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Abstract

Drug-induced Torsades de Pointes (TdP) arrhythmia is of major interest in predictive toxicology. Drugs
which cause TdP block the hERG cardiac potassium channel. However, not all drugs that block hERG
cause TdP. As such, further understanding of the mechanistic route to TdP is needed. Early afterde-
polarisations (EADs) are a cell-level phenomenon in which the membrane of a cardiac cell depolarises
a second time before repolarisation, and EADs are seen in hearts during TdP. Therefore, we propose a
method of predicting TdP using induced EADs combined with multiple ion channel block in simulations
using biophysically-based mathematical models of human ventricular cell electrophysiology. EADs were
induced in cardiac action potential models using interventions based on diseases that are known to cause
EADs, including: increasing the conduction of the L-type calcium channel, decreasing the conduction
of the hERG channel, and shifting the inactivation curve of the fast sodium channel. The threshold of
intervention that was required to cause an EAD was used to classify drugs into clinical risk categories.
The metric that used L-type calcium induced EADs was the most accurate of the EAD metrics at
classifying drugs into the correct risk categories, and increased in accuracy when combined with action
potential duration measurements. The EAD metrics were all more accurate than hERG block alone,
but not as predictive as simpler measures such as simulated action potential duration. This may be
because different routes to EADs represent risk well for different patient subgroups, something that is
difficult to assess at present.

Introduction1

Torsades de Pointes (TdP) is a particular type of polymorphic ventricular tachycardia, characterised2

by an unusual electrocardiogram, in which the QRS complex appears to be twisted around the baseline.3

TdP usually spontaneously resolves, sometimes causing syncope (sudden fainting due to a drop in blood4

pressure), but it can also cause cardiac arrest or sudden death. [1, 2]5

Anti-arrhythmic drugs, such as quinidine, [3] are commonly linked to TdP. Terfenadine, a non-sedating6

anti-histamine, was one of the first non-cardiac drugs to be linked to increased TdP risk. [4] Terfenadine7

was withdrawn from the market in 1997 after being linked to 41 cases of TdP, one of which was lethal.8

[5] Cisapride is a drug that was used for treating gastroesophageal reflux disease. [6] After causing 979

cases of TdP, of which six were fatal, cisapride was withdrawn from the market. [7]10

Quinidine, terfenadine, and cisapride were all found to strongly block IKr, the rapid delayed rectifying11

potassium current in the heart, which is carried by the channel whose primary subunit is a product of12

the human ether-a-go-go related gene (hERG). [8, 9, 4, 6]13
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Since these discoveries, testing for hERG block has become a mandatory requirement for new phar-14

maceuticals. [10] hERG block as a measure of TdP risk is very sensitive (gives few false negatives)15

and has prevented torsadogenic drugs from entering the market. Certain marketed drugs, such as ver-16

apamil and ranolazine, block hERG but are not linked with TdP. [11, 12] There are therefore concerns17

that hERG block lacks specificity (gives false positives for TdP risk), preventing the development of18

potentially useful drugs. [13] As such, elucidation of other factors that mediate TdP risk is needed.19

Figure 1: Induction of EADs and TdP in an anaesthetised dog by treatment with ibutilide [14]. Reproduced with
permission from Paul G. A. Volders et al. “Progress in the understanding of cardiac early after depolarizations and
torsades de pointes: time to revise current concepts”. Cardiovascular Research (2000) 46(3): 376–392. Published by
Oxford University Press on behalf of the European Society of Cardiology (ESC).

Early afterdepolarisations (EADs), phenomena in which the membrane depolarises a second time20

during the action potential, are heavily implicated in the onset of TdP. [15] Hearts suffering from21

TdP show EADs alongside transmural dispersion of repolarisation. [16, 17, 18, 19] EADs are seen in22

monophasic action potential recordings from dog hearts during TdP, as shown in Figure 1. [19, 14]23

Our investigation is based on several mechanisms that are known to promote EADs. One mechanism24

is based on a form of Long QT syndrome (LQT8) that is caused by an increase in the L-type calcium25

current, caused by a gain of function mutation in the CACNA1C gene, that increases the density of26

L-type calcium channels at the cell surface up to three-fold. [20, 21] Patients with LQT8 frequently27

exhibit TdP. [22] L-type calcium current agonists (agents which increase the conductance of the L-type28

calcium channel) have also been shown to cause: TdP in live mice[23]; EADs and ventricular tachycardia29

in intact mouse hearts[24]; EADs in sheep and dog Purkinje fibres[25]; and EADs in ferret ventricular30

myocytes[26]. L-type calcium current blockers such as verapamil are used as anti-arrhythmic agents,31

and have been shown to suppress EADs and TdP in rabbit models of LQT3 and chronic heart failure.32

[27, 11, 28]33

Another EAD mechanism we investigate in this study is based on Brugada syndrome, which is a34

condition linked to ventricular fibrillation and elevation in the ST segment of the electrocardiogram. [29]35

Estimates of the proportion of sudden deaths caused by Brugada vary from 4–12%, and it is estimated36

to be present in 0.05% of the world population. In 15–20% of Brugada cases, the cause is a mutation in37

the SCN5A gene, which codes for the alpha subunit of the fast sodium channel. [29] A missense mutant38

version of SCN5A (T1620M), was shown to alter the inactivation curve of the fast sodium current,39

shifting it in the positive direction by 10 mV [30], and another missense mutant, L812Q, shifted the40
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inactivation curve by 20 mV. [31] Adding this inactivation curve shift to cardiac action potential models41

can cause EADs (Noble et al., personal communication).42

In addition to being of interest in drug-induced TdP, the IKr potassium current is also involved in43

LQT2, and is also linked to EADs [9]. Loss-of-function mutations in hERG cause a reduction in the44

IKr current of up to 97%,[32] which causes QT prolongation, and usually increases risk of TdP. LQT45

mutations do not always present with significant clinical QT prolongation, but interaction with drugs46

that affect cardiac ion channels could cause an increased risk of TdP. [33]47

Two other Long QT conditions that are linked to TdP are LQT1 and LQT3. [34] LQT1 causes an48

increase in the slow delayed potassium current IKs, and LQT3 causes an increase in the persistent49

sodium current IpNa. We have not used these as EAD-provoking interventions in this work because we50

were unable to provoke EADs in the O’Hara cell model by blocking IKs or increasing IpNa.51

The prediction of arrhythmias by in silico modelling of action potentials in response to ion channel52

block offers a new way to test novel compounds at the pre-clinical stage. A previous study by our53

group created an improved measure of a compound’s propensity for causing TdP arrhythmias, using54

simulated action potential duration as a metric. [35] The approach takes into account the contributions55

of multiple ion channels to the shape and length of the action potential, and classifies drugs into discrete56

risk categories, based on their effect on action potential duration. This method was more accurate than57

the commonly-used ‘hERG safety factor’, that is the ratio of hERG IC50 to effective free therapeutic58

plasma concentration (EFTPC), or log10(hERG IC50/EFTPCmax). [36] Simulation studies have been59

extended to predict results of rabbit wedge studies and the Thorough QT study. [37, 38]60

A recent study used principal component analysis to assemble a large number of biomarkers from61

different models, the results suggested that a two-dimensional binary classification based on both the62

simulated diastolic calcium concentration and the APD50 was effective at separating drugs into positive63

or negative for torsadogenicity. [39] We aim to extend these approaches to allow prediction of the TdP64

risk classes of drugs that increase action potential duration but are safe (particularly late/persistent65

sodium blockers), and to account for the interaction of drug block with underlying conditions such as66

ion channel mutations. The appearance of EADs at increased drug concentrations has been studied67

computationally as a risk indicator for TdP. [40] Our study complements this work by exploring EADs68

as a risk indicator in the context of disease states at clinically-relevant concentrations.69

Ion channel conductance modification as a cause of EADs has also been investigated recently in the70

context of atrial fibrillation: a global sensitivity analysis of atrial cell models was used to examine which71

ion channel changes lead to EADs and then logistic regression was used to estimate the probability of72

EADs as functions of conductances. [41]73

The Comprehensive in-vitro Pro-arrhythmia Assay (CiPA) is a proposal to use multi-ion chan-74

nel screening in combination with human stem cell-derived cardiomyocytes and computational cardiac75

modelling to create new metrics for the prediction of drug-induced TdP, moving away from using QT76

interval prolongation as a surrogate marker and towards in vitro and in silico methods. [42] This study77

investigates whether a marker linked mechanistically to EAD formation may be helpful in determining78

torsadogenic risk.79

We applied ion channel block to cardiac cell models to simulate the effects of drugs of known tor-80

sadogenic risk, then combined these drug effects with simulated disease states. The level of disease state81

necessary to provoke an EAD for each drug was used as a marker for TdP risk. These markers were82

evaluated against clinical risk categories, separately, combined, and in combination with pre-existing83

TdP risk metrics. By combining these markers we hope to create a measure of risk for a population that84

contains people with each EAD-inducing condition. In this way, we bring together three key factors that85

influence arrhythmogenic risk: the ion channel blocking properties of the compounds, the concentrations86

of compound found in humans, and underlying risk factors from the patient.87
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Methods88

We selected 41 drugs of known torsadogenic risk, and simulated their ion channel blocking effects in89

the O’Hara 2011 human ventricular cell model.[43] Using a range of interventions, we determined the90

threshold of intervention at which an EAD could be provoked in the cell model, i.e. the lowest level91

of intervention that was necessary for an EAD to be produced. The differences in ‘threshold for EAD’92

between different drugs were used to classify drugs by arrhythmic risk. These steps are detailed below.93

Drug inclusion criteria94

To select drugs to use as a training set, we used three criteria based on the amount of data available95

on both the pro-arrhythmic risk of the compound and its effect on ion currents in cardiac cells.96

1. As a starting point, we included drugs that we previously studied in Mirams et al. [35].97

2. Additional drugs were then included in our study if they had been included in five or more of the98

papers analysing TdP risk discussed in a recent summary paper, [44] and if over 70% of studies99

agreed on high or low TdP risk.100

3. Drugs that are on the CiPA list [42] were automatically included if ion current block data were101

available for three or more channels of interest (even if they had been in fewer than five studies or102

had poor agreement in risk category between studies).103

If there was disagreement in risk class using the above sources, the default category was the one used104

in Mirams et al. [35], and if not listed there then the one used in Redfern et al. [36].105

To be included in our dataset, the drugs were also required to have IC50 values available in the106

literature for three or more of the ionic currents of interest, found by manual patch clamp. The ionic107

currents of interest were: the fast and late/persistent sodium currents, the L-type calcium current,108

the rapid and slow delayed rectifier potassium currents, the transient outward current, and the inward109

rectifier potassium current. The pIC50 values we used are given in Table 1, and the references for these110

can be found in the Supplementary Material. Where there were multiple IC50 values available, preference111

was given to those from human cells at body temperature (37◦C) and to the most recent study.112

Stratification into 4 risk categories was taken from the Mirams et al. (2011) paper where available,113

and the Redfern et al. (2003) paper otherwise. We pooled risk categories 1 and 2 together, as they114

represent the same risk level for different drug classes, leaving classes 2–5. [35, 36] The only compounds115

in the dataset not covered by this metric were: (i) ranolazine, which was assigned to Category 4, i.e.116

the drug has isolated reports of TdP in humans; and (ii) cibenzoline, which was assigned to Category 5117

based on Lawrence et al. [45], i.e. there are no reports of TdP in humans with this drug. [46, 47]118
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Table 1: pIC50 values for each compound in the dataset (shown as log M) for the fast sodium (INa), L-type calcium
(ICaL), rapid delayed rectifier potassium (hERG or IKr), slow delayed rectifier potassium (IKs), persistent sodium (IpNa),

transient outward (Ito) and inward rectifier potassium (IK1) currents, and effective free therapeutic plasma concentration
(EFTPC) (nM). For references, please see the Supplementary Material. ‘n/a’ indicates that the channel has been screened
and no effect was measured: either the IC50 value was above the maximum concentration being tested, or there is no
drug-induced block of this channel.
Compound pIC50 (log M) EFTPCmax (nM)

INa ICaL hERG IKs IpNa Ito IK1
ajmaline 5.0862 4.1487 5.9830 5.5751 17103
amiodarone 4.3936 6.5686 7.5229 5.7595 5.1739 5.4250 0.5
amitriptyline 4.6990 4.9355 5.4841 5.5627 5.3533 5.0000 41
azimilide 4.7212 4.7496 7.0000 5.8539 70
bepridil 5.4318 6.6757 6.2218 5.0000 5.7414 5.1805 33
chlorpromazine 5.5528 5.5229 5.8297 5.3410 4.7959 5.2147 38
cibenzoline 5.1079 4.5229 4.6459 4.9101 4.3318 976
cisapride 4.8327 4.7959 8.1871 5.4698 5.0301 4.9
clozapine 5.6021 1603
desipramine 5.8182 5.7673 5.8570 108
diltiazem 4.8477 7.2676 5.1314 4.5346 122
disopyramide 5.7447 4.0910 4.6799 742
dl-sotalol 3.5560 14733
dofetilide 3.5229 4.5735 8.3010 2
flecainide 5.1871 4.5918 5.7959 5.4685 5.1079 753
fluvoxamine 4.4045 5.3098 5.4202 264
halofantrine 7.6655 0.5
imipramine 5.4437 5.0915 5.4685 4.3010 106
loratadine 5.0809 0.45
methadone 4.9508 4.5735 5.3188 507
mexiletine 4.3665 4.0000 4.3010 4.7545 4129
mibefradil 6.0088 6.8069 5.7447 5.4403 12
nifedipine 4.4318 7.2218 3.5607 3.4437 4.8633 7.7
nitrendipine 4.6655 7.6021 5.0000 5.1135 3.02
ondansetron 4.0531 4.6468 6.0915 4.7171 899.88
pentamidine 3.6882 6.7696 10
phenytoin 4.3098 3.9872 4.0000 7000
pimozide 7.2676 6.6198 7.8239 0.43
prenylamine 5.5986 5.9066 7.1871 17
propafenone 5.9245 5.7447 6.3565 5.3940 5.3188 5.1487 241
propranolol 5.6778 4.7447 5.5485 26
quetiapine 4.7721 4.9830 5.2392 33
quinidine 4.7799 4.8069 6.5229 5.3099 3.0580 3.6990 3237
ranolazine 3.5317 3.5287 4.9393 2.7212 5.1871 3200
risperidone 3.9914 4.1367 6.2218 1.81
sertindole 5.6383 5.0506 7.8539 6.0555 5.3979 1.59
tedisamil 4.6990 5.6021 5.3565 85
terfenadine 6.0128 6.4260 8.0506 5.6990 9
terodiline 4.8182 8.3979 4.5229 5.1549 12
thioridazine 5.7375 5.8861 7.4815 4.8539 979
verapamil 4.3820 7.0000 6.8447 2.5796 81

Action potential and drug block models119

We used two recent human ventricular myocyte electrophysiology models based on human datasets,120

the O’Hara (2011)[43] endocardial and Grandi (2010)[49] models. Drug block of ion channels was121

modelled as a reduction in channel conductance as a function of the concentration of the compound,122

[D], and the IC50 value.[50] The change in maximum conductance for a channel j was described by a123

Hill equation:124

gj = ḡj

[
1 +

(
[D]

[IC50]

)]−1

, (1)

where gj is the maximum conductance of the drug-blocked channel, and ḡj is the conductance of the125

channel when there is no compound present. The Hill coefficient here is set to 1, as the variability126

in experimentally-inferred Hill coefficients from patch clamp can be so high that using 1 as the Hill127

coefficient may reduce error [51]. Note that this formula was applied for all channel/drug combinations128

listed in Table 1, apart from late/persistent sodium in the Grandi model — as this model does not have129

a distinct late/persistent sodium current.130

Drug concentrations were set to the maximum effective free therapeutic plasma concentrations131

(EFTPC) for each individual drug, to provide a realistic estimate of ion channel block in vivo. For132

a list of EFTPCs, see Table 1.133
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Table 2: Mean absolute errors in classification, calculated using Equation 3. The “5 LDA” and “5 SVM” rows are
the results from the 5-group cross-validation of linear discriminant analysis classification and support vector machines
classification, respectively. The “1 LDA” and “1 SVM” rows are the results from leave-one-out cross-validation. The
columns are arranged by the lowest sum of errors from the four classification measures. Yellow cells show metrics with low
errors and purple cells have high errors. ‘L&S’ refers to the diastolic calcium concentration-APD50 combination metric
from a paper by Lancaster & Sobie [39], ‘cqInward’ refers to the metric from Li et al. [48] and ‘Redfern hERG Safety
Factor’ refers to the hERG IC50/EFTPCmax metric proposed in Redfern et al. [36], as discussed above.

Classifier Grandi
APD90

+
O’Hara
ICaL

Grandi
APD90

Grandi
L&S

O’Hara
ICaL
EADs

Grandi
APD90

& all
O’Hara
EADs

All
O’Hara
EADs

Redfern
hERG
Safety
Fac-
tor

OHara
L&S

O’Hara
INa
EADs

O’Hara
cqIn-
ward

O’Hara
IKr
EADs

LDA 1 0.78 0.80 0.95 0.78 0.95 1.00 1.17 0.95 1.05 1.20 0.90
SVM 1 0.78 0.71 0.68 1.07 0.98 1.17 0.85 1.07 1.20 1.10 1.29
LDA 5 0.83 0.98 0.93 0.93 0.88 1.00 1.17 1.27 1.07 1.02 1.00
SVM 5 0.90 0.90 0.88 0.85 0.85 1.00 0.98 1.02 1.00 1.05 1.66

Detecting afterdepolarisations134

The appearance of early afterdepolarisations (EADs) in a simulation was determined by the slope135

of the voltage trace between adjacent time points. Whenever the slope was greater than +1 mVms−1,136

a depolarisation was reported. To remove depolarisations caused by the stimulus, depolarisations that137

occurred between 50 ms before and 100 ms after each stimulus were disregarded. The algorithm detects138

single EADs, multiple EADs, and EADs without repolarisation, as shown in Figure 2. For the full139

algorithm, see the DetectAfterDepolarisations class in the code repository (see “Numerical methods140

and simulation procedure”).141
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Figure 2: Types of EADs that are detected using the EAD detection algorithm. Left: a single EAD with repolarisation.
Centre: multiple EADs with repolarisation. Right: multiple EADs without repolarisation.

Provoking afterdepolarisations142

The failure of hERG block alone to predict torsadogenic risk suggests that drug-induced TdP is143

mediated by more than one ionic mechanism. We hypothesise that the interaction of certain disease144

states with torsadogenic drugs could lead to greater susceptibility to TdP. We propose to look at the145

single-cell phenomenon of EADs, as studies suggest TdP and EADs are intrinsically linked.[16, 17, 18, 19,146

14] Spatial differences in ion channel expression throughout cardiac tissue would alter the susceptibility147

of each cell to EADs, meaning that some regions would have EADs while others did not, increasing the148
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probability of re-entrant waves, but we constrain this study to looking at the ‘trigger’ event of EAD149

initiation.150

To simulate disease states after drug block was applied, EADs were provoked using three interventions151

mimicking disease states discussed in the introduction, based on a manuscript from Noble et al. [52]:152

• conductance of the L-type calcium current was increased by a scaling factor to simulate a gain-of-153

function mutation which causes LQT8. [21]154

• the midpoint of the inactivation curve of the fast sodium current was shifted using an additive155

constant to simulate Brugada syndrome. [30]156

• conductance of the rapid delayed rectifier current IKr was decreased by a scaling factor to simulate157

the effect of LQT2 mutations. [9]158

The O’Hara et al. [43] model was used for these EAD simulations, as it includes all of the currents of159

interest, and is being investigated for CiPA-related proarrythmic risk prediction. [42]160

We used a slow pacing interval of 3 seconds because bradycardia is also known to facilitate onset of161

EADs and TdP. [17] We performed the same simulations at faster pacing rates, which did not significantly162

change the classification results.163

Previously suggested measures164

In order to compare our EAD tendency measures with previously suggested risk indicators, we used165

our dataset of drug actions to calculate some risk metrics that have previously been proposed.166

We calculated the hERG IC50/EFTPCmax safety margin proposed by Redfern et al. [36]; the pre-167

dicted APD90 calculated using the Grandi et al. [49] human ventricular cell model, as in Mirams et al.168

[35]; the predicted APD50 combined with diastolic calcium concentration calculated using both the169

Grandi 2010 Grandi et al. [49] model, and the O’Hara 2011 [43] model as in Lancaster and Sobie [39];170

and the predicted sum of normalised total persistent sodium current and L-type calcium current over171

the course of the action potential at increasing drug concentrations (known as ‘cqInward’) using the172

O’Hara et al. [43] model, as in Li et al. [48], but using the baseline model rather than their dynamic173

hERG block model (as we did not have hERG kinetic data for all compounds). The Grandi model was174

chosen for APD90 rather than the O’Hara model as it was used in the Mirams et al. (2011) metric.175

Numerical methods and simulation procedure176

Simulations were run using the Chaste C++ framework [53, 54] with the ApPredict bolt-on project177

[55] and custom written code. Cell models and initial conditions were imported from CellML [56] files178

using PyCML [57].179

The adaptive timestep solver CVODE [58] was used to solve the model’s differential equations, with180

a relative tolerance of 10−5 and absolute tolerance of 10−7. The output timestep was 0.1 ms and a181

stimulus current was applied every 3 s for 3 ms with a magnitude of -25.5 µAµF−1.182

The procedure we used is outlined in Algorithm 1. First, drug block was applied to the model by183

modifying the conductance parameters for the appropriate channels, using Equation (1) to calculate184

updated conductances. The model was then run to steady state using the pacing protocol above.185

Steady state was reached when the norm of the change in the model’s state variables was less than 10−6
186

between paces. This generally took 1,000–10,000 paces.187

EAD-provoking interventions were applied by modifying either the ICaL conductance, the IKr con-188

ductance, or the INa shift parameter. After setting the intervention parameter, the simulation was189

run for 12 s, and the presence or absence of EADs was detected. Interval bisection was used to find190

the threshold of intervention that was necessary to cause any EADs. We started with interval ranges191
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of: [0, 20] mV for the INa shift intervention; [1, 80] for the ICaL conductance scaling; and [0, 1] for the192

IKr conductance scaling. Interval bisection was set to terminate when consecutive values were less193

than 10−4 units apart. EAD simulations for a single compound can be run in less than 10 minutes,194

and many compounds can be run in parallel. All the code is available to download from github at195

https://github.com/teraspawn/EadPredict.196

Algorithm 1 procedure to find the EAD threshold.

1: Set ion channel conductances in cell model to new values based on drug block.
2: Run cell model to steady state and then save this state to reset to later.
3: Set upper and lower limits α, β for intervention value.
4: repeat
5: Reset cell model to earlier state.
6: Set intervention to (α + β)÷ 2 (e.g. multiply ICaL conductance by this factor).
7: Run model for 12 s.
8: Check for Early afterdepolarisation (upwards trajectory after initial depolarisation).
9: Adjust α or β using interval bisection.

10: until |α− β| < 10−4

197

Linkage analysis198

To visualize whether drugs with similar risk require similar EAD thresholds, linkage analysis was199

used to create dendrograms of drug similarity based on each of the metrics. The Euclidean distance200

between the metric values (e.g. APD90 for each of the drugs) was used to construct a dendrogram,201

grouping drugs which had similar values. To combine metrics, the results were shifted such that the202

control value was zero, and then scaled to be within [−1, 1]. Combinations of metrics such as all the203

EAD metrics, the EAD metrics with APD90, and all the metrics together, were then used to create204

classification trees. The optimal leaf ordering was calculated using the R package “dendextend”, to best205

sort the leaves in descending order of risk category (without changing the branching structure).[59]206

This method allows for the grouping of drugs by similarity rather than by rigid categories, allowing207

for new compounds to be visually ranked by closeness to torsadogenic and non-torsadogenic drugs. The208

output of the optimal leaf ordering algorithm was evaluated by the sum of the square difference between209

the risk category of each drug in the ranking and an optimal ordering (2,2,. . . ,2,3,3,. . . ,3,4,4,. . . etc.):210

Ranking error =
N∑
j=1

(oj − aj)2, (2)

where o is the optimal ordering of risk category, a is the actual risk category, and N is the number of211

drugs in the dataset.212

Pro-arrhythmic risk classification213

As in Mirams et al. [35], risk categories were based on the Redfern et al. [36] classes (with Category214

1 and Category 2 pooled, as they represent equivalent levels of risk for different drug classes):215

• Category 2: Either Class Ia and III antiarrhythmics, or drugs that have been withdrawn from216

market due to TdP.217

• Category 3: drugs with a measurable incidence or numerous reports of TdP in humans.218
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• Category 4: drugs with isolated reports of TdP in humans.219

• Category 5: drugs with no reports of TdP in humans.220

We also considered a binary classifiers, where Categories 2 and 3 were grouped as torsadogenic and221

Categories 4 and 5 were grouped as non-torsadogenic. Results from this were not materially different,222

and can be found in the supplementary spreadsheet under “Binary”.223

We used EAD thresholds, APDs, diastolic calcium concentration, and hERG IC50/EFTPCmax to224

classify compounds into one of the four TdP risk categories described earlier. We tested two classification225

methods: linear discriminant analysis (LDA), and support vector machines (SVM).226

Leave-one-out cross-validation and five-group cross-validation were used to check the robustness and227

accuracy of both the classifiers. We evaluated performance by calculating the errors in classification228

(how many risk classes away from the correct class a drug was classified as), and comparing these means229

of absolute error, E:230

E =
1

N

N∑
j=1

|aj − cj|, (3)

where, a is the actual category (i.e. the real risk category for the drug), c is the category assigned using231

the classification method, and N is the number of drugs in the dataset.232

In LDA, the metrics in categories are assumed to follow a Normal distribution, and the points where233

the inferred distributions overlap are used as the category boundaries.[60] In SVM, a hyperplane is used234

to separate the data points, and the optimal hyperplane is found by maximising the distance between235

the hyperplane and the closest points to it.[61]236

In leave-one-out cross-validation one drug was removed from the dataset and the boundaries were237

re-calculated. The left-out drug was then placed into a risk category based on these new boundaries.238

5-group cross-validation was also used: drugs were randomly assigned to five groups, and then each239

group was removed from the dataset and the classification boundaries were re-calculated. The drugs in240

the removed group were then classified into a risk category based on these new boundaries, and accuracy241

was calculated as above.242

Results243

EAD thresholds244

In general, more torsadogenic drugs caused a decrease in the threshold of intervention required to245

provoke an EAD, i.e. they made the electrophysiology models more vulnerable to EADs. Full tables of246

EAD thresholds can be found in the Supplementary Material.247

Some examples of EADs induced by the ICaL increase protocol are shown in Figure 3. The low risk248

drug, nitrendipine, required a greater increase in ICaL conductance (27.23×) than the control (24.13×)249

to induce an EAD. Conversely, the high risk drug cisapride required a much smaller increase (8.23×)250

to induce an EAD. Similarly, models whose ion channel conductances had been modified to simulate251

the effects of cisapride required an INa inactivation curve shift of only 15.45 mV to produce an EAD,252

whereas at control a larger shift of 17.41 mV was required, and the low risk drug diltiazem required a253

shift of 17.49 mV, greater than control.254

In general, ICaL-provoked EAD thresholds were lower for drugs which strongly block the INa and255

hERG channels. ICaL EAD thresholds were not linear with ICaL drug block, showing that multi-ion256

channel effects affected the thresholds. Less IKr block was required to cause an EAD for strong hERG257

blockers, except for verapamil, which is a very strong hERG blocker, but also strongly blocks ICaL.258
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Figure 3: Some examples of EADs provoked using the L-type calcium increase protocol, as described in the methods
section. The first EAD caused by the increasing intervention for each drug is highlighted in red. The less torsadogenic
drug (nitrendipine) requires more provocation than the control to cause an EAD (i.e. its EAD threshold is higher), and
the more torsadogenic drug (cisapride) requires less provocation (i.e. its EAD threshold is lower).
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Thioridazine needed no hERG block to cause an EAD, despite being a strong ICaL blocker. This is259

probably due to thioridazine’s very strong effect on hERG, with an IC50 value of 0.034×EFTPCmax.260

INa inactivation curve shift thresholds were lower for drugs which strongly block hERG. Unlike the261

other EAD metrics, block of ICaL and INa did not increase the EAD threshold for the INa inactivation262

curve shift protocol. For example, verapamil, which is a strong hERG and ICaL blocker, had a low INa263

shift EAD threshold.264

All three of the EAD metrics consistently had the lowest thresholds for the following drugs: azimilide,265

cisapride, ondansetron, terfenadine, and terodiline. Three drugs (ajmaline, quinidine, and thioridazine)266

produced EADs without any intervention required. With the exception of thioridazine (category 3), all267

of these drugs are in the highest risk category 2.268

A table of EAD thresholds and other metrics can be found in the Supplementary Material.269

Linkage analysis270

The dendrogram from the linkage analysis of the hERG IC50/EFTPCmax metric, APD90, and the271

combined EAD metrics are shown in Figure 4. The optimal leaf ordering algorithm was moderately272

successful in sorting the drugs in ascending order of torsadogenic risk. Therefore, a classification scheme273

based on the similarity of new compounds to existing compounds of known torsadogenic risk could be274

a useful tool. The ranking error measure for all metrics can be found in the Supplementary Material.275

Pro-arrhythmic risk classification276

Table 2 shows the mean absolute error, E, in classification for each of the proarrythymic risk mark-277

ers and classification methods. Overall, there was good agreement between the different classification278

schemes and validation procedures. Full tables of all results can be found in the Supplementary Material.279

The leave-one-out analysis showed that the Support Vector Machine method of classification was more280

accurate for the Grandi Lancaster-Sobie metric, the Grandi APD90 metric, the O’Hara Cqinward metric,281

and the hERG IC50/EFTPCmax metric. For all other metrics, Linear Discriminant Analysis was more282

accurate.283

Using LDA, the most accurate metrics were the O’Hara ICaL increase EAD metric and the O’Hara284

ICaL increase EAD metric combined with the Grandi APD90 metric. Using SVM, the most accurate285

metric was the Grandi Lancaster-Sobie metric, followed by Grandi APD90.286

The least accurate metric using LDA was the cqInward metric. Using SVM, the least accurate metric287

was the IKr EAD protocol, followed by the INa inactivation curve shift EAD metric.288

The best metric over all classification methods was the Grandi Lancaster-Sobie metric using SVM,289

and the worst over all classification method was the IKr EAD protocol using SVM.290

The ICaL increase EAD metric correctly classified cibenzoline, desipramine, and fluvoxamine into Cat-291

egories 5, 4, and 4, respectively, while the APD90 metric mis-classified them into the more dangerous292

Categories 4, 3, and 3, respectively, and the hERG IC50 / EFTPCmax metric mis-classified all three293

drugs into the most dangerous Category 2.294

Discussion295

In this paper, we have presented a novel method for predicting pro-arrhythmic risk by provoking296

EADs in computational models of cardiac cells, in combination with simulated ion channel block.297

As expected, EAD thresholds were usually lower for drugs which strongly block hERG, except when298

hERG block was combined with other ion channel block. ICaL block removed the effect of hERG block299

on the IKr EAD threshold, for example, verapamil, a strong ICaL blocker, required a large decrease in300

IKr current to cause an EAD despite being a strong hERG blocker. This indicates that for patients301
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Figure 4: Left: linkage analysis based on the hERG IC50/EFTPCmax metric. Centre: linkage analysis based on the
APD90 metric. Right: linkage analysis based on the ICaL EAD threshold metric. Risk categories are indicated by colour:
Category 2 (dangerous) drugs are shown in red, Category 3 in yellow, Category 4 in black, and Category 5 (safe) in green.

with LQT2 or other hERG mutations, drugs which block ICaL could be beneficial in preventing TdP.302

ICaL EAD thresholds were lower for drugs which strongly block both the INa and hERG channels.303

Therefore, for patients with increased ICaL activity, due to ICaL agonists or genetic mutations, drugs304

which block both INa and hERG could increase the risk of TdP. INa inactivation curve shift thresholds305

were not increased by ICaL block — for example, verapamil had a low INa EAD threshold despite306

strongly blocking ICaL. This indicates that, for patients with Brugada syndrome, the torsadogenic307

effects of hERG block cannot be ameliorated by ICaL block. ICaL increase as a torsadogenic risk metric308

showed clear improvement over the hERG ‘safety margin’ marker of IC50 / EFTPCmax.309

In general, results were consistent over classification methods and evaluation scheme, as shown by310

leave-one-out cross-validation and five-group cross-validation.311

The ICaL increase EAD metric sorted cibenzoline, desipramine, and fluvoxamine into their correct risk312

categories, while both hERG IC50 / EFTPCmax and Grandi APD90 classified them into more dangerous313

categories. All three of these drugs are relatively strong ICaL blockers. Cibenzoline is also a strong314

INa blocker and a weak IpNa blocker. Block of the persistent sodium or L-type calcium currents have315
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been shown to suppress EADs. [62, 63] These results show that EAD metrics can accurately predict the316

torsadogenicity of drugs which block hERG and increase APD without causing TdP.317

Amiodarone was persistently misclassified by every metric except for hERG IC50/EFTPCmax using318

LDA, and the IKr EAD metric and cqInward metric using SVM. Amiodarone weakly blocks several ion319

channels, but also has active metabolites that were not considered here. [64] This combination of ion320

channel block leads to only a small increase in APD, and slightly decreased EAD thresholds. Ion channel321

block by amiodarone has been shown to be use-dependent, and there is evidence that amiodarone binds322

only to the open state of the INa channel. Therefore, a more detailed model of amiodarone binding323

kinetics may be required. However, despite being a Class III antiarrythmic, amiodarone poses a much324

lower, if still measurable, TdP risk than most other compounds in risk category one [65] and may325

therefore be a candidate for re-classification into a lower clinical risk category.326

Following APD-based metrics, an EAD-based approach to pro-arrhythmic risk prediction offers a327

mechanistic link between ion channel block and TdP. [35, 37] Building on previous EAD-based metrics,328

[40, 41] our method looks at causes other than increased drug concentration as a cause of TdP, and329

incorporates the action of underlying disease states. Linkage analysis may allow for more fine-grained330

risk ranking and be helpful in showing compounds with similar properties.331

The separation of drugs into risk categories based on TdP clinical incidence is a difficult problem.332

TdP can only be diagnosed when a patient is being monitored on an electrocardiogram, so episodes of333

TdP may be missed, giving underestimates of incidence. In addition, there is little publicly-available334

information on drug prescription numbers, meaning that it is difficult to calculate the number of TdP335

cases per prescription/dose. The lack of information about TdP incidence per dose makes risk classes336

uncertain, and a drug prescribed to people who are more likely to get electrocardiograms will have an337

increase in the number of cases of TdP diagnosed for that drug compared to a similarly torsadogenic338

drug. Wísniowska and Polak [44] showed how different risk classifications have been given to the same339

drugs in different studies. Our strategy of using compounds with uncontroversial risk categorisations340

could ameliorate this problem, but the differences in risk category are fundamentally due to a lack of341

data on incidence.342

The approach we have presented suggests a strategy by which risk assessments might be made for343

different patient subgroups (analogous to the different disease-mimicking EAD provoking interventions344

we applied). But as discussed, at present incidence data for the population as a whole is lacking, and this345

problem is exacerbated for smaller patient subgroups, making evaluation of our patient-group-specific346

predictions impossible at present. To improve these and other TdP prediction efforts, more data on347

TdP incidence rates will be needed.348

One weakness of our study is the variety of sources from which the IC50 values were obtained. The349

differences in experimental protocol, temperatures, cell types and equipment used in these experiments350

may add uncertainty to our simulations, [66] which we have not included in the computations presented351

here. A dataset from a single set of manual patch-clamp experiments with low variability would allow352

standardisation across pro-arrhythmic risk classification methods for a range of drugs.353

There are a large number of available cardiac cell models. For the afterdepolarization aspects of this354

study, we have used only the O’Hara et al. [43] model, because it includes the persistent sodium current.355

The addition of an appropriate late sodium current to existing models would be a useful extension to356

this work, to allow us to look at predictions from a wider range of models. This is work we are pursuing.357

We did not use the new dynamic hERG block model from Li et al. (2017) [48] which may explain why358

our implementation of the Cqinward metric was not as successful as in that paper.359

Our study does not look at pro-arrhythmic markers at the tissue or whole heart level. EADs are a360

cell-level phenomenon that interact with several other factors in the onset of TdP in tissue. [67] The361

effects of spatial heterogeneity in ion channel expression and in fibre organisation on the arrhythmogenic362
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effects of EAD susceptibility induced by drug block are likely to be significant in the translation from363

single-cell EADs to tissue- and organ-level effects.364

Instead of using a simple pore-block model for drug interactions with ion channels, it would be365

interesting to account for different hERG binding kinetics, which have been explored in a recent study.[48]366

The differences in binding may alter the effect of the drugs on action potential duration and EAD367

susceptibility.368

Conclusions369

We have proposed and investigated novel metrics for predicting drug-induced torsadogenic risk based370

on early-stage pre-clinical data on ion channel block. Our EAD-based metrics combine ion channel block371

data with disease states in order to predict increased EAD susceptibility in cell models, as a marker for372

pro-arrhythmic risk. Some EAD metrics were an improvement on the hERG IC50 / EFTPCmax safety373

margin as a predictor of clinical incidence of Torsades de Pointes. The ICaL increase metric performed374

well, it more accurate than hERG block alone, but was not as predictive as simpler measures such as375

simulated action potential duration we have published previously. This may be because different routes376

to EADs mimic different diseases in patient subgroups and represent risk well for these patients only,377

but evaluating this is difficult without further data on clinical TdP incidence rates.378
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