AZD7762 CHEK1,CHEK2 13 2.566379 0.001786 
a Genes on PANOPLY’s cancer gene list that are targeted by FDA-approved drugs 324 
b Number of pathways that may be affected, based on drug-gene target interactions 325 
 326 

Table 3: Comparison of oncorep, iCAGES and Panoply methods 327 

  oncorep iCAGES Panoply 
Single Patient Analysis    
Pre-compiled Reference 
Population     

Driver Gene Identification    
Driver Gene Prioritizatoin     

Multiple RNA features 
(eSNV, fusion, mutations, etc) 

Derived 
 

Optionally 
Provided 

Data Input  RNA-Seq Somatic, Copy 
number data Multi-omics 

Drug Association    
Drug Prioritization     
Machine Learning     
Summary Report    
Pathway Analysis     
Network Analysis     
Breast Cancer Specific     
Installation ease Difficult Easy Easy 
Extensibility Moderate Low High 

 328 

 329 

 330 

 331 

 332 

 333 

 334 
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Table 4. PANOPLY alternate drug predictions for Colon Cancer TCGA Patient (TCGA-AA-335 
3488) based on molecular data.  336 

Drug Case Driver Genesa 
Number of 
Pathwaysb P.score RF.score 

LESTAURTINIB JAK2,NTRK1,NTRK2 25 4.9153 0.0014 
LY2784544 JAK2 21 4.2668 0.0017 
GDC-0032 PIK3CA 49 4.1257 0.0022 
NVP-BGT226 PIK3CA, MTOR 67 3.9725 0.0019 
REGORAFENIB KIT,KRAS,FLT4,NTRK1 166 3.1395 0.0018 
ARQ736 BRAF 23 3.0511 0.0025 
a Genes on PANOPLY’s cancer gene list that are targeted by anti-cancer drugs 337 
b Number of pathways that may be affected, based on drug-gene target interactions 338 
 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

.CC-BY 4.0 International licensehas granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is the author/funder, whothis version posted March 12, 2018. ; https://doi.org/10.1101/176396doi: bioRxiv preprint 

https://doi.org/10.1101/176396
http://creativecommons.org/licenses/by/4.0/


 22 

 354 

Figure 1. A high-level overview of PANOPLY. Step 1: A patient of interest is compared with matched-controls. 355 
Step 2: For each subject, gene expression data, copy number alteration (CNA), single nucleotide variant (SNV), and 356 
expressed single nucleotide variant (eSNV) data will be provided to identify case-specific driver alterations. Step 3: 357 
Multi-omics data will be provided to the random forest and network analysis methods to identify the top prioritized 358 
drugs to target genes that are driving oncogenesis in the patient. Step 4: A genomics case report listing the drugs to 359 
prioritize, based on their ability to target driver mutations and their dysregulated gene networks, is generated for 360 
researchers and clinicians. 361 

  362 
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 363 

 364 

Figure 2. Patient-derived xenografts (PDXs) validate PANOPLY’s prediction that olaparib is an effective 365 
treatment for a patient with chemoresistant TNBC (BC_051_1_1).  A) The top panel shows histological stains of 366 
the patient’s tumor and PDXs (pre or post-treatment). B) Cytotoxicity data shows the PDXs response to the top 367 
predicted drug olaparib compared to the no treatment (the left plot shows the olaparib drug response data from pre-368 
treatment mice, whereas the data from the right shows the data from post-treatment PDX models. Both the datasets 369 
were generated using the Vehicle as controls).  370 

 371 
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 372 

Figure 3. Clustering and word cloud plots of 17 TNBC chemotherapy-resistant patients. A) Two-way 373 
hierarchical clustering of the top 10% of the drugs predicted by PANOPLY for 17 basal TNBC patients. The 374 
heatmap shows that there are two sample and drug clusters are implicated in the NMF clustering analysis. B) Word 375 
cloud of the target genes from the two drug clusters predicted by the NMF analysis. 376 

 377 
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