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Abstract

Microbiota contribute to many dimensions of host phenotype, including disease. To link specific
microbes to specific phenotypes, microbiome-wide association studies compare microbial abun-
dances between two groups of samples. Abundance differences, however, reflect not only direct
associations with the phenotype, but also indirect effects due to microbial interactions. We
found that microbial interactions could easily generate a large number of spurious associations
that provide no mechanistic insight. Using techniques from statistical physics, we developed a
method to remove indirect associations and applied it to the largest dataset on pediatric inflam-
matory bowel disease. Our method corrected the inflation of p-values in standard association
tests and showed that only a small subset of associations is directly linked to the disease. Di-
rect associations had a much higher accuracy in separating cases from controls and pointed to
immunomodulation, butyrate production, and the brain-gut axis as important factors in the
inflammatory bowel disease.

Introduction

Microbes are essential to any ecosystem be it the ocean or the human gut. The sheer impact of
microbial processes has however been underappreciated until the advent of culture-independent
methods to assess entire communities in situ. Metagenomics and 16S rRNA sequencing identified
significant differences in microbiota among hosts, and experimental manipulations established that
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microbes could dramatically alter host phenotype [1–8]. Indeed, anxiety, obesity, colitis, and other
phenotypes can be transmitted between hosts simply by transplanting their intestinal flora [9–13].

New tools and greater awareness of microbiota triggered a wave of association studies between
microbiomes and host phenotypes. Microbiome wide association studies (MWAS) have been car-
ried out for diabetes, arthritis, cancer, autism and many other disorders [14–23]. MWAS clearly
established that each disease is associated with a distinct state of intestinal dysbiosis, but they of-
ten produced conflicting results and identified a very large number of associations both within and
across studies [14, 19, 21, 23–26]. For example, a recent study on inflammatory bowel disease (IBD)
reported close to 100 taxa associated with IBD [25], a number that is fairly typical [14]. Such long
lists of associations defy simple interpretation and complicate mechanistic follow-up studies because
one needs to examine the role of almost every species in the microbiota. In fact, one can argue that
MWAS are most useful when they can identify a small network of taxa driving the disease.

Although extensive dysbiosis might reflect the multifactorial nature of the disease, it is also possible
that MWAS detect spurious associations because their statistical methods fail to account for some
important aspects of microbiome dynamics. One such aspect is the pervasive nature of microbial
interactions: species compete for similar resources, rely on cross-feeding for survival, and even
produce their own antibiotics [27–37]. Hence, microbial abundances must be correlated with each
other, and even a simple change in host phenotype could manifest as collective responses by the
microbiota. Traditional MWAS, however, completely neglect this possibility because they treat
each change in abundance as an independent manifestation of altered host phenotype. As a result,
MWAS cannot distinguish taxa directly linked to disease from taxa that are affected only through
their interactions with other species.

The main conclusion of this paper is that realistic microbial interactions produce a large number
of spurious associations. Many of these indirect associations can be removed by a simple procedure
based on maximum entropy models from statistical physics, which can separate host effects from
the microbial interactions. We dubbed this approach Direct Association Analysis, or DAA for
short.

When applied to the largest MWAS on IBD, DAA shows that many of the previously reported
associations could be explained by interspecific interactions rather than the disease. At the genus
and species level, the direct associations include only Roseburia, Faecalibacterium prausnitzii, Bifi-
dobacterium adolescentis, Blautia producta, Turicibacter, Oscillospira, Eubacterium dolichum, Ag-
gregatibacter segnis, and Sutterella. Some of these associations are well-known, while others have
received little attention in IBD research. The phenotypes of the taxa directly to disease suggest
that immunomodulation, butyrate production, and the brain-gut interactions play important role
in the etiology of IBD.

Compared to traditional MWAS, DAA corrected the inflation of p-values responsible for the large
number of spurious associations and identified taxa most informative of the diagnosis. We found
that directly associated taxa are much better at discriminating between cases from controls than an
equally-sized subset of indirect associations. In fact, direct associations have the same potential to
discriminate between health and disease as the entire set of almost a hundred associations detected
by a conventional method.
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Figure 1. Microbial interactions generate spurious associations. (A) A hypothetical interaction
network of five species together with their dynamics in disease. Only two species (shown in color) are
directly linked to host phenotype. These directly-linked species inhibit or promote the growth of the other
members of the community (shown with arrows). As a result, all five species have different abundances
between case and control groups. (B) Microbial interactions are visualized via a hierarchically-clustered
correlation matrix computed from the data in Ref. [21]. We used Pearson’s correlation coefficient between
log-transformed abundances to quantify the strength of co-occurrence for each genus pair. Dark regions
reflect strong interspecific interactions that could potentially generate spurious associations. See Tab. S1 for
the list of 47 most prevalent genera included in the plot.

Results

Traditional MWAS detect species with significantly different abundances between case and control
groups. Some changes in the abundances are directly associated with the disease while others are
due to microbial interactions. The emergence of indirect changes in abundance is illustrated in
Fig. 1A for a hypothetical network of five species. Only two species A and D are directly linked
to the disease. However, strong interactions make the abundances of all five species differ between
control and disease groups. For example, the mutualistic interaction between A and B helps B
grow to a higher density following the increase in the abundance of A. The expansion of B in turn
inhibits the growth of C and reduces its abundance in disease. Strong mutualistic, competitive,
commensal, and parasitic interactions have been demonstrated in microbiota [27–37], and Fig. 1B
shows that almost every species present in the human gut participates in a strong interaction.
Thus, the propagation of abundance changes from directly-linked to other species could pose a
significant challenge for MWAS. To test this hypothesis, we turned to a minimal mathematical
model of microbiota composition.

Maximum entropy model of microbiota composition
A quantitative description of interspecific interactions and their effect on MWAS requires a sta-
tistical model of host-associated microbial communities. Ideally, such a model would describe the
probability to observe any microbial composition, but the amount of data even in large studies is
only sufficient to determine the means and covariances of microbial abundances. This situation is
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common in the analysis of biological data and has been successfully managed with the use of max-
imum entropy distributions [38]. These distributions are chosen to be as random as possible under
the constraints imposed by the first and second moments. Maximum entropy models introduce the
least amount of bias and reflect the tendency of natural systems to maximize their entropy [39]. In
other contexts, these models have successfully described the dynamics of neurons, forests, flocks,
and even predicted protein structure and function [40–44]. In the context of microbiomes, a re-
cent work derived a maximum entropy distribution for microbial abundances using the principle of
maximum diversity [45].

We show in the Supplemental information (SI) that the maximum entropy distribution of microbial
abundances P ({li}) takes the following form

P ({li}) =
1

Z
e
∑

i hili+
1
2

∑
ij Jij lilj , (1)

where li is the log-transformed abundance of species i, hi represents the direct effect of the host phe-
notype on species i, and Jij describes the interaction between species i and j; the factor of 1/Z is the
normalization constant. The log-transformation of relative abundances alleviates two common dif-
ficulties with the analysis of the microbiome data. The first difficulty is the large subject-to-subject
variation, which is much better captured by a log-normal rather than a Gaussian distribution; see
Fig. S1, SI, and Ref. [25]. The second difficulty arises from the fact that the relative abundances
must add up to one. This constraint is commonly known as the compositional bias because it leads
to artifacts in the statistical analysis. The log-transformation is an essential step in most methods
that account for the compositional bias [46–48], and, in the SI, we show that all of our conclusions
are robust to the variation in the strength of the compositional bias.

Testing for spurious associations in synthetic data
We obtained realistic model parameters from one of the largest case-control studies previously re-
ported in Ref. [21]. The samples were obtained from mucosal biopsies of 275 newly diagnosed,
treatment-naive children with Crohn’s disease (a subtype of IBD) and 189 matched controls. Mi-
crobiota composition was determined by 16S rRNA sequencing with about 30,000 reads per sample.
From this data, we inferred the interaction matrix J and the typical changes in microbial abun-
dances associated with the disease for 47 most prevalent genera (Methods and SI). Even though the
number of data points significantly exceeds the number of free parameters in the model, overfitting
could still be a potential concern. Overfitting, however, is unlikely to affect our main conclusions
because they depend only on the overall statistical properties of J rather than on the precise knowl-
edge of every interaction. In fact, none of our results changed when we analyzed only about half
of the data set (Fig. 2). To improve the quality and robustness of the inference procedure, we also
used the spectral decomposition of J to remove any interaction patterns that were not strongly
supported by the data; see Methods and SI for further details.

To determine the effect of microbial interactions on conventional MWAS analysis, we generated
synthetic data with a known number of direct associations. The data for the control group was
used without modification from Ref. [21]. The disease group was generated using Eq. (5) with
the same values of h and J as in the control group, except we modified the values of h for 6
representative genera (Tab. S2). We also generated two other synthetic data sets with smaller and
larger effect sizes (Tab. S2). The results for all three data sets were very similar (SI).
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The synthetic data was further subsampled to several sample sizes in order to simulate variation in
statistical power between different studies. For an ideal method, the number of detected associations
should increase with the cohort size, but eventually saturate once all 6 directly associated genera are
discovered. In contrast to this expectation, the number of associations detected by the conventional
approach increased rapidly with the sample size until almost all genera were found to be statistically
associated with the disease in our synthetic data. At this point, traditional MWAS completely lost
the power to identify the link between the phenotype and microbiota. Unbounded growth in the
number of detections was also observed for the real data (Fig. 2C) suggesting that many previously
reported associations between microbiota and IBD could be indirect.

Are spurious associations simply an artifact of our ability to detect even minute differences between
cases and controls? Fig. 2B and 2D show that this was not the case. The median effect size declined
only moderately with the number of associations, and most associations corresponded to about a
factor of two difference in the taxon abundance. Thus, spurious associations are not weak and
could not be discarded based on their effect size.

Direct association analysis (DAA)
Fortunately, the maximum entropy model provides a straightforward way to separate direct from
indirect associations. Since direct effects are encoded in h, MWAS should be performed on h
rather than on l. This simple change in the statistical analysis correctly recovered 4 out of 6
directly associated taxa in the synthetic data and yielded no indirect associations even for large
cohorts (Fig. 2A and S5). Similarly good performance was found for the two other synthetic
data sets (Fig. S7). For the IBD data, DAA also identified a much smaller number of associations
compared to traditional MWAS analysis and showed clear saturation at large sample sizes (Fig. 2B).
Direct associations with IBD are summarized in Fig. 3 at the genus and species levels, and the entire
phylogenetic tree of direct associations is shown in Fig. S2 and Tabs. S3 and S4.

To demonstrate that DAA isolates direct effects from collective changes in the microbiota, we
examined the p-value distribution in this method. The distribution of p-values is commonly used
as a diagnostic tool to test whether a statistical method is appropriate for the data. In the absence of
any associations, p-values must follow a uniform distribution because the null hypothesis is true [54].
A few strong deviations from the uniform distribution signal true associations [55]. In contrast,
large departures from the uniform distribution typically indicate that the statistical method does
not account for some properties of the data, for example, population stratification in the context of
genome wide association studies [56, 57]. Figure 4A compares the distribution of p-values for DAA
and a conventional method in MWAS. Consistent with our hypothesis that interspecific interactions
cannot be neglected, conventional analysis generates an excess of low p-values and, as a result, a
large number of potentially indirect associations. In contrast, the distribution of p-values from DAA
matches the expected uniform distribution and, thus, provides strong support for our method.

Finally, we show that indirect association excluded by DAA do not reduce the predictive power
of microbiome data. Supervised machine learning such as random forest [58, 59], support vector
machine [60], and sparse logistic regression [61–63] were used to classify samples as cases or con-
trols based on their microbiota profile. We found good and identical performance of the classifiers
trained either on all taxa detected by conventional MWAS or on a much smaller subset of direct
associations detected by DAA (Fig. 4B). Moreover, the DAA-based classifier showed significantly
better performance compared to a classifier trained on an equal number of randomly-selected in-
direct associations (Fig. 4B). Thus, DAA reduces the number of associations without losing any
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Figure 2. Signatures of indirect associations in synthetic and IBD data sets. The synthetic data
set was generated to match the statistical properties of the IBD data set from Ref. [21], but with a predefined
number of 6 directly associated taxa. (A) In synthetic data, DAA identifies no spurious association and
detects 4 out of 6 directly associated genera. All 6 genera and no false positives are detected when the sample
size is increased further (Fig. S5). In sharp contrast, a large number of spurious associations is observed
for metrics that rely on changes in abundance between cases and controls and do not correct for microbial
interactions. The number of false positives grows rapidly with statistical power until all taxa are reported as
significantly associated with the disease (Fig. S5). (B) All spurious associations show substantial differences
between cases and controls and, therefore, cannot be discarded based on their effect sizes. To quantify the
effect size, we estimated the magnitude of the fold change for each genus. Specifically, we first computed the
difference in the mean log abundance between cases and controls and then exponentiated the absolute value
of this difference. The plot shows how the median effect size for significantly associated genera depends on
the sample size. Larger samples sizes result in much higher number of associations, but only a small drop in
the typical effect size. (C) and (D) are the same as (A) and (B), but for the IBD data set. The results are
consistent between the two data sets suggesting that most associations detected by traditional MWAS are
spurious. The complete list of indirect associations inferred from the IBD data set is shown in Tab. S5 and
the results for different synthetic data sets are shown in Fig. S7.
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Figure 3. Network of direct associations with Crohn’s Disease. Five species and four genera
were found to be significantly associated with Crohn’s Disease (q < 0.05) after correcting for microbial
interactions. The links correspond to significant interactions (q < 0.05) between the taxa with Jij > 0.27
or Jij < −0.15; the width of the arrows reflects the strength of the interactions. Note that DAA controls
for the fact that two species could be correlated because both interact with a third species, but not with
each other (Fig. 1A). Thus, the network shows only direct interactions between the taxa. Compared to
the correlation matrix in Fig. 1B, the interaction network has both mutualistic and inhibitory links, which
suggests that the microbial community might have several stable states corresponding to distinct modes of
dysbiosis [30, 49–53]. For comparison, the correlation-based network for directly associated taxa is shown in
Fig. S3. A complete summary of correlations and interactions for all species pairs is provided in Tab. S6.

information on the disease status and selects taxa with the greatest potential to distinguish health
from disease.

Discussion

The primary goal of MWAS is to guide the study of disease etiology by detecting microbes that have
a direct effect on the host. These direct effects could be very diverse and include secretion of toxins,
production of nutrients, stimulation of the immune system, and changes in mucus and bile [64, 65].
In addition to the host-microbe interactions, the composition of microbiota is also influenced by the
interspecific interactions among the microbes such as competition for resources, cross-feeding, and
production of antibiotics. In the context of MWAS, microbial interactions contribute to indirect
changes in microbial abundances, which are less informative of the disease mechanism and are
less likely to be valuable for follow-up studies or in interventions. Here, we estimated the relative
contribution of indirect associations to MWAS and showed how to isolate direct from indirect
assoctiations.

Our main result is that interspecific interactions are sufficiently strong to generate detectable
changes in the abundance of many microbes that are not directly linked to host phenotype. As
a result, conventional approaches to MWAS detect a large number of spurious associations and
produce inflated p-values that do not match their expected distribution (Fig. 4A). These challenges
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Figure 4. Direct associations analysis corrects p-value inflation and retains diagnostic accu-
racy. (A) The distribution of p-values in DAA closely follows the expected uniform distribution. Without
correcting for microbial interactions, the same analysis yields an excess of low p-values, a signature of indirect
associations. For both methods, p-values were computed using a permutation test. The expected uniform
distribution was obtained by sampling from a generator of random numbers. The ranked plots of p-values
visualize their cumulative distribution functions; this is a variant of a Q-Q plot. (B) Direct associations are a
small subset of all associations with IBD, yet they retain full power in classifying samples as cases or controls.
In contrast, the classification power is substantially reduced for an equally-sized subset of randomly-chosen
indirect associations. In each case, we used sparse logistic regression to train a classifier on 80% of the
data and tested its performance on the remaining 20% (Methods). The shaded regions show one standard
deviation obtained by repeated partitioning the data into the training and validation sets. Identical results
were obtained with a random forest [58, 59] and support vector machine [60] classifiers (Fig. S4).

are resolved by Direct Association Analysis (DAA), which uses maximum entropy models to ex-
plicitly account for interspecific interactions. We applied DAA to a large data set of pediatric
Crohn’s disease and found that it restores the distribution of p-values and substantially simplifies
the pattern of dysbiosis while retaining full classification power of a conventional MWAS.

The relatively simple dysbiosis identified by DAA in IBD has strong support in the literature and
offers interesting insights into disease etiology. Four of the taxa identified by our method have a
well-established role in IBD: B. adolescentis, F. prausnitzii, B. producta, and Roseburia. They have
been repeatedly found to have lower abundance in both Crohn’s disease and ulcerative colitis [66–
73], and several studies have demonstrated their ability to suppress inflammation and alleviate
colitis [69, 74–78]. Bifidobacterium species occupy a low trophic level in the gut and ferment complex
polysaccharides such as fiber [79, 80]. Fermentation products include lactic acid, which promotes
barrier function, and maintains a healthy, slightly acidic environment in the colon [81]. Due to these
properties Bifidobacterium species are commonly used as probiotics [79]. F. prausnitzii, Blautia
producta and Roseburia occupy a higher trophic level and ferment the byproducts of polysaccharide
digestion into short-chain fatty acids (SCFA), which are an important energy source for the host [68,
69, 82, 83].

The ability of DAA to detect taxa strongly associated with IBD is reassuring, but not surprising.
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What is surprising is that many strong associations are classified as indirect by our method. For
example, Roseburia and Blautia are the only genera of Lachnospiraceae that DAA finds to be di-
rectly linked to the disease. In sharp contrast, traditional MWAS report seven genera in this family
that are strongly associated with IBD [25]. All seven genera are involved in SCFA metabolism, but
their specializations differ. Species in Blautia genus are major producers of acetate, a SCFA that
is commonly involved in microbial crossfeeding [84, 85]. In particular, many species extract energy
from acetate by converting it into butyrate, another SCFA that plays a major role in gut health by
nourishing colonocytes and regulating the immune function [82, 85]. Roseburia genus specializes
almost exclusively in the production of butyrate and acts as a major source of butyrate for the
host [82, 86]. Thus, our findings suggest that butyrate production plays an important role in IBD
etiology and that the dysregulation of this process is directly linked to the depletion of Roseburia
and possibly Blautia.

The important role of butyrate is further supported by our detection of E. dolichum and Oscil-
lospira, which are known to produce butyrate [87–89]. The latter taxon has not been detected in
three independent analyses of this IBD data set [21, 25, 90] presumably because its involvement
was masked by indirect associations and interactions with other microbes. Indeed, several other
studies found that Oscillospira is suppressed in IBD [91],[92]. Oscillospira was also found to be
positively associated with leanness and negatively associated with the inflammatory liver disease
[93–95] . The interactions between Oscillospira and the host appears to be quite complex and
involve the consumption of host-derived glycoproteins including mucin, production of SCFA, and
modulation of bile-acid metabolism [89, 96, 97]. The latter interaction was suggested to be a major
factor in the protective role of Oscillospira against infections with Clostridium difficile [96, 98, 99].

The final taxon that was suppressed in IBD is Turicibacter. This genus is not very well character-
ized, and few MWAS studies point to its involvement in IBD [21, 25, 100]. Two studies in animal
models, however, directly looked into the connection between IBD and Turicibacter [101, 102]. The
first study found that iron limitation eliminates colitis in mice while at the same time restoring
the abundance of Turicibacter, Bifidobacterium, and four other genera [101]. The second study
study identified Turicibacter as the only genus that is fully correlated with immunological dif-
ferences between mice resistant and susceptible to colitis: high abundance of Turicibacter in the
colon predicted high levels of MZ B and iNK T cells, which are potent regulators of the immune
response [102]. Moreover, Turicibacter was the only genus positively affected by the reduction in
CD8+ T cells. Thus, our method identified a taxon that is potentially directly linked to IBD via
the modulation of the immune system.

Perhaps the most unexpected finding was our detection of Aggregatibacter and Sutterella as the
only genera increased in disease compared to 26 positive associations detected by the previous
analysis [25]. All other associations were classified as indirect even though they often corresponded
to much more significant changes in abundance between IBD and control groups. Thus, our results
indicate that expansion of many taxa including opportunistic pathogens is driven by their inter-
actions with the core IBD network shown in Fig. 3. One possibility is that the dysbiosis of the
symbiotic microbiota makes it less competitive against other bacteria and opens up niches that can
be colonized by opportunistic pathogens. The other, less explored possibility, is that commensal
microbiota can not only protect from pathogens, but also facilitate their invasion, a phenomenon
that has been recently demonstrated in bees [103].

Little is known about the specific roles that Aggregatibacter and Sutterella play in IBD, and more
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generally in gut health. Aggregatibacter is a common member of the oral microbiota that thrives in
local infections such as periodontal disease and bacterial vaginosis [104–106]. The high abundance
of Aggregatibacter is also associated with an increased risk of IBD recurrence [107]. Sutterella, on
the other hand lacks overt pathogenicity, and MWAS produced inconsistent findings [108–114] on
its involvement in IBD. Some studies reported that Sutterella is increased in patients with good
outcomes [21, 111] while other studies found positive or no association between Sutterella and
IBD [25, 109, 112–114]. Experimental investigations showed that Sutterella lacks many pathogenic
properties; in particular, it does not induce a strong immune-response and has only moderate
ability to adhere to mucus [113, 114]. Further, Sutterella strains from IBD and control patients
showed no phenotypic differences in metabolomic, proteomic, and immune response assays [114].
Nevertheless, Sutterella is strongly associated with worse behavioral scores in children with autism
spectrum disorder and Down syndrome [19, 20, 115]. Therefore, the direct link between Sutterella
and IBD could involve the gut-brain axis.

In summary, we found a small number of taxa can explain extensive dysbiosis in IBD and accurately
predict disease status. Directly associated taxa include strains with dramatically different abilities
to trigger colitis and are specifically targeted by the immune system of patients and animals with
IBD [12]. Previous studies of these taxa point to facilitated colonization by pathogens, butyrate
production, immunomodulation, bile metabolism, and the gut-brain axis as the primary factors in
the etiology of IBD.

Many disorders are accompanied by substantial changes in host microbiota, but our work shows
that only a small subset of these changes could be directly related to the disease. Similarly, only
a handful of taxa could drive the dynamics of ecosystem-level changes in the environment. To
untangle the complexity of such dysbioses, it is important to account for microbial interactions
using mechanistic or statistical methods. Direct association analysis is a simple statistical approach
based on the principle of maximum entropy. It can be applied to any microbiome data set that is
sufficiently large to infer interspecific interactions.

Methods

The data used in this study was obtained from Ref. [21], which reported changes in the micro-
biome of newly-diagnosed, treatment-naive children with IBD compared to controls. This data
was recently analyzed in Ref. [25], and we followed all the statistical procedures adopted in that
study to enable direct comparison of the results. Specifically, we used a permutation test on mean
log-transformed abundances to determine the statistical significance of an association.

All computation was carried out in Python environment. We used scikit-learn 0.15.2 [116]
for hierarchical clustering and to build the supervised classifiers used in Fig. 4B of the main text
and Fig. S3. The variance in the accuracy of classification was evaluated through 5-fold stratified
cross-validation with 100 random partitions of the data into the training and validation sets. For all
findings, statistical significance was evaluated with Fisher’s exact test (permutation test) with 106

permutations. False discovery rate was controlled to be below 5% following Benjamini-Hochberg
method [54].

To fit the maximum entropy model to the data, we first computed the mean log-abundance for each
genus mi and the covariance in the log-transformed abundances Cij . The interaction matrix was
computed as J = C−1 by performing singular value decomposition [117] and removing all singular
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values that were comparable to the amount of noise present in the data. The host effects were
computed as h = Jm. See Supplementary Methods for further details.
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Supplementary information for “Interactions between species in-
troduce spurious associations in microbiome studies”

Model of community composition

Here we describe a mathematical model of community composition, that we use to correct for
microbial interactions in microbiome-wide association studies.

Log-transformation of abundances
The environment within a host is constantly changing due to variations in diet, immune response,
phage activity and other factors. As a result, microbial growth rates should be highly variable
and produce multiplicative fluctuations in the community composition, which are better captured
on logarithmic rather than on linear scale. Indeed, the abundances of many gut species follow a
log-normal distribution (Fig. S1), and recent work shows that a log-transformation of abundances
increases the power and quality of microbiome studies [25]. Therefore, we chose to carry out
all of the analysis and modeling on natural logarithms of relative abundances computed with a
pseudocount of one read. For simplicity, we refer to these quantities as abundances in the following
and denote them as li with the subscript identifying the species under consideration.

Maximum entropy models
Microbiota composition is highly variable among people in both health and disease [25] and needs
to be described via a multivariate probability distribution P ({li}). The amount of data in a large
microbiome-wide association study, however, is sufficient to reliably determine only the first and
second moments of P ({li}). This situation is common in the analysis of biological data and has been
successfully managed with the use of maximum entropy distributions [38]. These distributions are
chosen to be as random as possible under the constraints imposed by the first and second moments.
Maximum entropy models introduce the least amount of bias and reflect the tendency of natural
systems to maximize their entropy. In other contexts, these models have successfully described the
dynamics of neurons [40], forests [41], and flocks [42], and even predicted protein structure [43] and
function [44]. In the context of microbiomes, a recent work derived a maximum entropy distribution
for microbial abundances using the principle of maximum diversity [45].

Let us denote abundance means and covariances computed from the data by the vector m and
matrix C respectively. The constraints on the maximum entropy distribution are then expressed
as

〈li〉 = mi

〈lilj〉 − 〈li〉〈lj〉 = Cij ,
(2)

and the maximum entropy distribution takes the following form

P ({li}) =
1

Z
e
∑

i hili+
1
2

∑
ij Jij lilj , (3)

which is known as the Ising model in statistical physics. The variables hi and Jij arise as Lagrange
multipliers for the first and second moment constraints during entropy maximization. In statistical
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physics, they describe local magnetic fields that align spins li and interactions between spins li
and lj . The constant Z, known as the partition function, ensures that the distribution is normalized:

Z =

∫ ∏
i

dlie
∑

i hili+
1
2

∑
ij Jij lilj . (4)

Host effects vs. species interactions
To interpret this maximum entropy distribution in terms of biologically relevant factors such as
microbial interactions and properties of the host, we can rewrite equation (5) as follows

P ({li}) =
1

Z
e
∑

iHili , (5)

where

Hi = hi +
1

2

∑
j

Jijlj (6)

describe the quality of the local environment for species i: the higher Hi, the more abundant
the species. The quality of the environment can be decomposed into external variables such as
temperature or metabolite concentrations Vα and the species’ response to these variables Riα as

Hi =
∑
α

RiαVα. (7)

We can further decompose the external variables Vα into host factors V h
α and influences of other

species, e.g., due to metabolite secretion or production of antibiotics:

Vα = V h
α +

∑
j

Pαjlj , (8)

where Pαj describes the influence of microbe i on variable α.

Upon combining equations (7) and (8), we can express Hi as

Hi =
∑
α

RiαV
h
α +

∑
αj

RiαPαjlj . (9)

Comparison of this equation to equation (6) shows that we can identify hi =
∑

αRiαVα with the
direct effects of the host and Jij = 2

∑
αRiαPαj with the interactions among the microbes.
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Inference of model parameters

Here we describe the procedure of learning the parameters of the maximum entropy model from
the data. Our approach closely follows that of Refs. [38], [43] and [44].

Relating h and J to m and C
To infer model parameters hi and Jij , we need to relate them to empirical observations such as
the means and covariances of the abundances. These relationships can be conveniently obtained
from the derivatives of the partition function, which is the standard approach in statistical physics.
Indeed, the mean abundances can be expressed as

〈lk〉 =
1

Z

∫ ∏
i

dlie
∑

i hili+
1
2

∑
ij Jij lilj lk =

∂ lnZ

∂hk
. (10)

A similar relationship holds for the covariance matrix:

〈lilj〉 − 〈li〉〈lj〉 =
∂2 lnZ

∂hi∂hj
. (11)

To complete the calculation, we need to compute the partition function defined by equation (4).
The result reads

Z =
1√

det(J/2π)
e

1
2
hT J−1h, (12)

where symbols without indexes are treated as vectors or matrices.

From equation (12), we immediately find that

m = J−1h,

C = J−1,
(13)

which can be inverted to obtain

h = C−1m,

J = C−1.
(14)

Inverting the covariance matrix
It is clear from equation (14) that the key step in obtaining the model parameters is the inversion
of the covariance matrix. However, this matrix is likely to be degenerate or ill-conditioned because
of the insufficient amount of data or very strong correlations between microbial abundances. To
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overcome this difficulty, we computed a pseudoinverse of C as described in the following sections.
Briefly, we used singular value decomposition [117] of C in terms of two orthogonal matrices U
and V and a diagonal matrix Λ:

C = UΛV T . (15)

Some diagonal elements of Λ were small and comparable to the levels of noise (or uncertainty), so
we set the corresponding elements of Λ−1 to zero. Specifically, Λ−1

kk was set to zero for all k such
that Λkk < λmin, where λmin was a predetermined threshold. A regular inverse (Λ−1

kk = 1/Λkk) was
used for the rest of the elements. The robustness of the results to the variation in the threshold λmin

is discussed in the section on data analysis. This procedure ensured that we do not infer large
changes in host fields h due to fluctuations in the estimate of 〈l〉. The inverse of C was then
computed as C−1 = V Λ−1UT , where we used the fact that the inverse of an orthogonal matrix is
its transpose.

Origin of spurious associations and Direct Associations Analysis

Microbial interactions introduce spurious associations
In microbiome-wide association studies, we are typically interested in the changes in microbial
abundances ∆m between two groups of subjects. From equation (13), we can relate ∆m to the
changes in the phenotype of the host ∆h:

∆m = C∆h. (16)

This formula clearly illustrates the origin of spurious associations. Imagine that there is a small
number of species directly linked to host phenotype, i.e. ∆h is a sparse vector. Because C is a
dense matrix (see Fig. 1b in the main text), equation (16) predicts that ∆m is dense, i.e. the
abundances of most species are affected. The sizes of these effects are variable and depend on the
magnitude of the off-diagonal elements of C. Except for the strongly interacting species, the largest
changes in m are likely to mirror the largest changes in h and result in significant associations. In
large samples, however, smaller effects become detectable that could either reflect small direct
effects or the secondary, indirect effects due to microbial interactions. As a result, the number
of associations grows with the sample size, and the relationship between associated species and
host phenotype becomes obscured. Fig. 2 in the main text presents evidence for a large number of
spurious associations in both synthetic and real data.

Removing indirect associations
Equation (16) offers as straightforward way to correct for microbial interactions and separate direct
from indirect associations. Indeed, for each species, we can compute the corresponding change in
the host field as

∆hi =
∑
j

(
C−1

)
ij

∆mj . (17)
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The statistical significance of this change can be determined via the permutation test followed by
the Benjamini-Hochberg procedure to correct for multiple hypothesis testing [54].

Generation of synthetic data

Here, we describe how we generated the synthetic data shown in Fig. 2A of the main text. This
data was generated to evaluate the likelihood of spurious associations in MWAS. We introduced a
known number of direct associations, but ensured that all other properties of the data correspond
to that of the human gut microbiota.

The data for the control group were directly subsampled from the IBD data set. To generate the
data for the disease group, we first inferred the covariance matrix using the entire data set and
the mean abundances using just the control group. Then, equation (13) was used to compute h.
These values of h described normal microbial abundances in subject without IBD. To introduce a
difference between cases and controls, we modified the values of h for 6 randomly chosen species
by 10% - 40%; these are typical changes in h identified by DAA. Finally, we computed the expected
microbial abundance using equation (13) and then sampled from a multivariate normal distribution
with these means and the covariance matrix defined above.

We also tested that our conclusions hold for other diseases with potentially different effect sizes.
Specifically, we repeated the analysis in Fig. 2A for two other synthetic data sets: one with smaller
and one with larger effect sizes. The results are qualitatively similar to what we reported in the
main text and are shown in Fig. S7. The values of the effect sizes are given in Tab. S2.

Data analysis

For correlation analysis, we used Pearson correlation coefficient for log-transformed abundances.

For logistic regression classifier, we used L1 penalty to ensure sparseness and generalizability. In
all classifiers default parameters were used in scikit-learn version 0.17.2.

For hierarchical clustering of the correlation matrix, we used the Nearest Point Algorithm method
of the linkage function in scipy with a correlation distance metric.

Threshold for matrix inversion
For our analysis of the IBD and synthetic data sets we set λmin to 0.01. To test whether our results
are robust to the value of the threshold, we varied the number of eigenvalues of Λ−1 not set to
zero; see Fig. S8. When only a few eigenvalues where included, DAA detected a large number
of associations because many taxa were perfectly correlated, and it was impossible to distinguish
direct from indirect associations. As the number of included eigenvalues increased, the performance
of DAA improved and reached a plateau. In this plateau region, the results were largely insensitive
to the value of the threshold used.

Compositional effects
Microbiota composition is usually quantified by relative abundances to eliminate the variation
in the total number of sequencing reads. Although the total number of reads depends on the
total abundance of microbes, variation in sample preparation and other factors also contribute and
thereby make the inference of absolute microbial abundances nearly impossible. Because the relative
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abundance add up to one, microbiome data is compositional, which leads to spurious correlations
and other statistical biases [46–48]. These biases are largely removed by the log-transformation and
we find no evidence that they significantly affect our conclusions including the results of DAA. This
can be seen from Fig. S6, which compares the analysis done on relative abundances to the analysis
done on unnormalized counts. Both analyses identify about the same number of associations (and
the same taxa) using either traditional MWAS or DAA. Note that a very strong compositional bias
would make all taxa associated with the disease simply because the change in the relative abundance
of one taxon necessarily changes the abundance of all other taxa. Such strong compositional bias
is not observed in either IBD data set or in synthetic data with fewer than 5000 samples. Finally,
we note that our synthetic data has the same amount of compositional bias as in the IBD data.
For both data sets, the top 10 most abundant taxa account for 80% of the reads. Compositional
effects could be stronger in less diverse habitats with lower species evenness compared to the gut.

Computer code

We include here the link to computer code that loads the data and outputs all figures and tables:
https://github.com/rajitam/DAA-figures-and-tables
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Figure S1. Microbial abundances follow the log-normal distribution. The histograms show prob-
ability distributions of the relative log-abundance for the species and genera detected by DAA. The best fit
of a Gaussian distribution is shown in green.
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Figure S2. Taxa directly associated with Crohn’s disease. Note that the Green Genes database [118]
used in QIIME [119] places Turicibacter under Erysipelotrichales and has a unique order of Turicibacterales.
This apparent inconsistency may reflect insufficient understanding of Turicibacter phylogeny. The effect sizes
and statistical significance are summarised in Tab. S3 and compared between DAA and conventional MWAS
in Tab. S4.
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Figure S3. The network based on the correlation coefficient between log transformed abun-
dances. We plotted the correlation based network for the species detected by DAA. Note the similarities
and differences with the interaction network shown in Fig. 3 of the main text. Only the links with the
correlation coefficient greater than 0.27 or lower than -0.15 are shown, and all links are statistically signifi-
cant (q < 0.05). All correlation coefficients and direct interactions are summarized in Tab. S6 for the genera
and species detected by DAA.
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Figure S4. Direct associations retain full diagnostic power. The same as Fig. 4B of the main text,
but for two other classifiers: random forest [58, 59] in (A) and support vector machine [60] in (B).
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Figure S5. DAA detects all directly associated taxa in synthetic data with enough samples.
The same as Fig. 2A, but with the x-axis extended to large sample sizes. Note that DAA recovers all 6
directly associated taxa.
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Figure S6. Compositional bias does not significantly affect DAA performance. (A) is the same
as Fig. 2C of the main text. (B) is similar to (A), but with the analysis done on unnormalized counts,
which do not add up to a constant number. The results of the two analyses are very similar suggesting that
compositional bias does not create significant artifacts. In particular, the number of associations in (A) and
in (B) grow at the same rate with the sample size. This would not be the case if the compositional bias was
strong because spurious associations due to normalization would lead to a greater number of detected taxa.
Thus, we conclude that interspecific interactions rather than compositional effects are the primary source of
spurious associations.
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Figure S7. Spurious associations in synthetic data with small and large effect sizes. The same
analysis as in Fig. 2AB of the main text, but for synthetic data with smaller (A, B, C) and larger (D, E,
F) effect sizes. (A) and (D) show the number of associations detected by traditional MWAS and DAA.
(B) and (E) show the median effect sizes (median fold change) for the taxa detected by conventional MWAS.
(C) and (E) show the effect sizes in both h and l for the taxa detected by DAA. The effect size for h was
quantified as the relative percent difference in host-field between cases and controls, while the l-effect size
was computed as described in the main text. Overall the results are similar to those in Fig. 2. In addition,
(A) and (B) show that DAA can recover all directly associated taxa given a large number of samples without
any false positives. For sample sizes exceeding 5000, DAA starts to detect indirect associations due to
compositional effects.
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Figure S8. Sensitivity of DAA to eigenvalue threshold λmin. Large λmin retains only a few
eigenvalues and imposes an artificially strong correlation structure on the data. As a result, DAA detects a
large number of associations because it cannot distinguish direct from indirect effects. The performance of
DAA improves as more eigenvalues are included and reaches a plateau. The dashed lines show the number
of eigenvalues included for λmin = 0.01 used throughout our analysis. The insets show the eigenvalues of Λ
in decreasing order.
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Table S1. The list of genera used in the analysis. We included all genera that were present in more
than 60% of either control or IBD subjects. The indices were chosen to hierarchically cluster the correlation
matrix shown in Fig. 1b of the main text (index corresponds to the position of the genus on the x axis).

index genus name index genus name index genus name

1 [Prevotella] 17 Corynebacterium 33 Fusobacterium
2 Prevotella 18 Pseudomonas 34 Bacteroides
3 Dialister 19 Acinetobacter 35 Anaerostipes
4 Phascolarctobacterium 20 Erwinia 36 Parabacteroides
5 Epulopiscium 21 Actinomyces 37 [Eubacterium]
6 Eggerthella 22 Streptococcus 38 Odoribacter
7 Clostridium 23 Granulicatella 39 Oscillospira
8 Akkermansia 24 Neisseria 40 Lachnospira
9 Bilophila 25 Rothia 41 Roseburia
10 Bifidobacterium 26 Eikenella 42 Faecalibacterium
11 Collinsella 27 Campylobacter 43 Dorea
12 Sutterella 28 Veillonella 44 [Ruminococcus]
13 Parvimonas 29 Actinobacillus 45 Ruminococcus
14 Porphyromonas 30 Aggregatibacter 46 Blautia
15 Turicibacter 31 Haemophilus 47 Coprococcus
16 Staphylococcus 32 Holdemania

Table S2. Genera modified in synthetic data. Taxa indices are the same as in Table S1. Effect size is
the percent change in the value of h.

taxon
index

effect size
data 1 (main text)

effect size
data 2 (small)

effect size
data 3 (large)

1 −18% −17% −44%
11 +24% +14% +129%
19 −36% −12% −72%
27 +17% +16% +67%
33 −13% −14% −28%
45 +18% +13% +112%
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Table S3. Direct associations identified by DAA across phylogenetic levels.

taxon
name

direct effect,
hCD

direct effect,
hctrl

difference,
∆h/|hctrl|

p-value q-value

Order level
Burkholderiales −0.47 −0.66 +0.29 0.00013 0.0029
Turicibacterales −1.7 −1.4 −0.18 0.00031 0.0036
Pasteurellales −0.51 −0.69 +0.26 0.00068 0.0052
Campylobacterales −1.6 −1.8 +0.1 0.00696 0.04
Erysipelotrichales −2.5 −2.3 −0.083 0.0095 0.044

Family level
Alcaligenaceae −0.68 −0.86 +0.21 0.00027 0.01
Clostridiaceae −1.2 −0.99 −0.18 0.0026 0.049
Pasteurellaceae −0.31 −0.47 +0.35 0.0033 0.049

Genus level
Roseburia −1.2 −0.86 −0.35 0.000098 0.0046
Sutterella −0.63 −0.80 +0.22 0.00043 0.01
Oscillospira −2.4 −2.6 +0.097 0.0015 0.023
Turicibacter +0.46 +0.69 −0.34 0.003 0.035

Species level
B.adolescentis −0.23 +0.073 −4.12 0.00013 0.0037
E.dolichum −0.51 −0.31 −0.65 0.0028 0.039
F.prausnitzii −0.97 −0.81 −0.20 0.0042 0.039
A.segnis −0.072 −0.25 +0.71 0.0056 0.04
B.producta −0.75 −0.54 −0.38 0.0064 0.04
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Table S4. Comparison between changes in h and in l for the taxa identified by DAA.

taxon
name

abundance
lCD/lctrl

direct effect
∆h/|hctrl|

q-value, l q-value, h

Order level
Burkholderiales +1.6 +0.29 0.04 0.0029
Turicibacterales +0.45 −0.18 0.00002 0.0036
Pasteurellales +4.2 +0.26 0 0.0052
Campylobacterales +2.1 +0.1 0.000001 0.04
Erysipelotrichales +0.34 −0.083 0 0.044

Family level
Alcaligenaceae +1.7 +0.21 0.03 0.01
Clostridiaceae +0.25 −0.18 0 0.049
Pasteurellaceae +4.2 +0.35 0 0.049

Genus level
Roseburia +0.21 −0.35 0 0.0046
Sutterella +2.0 +0.22 0.004 0.01
Oscillospira +0.84 +0.097 0.33 0.023
Turicibacter +0.50 −0.34 0.0004 0.035

Species level
B.adolescentis +0.43 −4.12 0.00004 0.0037
E.dolichum +0.43 −0.65 0.00004 0.039
F.prausnitzii +0.41 −0.20 0.000003 0.039
A.segnis +2.8 +0.71 0 0.04
B.producta +0.67 −0.38 0.03 0.04
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Table S5. Indirect associations identified by uncorrected abundance analysis across phyloge-
netic levels.

taxon name
abundance,
lCD

abundance,
lctrl

ratio,
lCD/lctrl

p-value q-value

Order level
Erysipelotrichales 0.43 1.3 0.34 0 0
Clostridiales 18.4 31.1 0.59 0 0
Pasteurellales 1.2 0.29 4.2 0 0
Fusobacteriales 0.25 0.08 3.2 0 0
Enterobacteriales 2.8 0.81 3.4 0 0
Campylobacterales 0.017 0.008 2.1 0.000001 0.000004
Neisseriales 0.029 0.013 2.1 0.000002 0.000006
Turicibacterales 0.006 0.013 0.45 0.000008 0.00002
Bifidobacteriales 0.041 0.09 0.47 0.00004 0.0001
Bacteroidales 25.5 38.8 0.66 0.00008 0.00019
Gemellales 0.026 0.015 1.7 0.00023 0.00048
Verrucomicrobiales 0.017 0.036 0.48 0.0016 0.003
Sphingomonadales 0.010 0.007 1.4 0.02 0.04
Burkholderiales 1.3 0.86 1.6 0.02 0.04

Family level
Lachnospiraceae 4.9 11.5 0.42 0 0
Erysipelotrichaceae 0.44 1.3 0.34 0 0
Clostridiaceae 0.11 0.42 0.25 0 0
Pasteurellaceae 1.3 0.3 4.2 0 0
Fusobacteriaceae 0.25 0.08 3.3 0 0
Enterobacteriaceae 2.8 0.84 3.4 0 0.000001
Neisseriaceae 0.029 0.014 2.1 0.000002 0.00001
Ruminococcaceae 5.3 9.9 0.54 0.000002 0.00001
Turicibacteraceae 0.006 0.013 0.44 0.000006 0.00002
Bifidobacteriaceae 0.04 0.09 0.46 0.00003 0.0001
Campylobacteraceae 0.013 0.007 1.7 0.00012 0.0004
Christensenellaceae 0.007 0.01 0.55 0.00015 0.0005
Porphyromonadaceae 0.39 0.81 0.48 0.0002 0.0005
Gemellaceae 0.026 0.016 1.7 0.0003 0.0009
Bacteroidaceae 21.6 32.8 0.66 0.0004 0.001
Veillonellaceae 1.4 0.88 1.5 0.001 0.002
Verrucomicrobiaceae 0.018 0.038 0.47 0.001 0.003
Micrococcaceae 0.014 0.010 1.4 0.009 0.018
Alcaligenaceae 1.0 0.58 1.7 0.02 0.03
Prevotellaceae 0.04 0.07 0.58 0.02 0.04
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taxon name
abundance,
lCD

abundance,
lctrl

ratio,
lCD/lctrl

p-value q-value

Genus level
Roseburia 0.042 0.20 0.21 0 0
Blautia 0.17 0.52 0.33 0 0
Aggregatibacter 0.11 0.022 5.0 0 0
Haemophilus 1.41 0.33 4.3 0 0
Lachnospira 0.022 0.076 0.29 0 0
Actinobacillus 0.025 0.009 2.7 0 0
Fusobacterium 0.36 0.10 3.7 0 0
Coprococcus 0.35 0.87 0.40 0 0
[Eubacterium] 0.048 0.13 0.36 0 0
Veillonella 0.30 0.13 2.2 0.000001 0.000006
Campylobacter 0.018 0.009 1.9 0.000002 0.000009
Eikenella 0.018 0.009 2.1 0.000002 0.000009
Neisseria 0.019 0.010 1.9 0.000002 0.000009
Faecalibacterium 1.92 4.27 0.45 0.000003 0.000009
Erwinia 0.016 0.009 1.9 0.000024 0.000076
Dialister 0.25 0.091 2.7 0.000035 0.0001
Holdemania 0.02 0.036 0.54 0.000039 0.0001
Turicibacter 0.008 0.017 0.5 0.00015 0.0004
[Ruminococcus] 0.57 0.91 0.62 0.00018 0.0004
Ruminococcus 0.57 0.91 0.62 0.00018 0.0004
Parabacteroides 0.44 0.91 0.49 0.0003 0.0008
Bifidobacterium 0.058 0.11 0.53 0.0007 0.001
Rothia 0.016 0.011 1.5 0.0008 0.002
Porphyromonas 0.018 0.010 1.7 0.001 0.002
Sutterella 1.46 0.73 2.0 0.002 0.004
Dorea 0.48 0.73 0.66 0.002 0.004
Bacteroides 1.22 41.9 0.75 0.005 0.01
Akkermansia 0.023 0.044 0.53 0.006 0.01
Anaerostipes 0.012 0.018 0.7 0.01 0.02
Staphylococcus 0.02 0.014 1.4 0.02 0.03
Granulicatella 0.034 0.024 1.4 0.02 0.03
Phascolarctobacterium 0.038 0.061 0.62 0.03 0.04

Species level
H. parainfluenzae 3.42 0.83 4.1 0 0
A. segnis 0.064 0.023 2.8 0 0
F. prausnitzii 5.0 12.3 0.41 0 0.000003
B. adolescentis 0.028 0.066 0.43 0.000005 0.00004
E. dolichum 0.10 0.23 0.44 0.000007 0.00004
V. parvula 0.06 0.033 1.82 0.00002 0.0001
V. dispar 0.51 0.27 1.91 0.0002 0.0008
N. subflava 0.041 0.025 1.62 0.0008 0.0027
Ros. faecis 0.023 0.035 0.65 0.0008 0.0027
P. copri 0.052 0.11 0.46 0.001 0.003
A. muciniphila 0.061 0.13 0.48 0.002 0.006
Bac. uniformis 0.71 1.2 0.58 0.012 0.027
R. mucilaginosa 0.039 0.028 1.39 0.015 0.031
Bl. producta 0.031 0.046 0.67 0.015 0.031
C. catus 0.045 0.067 0.67 0.021 0.039
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Table S6. A summary of interaction strengths and log-abundance correlation coefficients for
the core IBD network shown in Fig. 3 of the main text. Statistical significance was estimated by a
permutation test. Specifically, we independently permuted the abundance of each taxa across samples and
then computed the correlation and interaction matrices on the permuted data to generate the probability
distribution for the null hypothesis of no interaction.

interacting taxa
correlation
strength, Cij

interaction
strength, Jij

q-value,
correlation

q-value,
interaction

A.segnis-B.producta +0.16 +0.14 0.0011 0.0041
A.segnis-Oscillospira −0.16 −0.17 0.0014 0.0011
A.segnis-Roseburia −0.15 −0.19 0.0034 0.0006
A.segnis-Sutterella −0.015 +0.046 0.80 0.41
A.segnis-Turicibacter +0.18 +0.12 0 0.021
B.adolescentis-A.segnis +0.19 +0.19 0 0.0006
B.adolescentis-B.producta +0.26 +0.16 0 0.0019
B.adolescentis-Oscillospira +0.069 −0.067 0.17 0.24
B.adolescentis-Roseburia +0.25 +0.24 0 0
B.adolescentis-Sutterella +0.036 +0.055 0.50 0.34
B.adolescentis-Turicibacter +0.40 +0.46 0 0
B.producta-Oscillospira +0.10 +0.04 0.044 0.47
B.producta-Roseburia +0.100 +0.0063 0.047 0.92
B.producta-Sutterella +0.0012 +0.092 0.98 0.091
B.producta-Turicibacter +0.31 +0.23 0 0
E.dolichum-A.segnis −0.0063 −0.027 0.92 0.66
E.dolichum-B.adolescentis +0.19 +0.051 0.0002 0.35
E.dolichum-B.producta +0.40 +0.46 0 0
E.dolichum-F.prausnitzii +0.075 +0.0087 0.13 0.92
E.dolichum-Oscillospira +0.27 +0.29 0 0
E.dolichum-Roseburia +0.25 +0.21 0 0
E.dolichum-Sutterella −0.080 −0.19 0.11 0
E.dolichum-Turicibacter +0.20 +0.057 0 0.33
F.prausnitzii-A.segnis −0.086 +0.0064 0.086 0.92
F.prausnitzii-B.adolescentis +0.15 +0.20 0.0021 0
F.prausnitzii-B.producta −0.065 −0.15 0.19 0.0032
F.prausnitzii-Oscillospira +0.32 +0.29 0 0
F.prausnitzii-Roseburia +0.35 +0.35 0 0
F.prausnitzii-Sutterella +0.25 +0.204 0 0.0006
F.prausnitzii-Turicibacter −0.095 −0.18 0.053 0.0003
Roseburia-Oscillospira +0.29 +0.16 0 0.0034
Roseburia-Sutterella +0.099 +0.019 0.05 0.76
Roseburia-Turicibacter +0.099 +0.053 0.05 0.34
Sutterella-Oscillospira +0.23 +0.24 0 0
Turicibacter-Oscillospira +0.036 +0.076 0.50 0.18
Turicibacter-Sutterella −0.12 −0.15 0.012 0.0026
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