
 

 1

Gaussian decomposition of high-resolution melt curve derivatives for measuring 1 

genome-editing efficiency 2 

 3 

 4 

Michail Zaboikin1, Carl Freter1 and Narasimhachar Srinivasakumar1* 5 

 6 

1 Division of Hematology-Oncology, Department of Internal Medicine, Saint Louis 7 

University, Saint Louis, Missouri, USA 8 

 9 

 10 

MZ: michail.zaboikin@health.slu.edu 11 

 12 

CF: carl.freter@health.slu.edu 13 

 14 

 15 

 16 

*Corresponding author: NS 17 

102A Doisy Hall 18 

3555 Vista Avenue 19 

Saint Louis, MO 63104 20 

 21 

NS: srinivas.kumar@health.slu.edu 22 

23 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/176719doi: bioRxiv preprint 

https://doi.org/10.1101/176719
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2

Abstract 24 

We describe a method for measuring genome editing efficiency from in silico analysis of 25 

high-resolution melt curve data. The melt curve data derived from amplicons of genome-26 

edited or unmodified target sites were processed to remove the background fluorescent 27 

signal emanating from free fluorophore and then corrected for temperature-dependent 28 

quenching of fluorescence of double-stranded DNA-bound fluorophore. Corrected data 29 

were normalized and numerically differentiated to obtain the first derivatives of the melt 30 

curves. These were then mathematically modeled as a sum or superposition of minimal 31 

number of Gaussian components. Using Gaussian parameters determined by modeling of 32 

melt curve derivatives of unedited samples, we were able to model melt curve derivatives 33 

from genetically altered target sites where the mutant population could be accommodated 34 

using an additional Gaussian component. From this, the proportion contributed by the 35 

mutant component in the target region amplicon could be accurately determined. Mutant 36 

component computations compared well with the mutant frequency determination from 37 

next generation sequencing data. The results were also consistent with our earlier studies 38 

that used difference curve areas from high-resolution melt curves for determining the 39 

efficiency of genome-editing reagents. The advantage of the described method is that it 40 

does not require calibration curves to estimate proportion of mutants in amplicons of 41 

genome-edited target sites. 42 

Introduction 43 

Genome editing at predetermined loci has been greatly facilitated by new technologies 44 

based on RNA-guided endonucleases (RGENs)[1-3] or transcription-activator like effector 45 

nucleases (TALENs) [4-6]. The sequence-directed endonucleases introduce double-46 

stranded breaks (DSBs) at the target site. The DSBs can undergo two major types of DNA 47 

repair. Non homologous end joining (NHEJ) repair results in indels at the cut site. 48 
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Homology-directed repair (HDR) either restores the original in the presence of an 49 

endogenous template (sister chromatid) or inserts an exogenous DNA donor template 50 

when available across the cut site [7-9]. 51 

The ability to generate genome-editing reagents with a desired specificity does not 52 

guarantee efficient target site modification. There is therefore a need for methods that 53 

rapidly assess reagent efficacy. A common approach is to determine efficacy of genome 54 

editing reagents is to transfect human embryonic kidney (HEK293T) cell line with the 55 

reagents. This is followed by amplification of target region by PCR and generation of 56 

heteroduplexes by denaturation and renaturation in the presence of unmodified wild type 57 

or different alleles. Mismatches in these heteroduplexes can be identified by digestion with 58 

single-strand specific endonucleases (such as T7 or Surveyor nuclease) and resolution of 59 

the digestion products in polyacrylamide or agarose gels [10-12]. 60 

A second approach to determine efficacy of genome editing is to use TaqMan assays with 61 

probes designed to bind over the putative target cut site [12,13]. Reduced binding of the 62 

TaqMan probe, due to indel mutations at the target site, with reference to a control 63 

TaqMan probe that binds outside the cut site, can be used to estimate the editing efficacy. 64 

A third method, which is gaining popularity, uses high resolution melting analysis (HRMA) 65 

after real-time PCR with nonspecific double-stranded DNA (dsDNA)-binding dyes such as 66 

Eva Green [12,14-16]. These dyes are more fluorescent when bound to dsDNA. In this 67 

method, after amplifying the target region containing the repaired double-stranded break 68 

site, the dsDNA is gradually warmed until the DNA completely melts. As dsDNA regions 69 

melt into single-stranded regions, dye is expelled, decreasing the fluorescence signal. 70 

Melting characteristics depend on the length of the PCR product, the sequence, and the 71 

GC content. The temperature at which half of the DNA is single-stranded is called the Tm. 72 

The Tm peak can be readily identified by first derivative transformations of melt curve 73 
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data. Target cut sites repaired by NHEJ generally exhibit lower Tms as the amplicons are 74 

usually of smaller size than the wildtype target PCR product. We previously used HRMA to 75 

estimate RGEN editing efficiency [12]. In that study, the region encompassing the target 76 

site was amplified in a real-time PCR buffer and subjected to HRMA. Normalized melt 77 

curves from genome-edited test samples were subtracted from control curves obtained 78 

from unmodified targets to obtain difference curves. The difference curve areas (DCAs) 79 

related directly to the percentage of mutants in the PCR product. We used standard 80 

curves generated with mixes of wild type and mutant PCR products to accurately estimate 81 

the percentage of mutants in different test samples. A major bottleneck to this method was 82 

the requirement for a purely mutant PCR product to generate mixes for calibration curves. 83 

Here we describe an alternative method that does not require standard curves to measure 84 

the proportion of mutant species from high-resolution melt curve data. The high resolution 85 

melt curves were first corrected for temperature dependent quenching of free and ds-DNA 86 

bound fluorophore and then numerically differentiated to obtain first derivative melt curves. 87 

First derivative melt curves from unmodified control target sites were modeled as sum of 88 

two Gaussian components while edited samples were modeled using an additional 89 

Gaussian component for the mutant population discernible in first derivative melt curves. 90 

The weight of the “mutant" Gaussian component was shown to accurately reflect editing 91 

efficiency of sequence-directed endonucleases. 92 

Materials & Methods 93 

Cells 94 

Human embryonic kidney (HEK293T) cells were maintained in Dulbecco's modified 95 

Eagle's medium containing 2 mM L-glutamine, 100 U/ml of penicillin, 100 μg/ml 96 

streptomycin and 10% heat-inactivated fetal bovine serum (FBS) 97 

(Hyclone/ThermoFisherScientific, USA) as described previously [17,18]. 98 
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Plasmids 99 

The plasmid constructs encoding TALENs targeting the c-c motif chemokine receptor 5 100 

(CCR5, GenBank RefSeqGene number NG_012637) intron immediately downstream of 101 

the coding exon have been described [12]. The dimeric guide RNA (dgRNA)-dCas9-FokI 102 

system consists of pSQT1313 and pSQT1601 plasmids. pSQT1313 is used for expression 103 

of dual guide RNAs (gRNAs) that target genomic DNA sequences on opposite strands and 104 

spaced approximately 16 bases apart. pSQT1601 encodes dCas9-FokI fusion protein to 105 

effect DSBs and Csy4 RNase to process the dgRNA expressed by pSQT1313. The 106 

dgRNA-dCas9-FokI system was a gift from Keith Joung via Addgene.org. pSQT1313-107 

F8S2, targets the human coagulation factor VIII (F8) intron site 2 (F8-S2) and has been 108 

previously described. The targeting/donor plasmid (pDonor-F8) or its backbone construct 109 

(pBackbone) have also been described previously and encode a drug-resistance marker 110 

that allows selecting transfected cells using puromycin. 111 

CaPO4-mediated transfection 112 

Plasmids were introduced into sub confluent cultures of HEK293T cells in 6-well plates by 113 

CaPO4 -mediated transient transfection protocol as described previously [18]. Following 114 

transfection, genomic DNA (gDNA) was isolated from unselected or puromycin-selected 115 

populations using Qiagen DNeasy Blood and Tissue kit (Qiagen, Maryland, USA) as per 116 

the recommended protocol. 117 

Amplification of target loci for obtaining high-resolution melt curves. 118 

This has been detailed in our earlier study [12]. Briefly, gDNA from genome-edited 119 

samples was amplified using primer pairs SK144 and SK145 for the CCR5 locus, and 120 

SK228 and SK229 for the F8-S2 locus, in Precision Melt buffer (Bio-Rad, USA). SK144 121 

and SK145 generate a PCR product of size 107 bp. For some experiments we used a 122 
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different forward primer, SK214, that was located further upstream and produced a PCR 123 

product of size 140 bp with reverse primer SK145. The sequences and genome locations 124 

of these primers have been described earlier [12]. The gDNA from unmodified or mock-125 

transfected cells were also amplified in parallel using the same primer pairs. Post-126 

amplification melting of the PCR product was done between 65°C to 95°C in 0.2°C 127 

increments. 128 

Processing melt curve data 129 

Relative fluorescence units (RFUs) of melt curve data were processed to correct for 130 

background fluorescence of “unbound” fluorophore and for the temperature-dependent 131 

quenching of dsDNA-bound fluorophore as described below. 132 

For background fluorescence correction of unprocessed RFU, we used the post-melt 133 

region of individual melt curves identified from plots of the raw RFU vs. temperature. We 134 

plotted this region separately to obtain the parameters of a linear least squares fitting. 135 

From this equation, we were able to extrapolate the background RFU at each of the 136 

measured temperature points (Equation 1). Subtracting this value from the raw RFU gave 137 

us the background subtracted RFU (BcRFU) (Equation 2). 138 

The equations for background fluorescence correction of raw RFU: 139 
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Extrapolation of post-melt region using a first-order polynomial, 

 �������� � � � �� � 	      (1) 140 

where, � � temperature (°C) and 
��� � �� � 
���� 

� � 1,2,3, … �
���� � 
����0.2 ;  ��	
 � �� � 0.2 (temperature increment unit) 


��� and 
���� refer to the lower (e.g., 71°C) and higher (e.g., 95°C) limits 

of the temperature range selected for melt curve analysis 

The slope "�" , and the y-intercept "	" parameters are obtained  

from first-order polynomial least-squares fitting of the post-melt region of the melt curve. 
Background subtracted RFU, ��������� � ������� � ��������     (2) 141 

The pre-melt region of a melting curve identified from plots of melt curves of unmodified or 142 

mock-transfected cells was used to determine the efficiency of detecting dsDNA-bound 143 

fluorophore at different temperatures. This region of BcRFU(x) of mock-transfected cells 144 

was plotted separately and subjected to least squares curve fitting (Equation 3). The 145 

curve-fitting equation was then used to extrapolate the values across the entire range of 146 

temperatures encompassing the melting curve. The resulting values, representing 147 

predicted RFU of unmelted DNA at the different temperatures, were then normalized to the 148 

starting temperature (Tlow or 71°C) to obtain the efficiency of detection of dsDNA-bound 149 

fluorophore at each measured temperature point (Equation 4). The detection efficiency of 150 

dsDNA-bound fluorophore derived from multiple mocks were averaged. The BcRFU(x) of 151 

mock or test samples were then divided by the average efficiency to obtain unquenched or 152 

fluorescence-corrected RFU (FcRFU(x)) at each temperature point (Equation 5). The 153 

FcRFU(x) at Tlow (71°C) was then used to normalize the melt curve to yield normalized 154 

FcRFU(x) or nFcRFU(x) (Equation 6). First derivatives of nFcRFU, obtained by numerical 155 

differentiation (Equation 7), were used for subsequent curve fitting analysis. 156 
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The mathematical formulations for correction of BcRFU(x) for temperature-dependent 157 

quenching of fluorescence of dsDNA-bound fluorophore are shown below. 158 

Extrapolation of pre-melt region, ��������� � �� � �� � ��  or �� � �� � � � �� � !�  (3) 159 

where, the parameters �, �, ! were obtained from 1��-  
or 2��-order polynomial least squares fitting  

of pre-melt region of �������� 

Efficiency of dsDNA detection at temperature ��, "���� � ���������
����������
°��    (4) 160 

Fluorescence corrected-RFU, ��������� � ���������
�����      (5) 161 

Normalized FcRFU, #��������� � ���������
����������
°��       (6) 162 

(where #��������� represents dsDNA content ranging from 1 in the pre-melt region 

to 0 in post-melt region) 

The numerical differentiation of nFcRFU(x) was carried out as follows: 163 

� �
� �#������ $ � �

�� ��#���������� � !"������������!����������#
����!�� � !"������������!����������#

$.   164 

 (7) 165 

Gaussian decomposition of first derivatives melt curves of unedited 166 

control samples 167 

Gaussian decomposition (GD) of first derivatives of nFcRFU(x) was done using a 168 

commercial software, CurveExpert Professional (V. 2.6, created by Daniel Hyams, 169 

Madison, AL, USA). The normalized melt curve spans between zero and one and 170 

resembles a cumulative probability distribution function. The first derivative of the 171 

normalized melt curve resembles the density of probability distribution.  A normal density 172 

distribution is mathematically represented as: 173 
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√'�( e!	
������         (8) 174 

where, µ is the center of the peak, σ is the standard deviation or SD (width at half-maximal 175 

height of peak) and x is the temperature variable. For simplicity, we refer to this function 176 

hereafter as Gaussian function or Gaussian in place of the more cumbersome "probability 177 

density of normal distribution". 178 

Since, the actual Gaussian function is of the form �!!	
������ , a corresponds to 



√'�( in 179 

Equation 8 where the probability density distribution has been integrated and normalized 180 

to one (the area under the curve). 181 

For Gaussian modeling of derivative melt curves from unmodified control samples, the first 182 

derivate of nFcRFU from mock-transfected (unmodified loci) samples were modeled as 183 

either a single Gaussian function, g2(x): 184 

&2��� � '



)'��(
e!	
�������

�         (9) 185 

where, the free parameter ' represents the area under the curve or weight.  
or as the sum of two Gaussian components, g2(x) and g3(x): 186 

&2��� � &3��� � ('



)'��(
e!	
�������

� ) � ('*



)'��(
e!	
�������

� )     (10) 187 

where, the Gaussian weights, ' � '* � 1 or '* � 1 � '. 
The parameters µ2, and µ3, refer to the peak center or mean, and σ2 and σ3 refer to the 188 

corresponding standard deviations (SDs) of Gaussian functions g2(x) and g3(x), 189 

respectively. From curve fitting using the sum of two Gaussian functions (g2(x) and g3(x)), 190 

we were able to determine and ‘fix’ the parameters w2, w3, µ2, and µ3 for subsequent 191 

determination of percentage of mutants in genome-edited test samples (see below). 192 
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GD of genome-edited samples 193 

For GD of derivative melt curves from genome-edited samples, the first derivative of 194 

nFcRFU(x) from test samples with genome-edited target loci were curve fitted as a sum of 195 

either two Gaussian functions, g1(x) and g2(x) or as the sum of three Gaussian functions, 196 

g1(x), g2(x) and g3(x), where g1(x) represents the contribution of the mutant population, 197 

and g2(x) and g3(x) representing the contribution of the wildtype population in the PCR 198 

amplicon of a given target site. 199 

&1��� � &2��� � ('




)'��(
e!	
�������

� ) � *�1 � '
� 

)'��(

e!	
�����
������
� +    (11) 200 

where, w1 + w2 = 1; the ‘fixed’ parameter µ2fixed was determined from curve fitting of mock 201 

samples using the single-Gaussian function, g2(x), the other parameters were set free. 202 

&1��� � &2��� � &3��� � ,'

1-2.
/ e!��!+���'�� 0 � ,',�����1 � '
� 1-2./ e!��!+���
����'�� 0 

� ('*,�����1 � '
� 

)'��(

e!	
�����
������
� )        (12) 203 

where, w1 + w2fixed(1-w1) + w3fixed(1-w1) = 1, and w2fixed, w3fixed, 1,����, and 1*,���� were 204 

determined from curve fitting of mock samples as the sum of two Gaussian functions, 205 

g2(x) and g3(x), the other parameters were set free. The w1 parameter determined from 206 

curve fitting using either g1(x) + g2(x) or g1(x) + g2(x) + g3(x) functions represents the 207 

mutant frequency in the amplicon. 208 

Curve fitting model comparison 209 

CurveExpert Professional outputs the corrected Akaike Information Criteria (AICc) values 210 

for comparing curve fitting models - the model with the lower AICc value is deemed to 211 
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have the better fit. The relative likelihood was calculated using !!$.-.�/0�����!/0���� where 212 

AICcmin is the model with the lower of the two values and AICci is the value of the alternate 213 

model. CurveExpert Professional also provides fitting "scores" for models, ranging from 214 

zero to 1,000 with a higher score indicating a better fit. The score is in part based on 215 

Akaike information criteria (AICc). The CurveExpert Professional scores were compared 216 

using Student’s t-test (paired, two-tailed). 217 

Results 218 

High-resolution melt curve analysis 219 

The high-resolution melt curve data used here were generated in an earlier study [12]. 220 

Briefly, HEK293T were transfected with genome-editing reagents using a CaPO4 method. 221 

Two target regions were edited: F8 intron 1, and the CCR5 intron immediately downstream 222 

of the coding exon. Although we targeted three distinct sites within the F8 intron in the 223 

earlier study (referred to as sites F8-S1, -S2 or -S3), here we use data from genome-224 

edited F8-S2 only. We used TALENs for editing the CCR5 locus and dgRNA/dCas9-FokI 225 

based RGEN system for editing the F8-S2 site. The gDNA, isolated from unselected or 226 

selected populations of transfected cells, were amplified and high-resolution melt curve 227 

data were obtained as described in Materials and Methods. 228 

A high-resolution dsDNA melting curve consists of three regions: An initial pre-melt region 229 

where the DNA is double-stranded, followed by a transition to more rapid decrease in 230 

fluorescence attributable to DNA melting (melt region), and a second transition to a post-231 

melt region where the DNA strands are fully separated. The pre-melt region exhibits a 232 

downward or negative slope with an increase of temperature prior to the transition to 233 

melting. This decrease in fluorescence of dsDNA-bound fluorophore prior to the beginning 234 

of separation of DNA strands can be attributed to temperature-dependent quenching of 235 
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fluorescence of dsDNA-bound fluorophore. The post-melt region also exhibits a downward 236 

slope, albeit much shallower than the pre-melt slope. Since the post-melt region should 237 

contain only unbound or free fluorophore, the decrease seen in this region can be 238 

attributed to quenching effect of temperature on free or unbound fluorophore. Even after 239 

correcting melt curve data for these two quenching phenomena, the resultant melting 240 

curves of different samples frequently exhibit different pre-melt (starting) RFUs 241 

necessitating a normalization step. The raw fluorescence, reported as relative 242 

fluorescence units or RFU, therefore require processing and normalizing to enable 243 

comparison of different melting curves and for decomposition into their Gaussian 244 

components. 245 

Correction of RFU for temperature-dependent quenching of free 246 

fluorophore 247 

To mathematically approximate free fluorophore behavior in the post-melt region, and to 248 

determine the effect of temperature on fluorescence of free fluorophore over the entire 249 

temperature range of melting, we first plotted the RFU vs. temperature in no template 250 

controls (NTCs) used in the real-time PCR reactions (Fig. 1A). The NTC samples contain 251 

all reactants except for the template gDNA. The RFU of free fluorophore in these reactions 252 

exhibited a temperature-dependent linear decay in fluorescence across the entire 253 

temperature range tested (Fig. 1A).  These results validate extrapolating the post-melt 254 

region to estimate background fluorescence from the unbound fluorophore to the earlier 255 

temperature points (see below). 256 

 257 

Fig. 1 Temperature-dependent quenching of fluorescence of free and dsDNA-bound 258 

fluorophore and its correction. (A) Plot of first-order polynomial curve fit of raw RFU vs. 259 

temperature in no template controls (NTC). The equation shown in the plot is the mean ± 260 
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SD of six different sample slopes and constants. (B) The unprocessed high-resolution 261 

melting profile (blue trace) and the extrapolation from first-order polynomial curve fitting of 262 

the post-melt curve region (red dashed line) from an amplicon of an unedited target site. 263 

(C) High-resolution melting profile of background subtracted RFU (BcRFU, blue trace) and 264 

that of ‘unquenched’ or fluorescence-compensated BcRFU (FcRFU, green trace) from an 265 

unedited target site. The red dashed line shows extrapolation of pre-melt region from first-266 

order polynomial curve fitting of BcRFU and depicts the predicted BcRFU in the absence 267 

of DNA melting. D) Comparison of first-order polynomial curve fitting of post-melt and pre-268 

melt portions of melting curves. Normalized data were used to enable plotting of the two 269 

sets of data. 270 

 271 

For correction of background fluorescence for each melt curve, we carried out first-order 272 

polynomial curve fitting of the post-melt region of each melt curve data and then 273 

extrapolated the background RFU values for earlier temperature data points (red dashed 274 

line in Fig. 1B). We then subtracted the background RFUs corresponding to each 275 

temperature point to obtain the background subtracted RFU or BcRFU as described in 276 

Materials and Methods (Equation 2). The BcRFU(x) melt curve is shown in Fig. 1C (blue 277 

trace). The post-melt region of background subtracted-curve was nearly horizontal with an 278 

RFU close to zero indicating that the background fluorescence from free or unbound 279 

fluorophore was correctly computed and removed by this method. 280 

Correction of RFU for temperature-dependent quenching of dsDNA-281 

bound fluorophore 282 

To correct for quenching of fluorescence of dsDNA-bound fluorophore of background 283 

subtracted melt curve data (BcRFU(x)), we carried out a regression analysis of the pre-284 

melt region of mock-transfected samples and extrapolated the RFUs across the range of 285 
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temperatures (red dashed line in Fig. 1C) (Equation 3). We obtained the efficiency of 286 

detection of dsDNA-bound fluorophore by normalizing Fprem(x) to the estimated RFU at the 287 

starting temperature (Tlow or 71°C) (Equation 4). The efficiency at each measured 288 

temperature was then determined for multiple mock samples  (Fig. 1D). Measured 289 

efficiencies were nearly identical, diverging slightly at the higher temperatures, despite 290 

determination across experiments conducted on different days, and with different samples. 291 

The BcRFU of mock and test samples were divided by the average fluorescence efficiency 292 

at each measured temperature to obtain fluorescence corrected BcRFU(x) or FcRFU(x) ( 293 

Fig. 1C, green tracing) (Equation 5). The pre-melt region was now rendered horizontal and 294 

did not exhibit the temperature-dependent quenching profile of uncorrected melting 295 

curves. For the F8-S2 target amplicon melt curve fitting with a first order polynomial 296 

proved sufficient; for the CCR5 target amplicon melt curve, a second-order polynomial was 297 

required (see below). 298 

We next wished to directly compare the temperature-dependent quenching effect on 299 

bound fluorophore vs. free fluorophore. To enable this comparison, we normalized the 300 

extrapolated background RFUs (determined from individual post-melt curve data of 301 

mocks) and plotted these along with the normalized bound-fluorophore efficiency (Fig. 302 

1D). As anticipated from the NTC data shown in Fig. 1A, the slope of the free fluorophore 303 

(-0.002) was much more shallow than that of the bound fluorophore (-0.04). Thus, 304 

temperature-dependent fluorescence quenching of dsDNA-bound fluorophore is more 305 

pronounced and significant than that of the unbound or free fluorophore. 306 

Rationale for Gaussian modeling of first derivate melt curves 307 

After high-resolution melt curve data were corrected for temperature-dependent quenching 308 

of unbound and dsDNA-bound fluorophore, curves were normalized and then numerically 309 

differentiated (Materials and Methods, Equations 6 and 7, respectively). When plotted, the 310 
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processed data showed that both the pre-melt and post-melt regions were squarely placed 311 

on the zero baseline as expected (Fig. 2). The resulting peak of the first-derivate melt 312 

curve data resembled a “bell" curve. Bell-shaped density distribution curves can result 313 

from Cauchy-Lorentz, Student’s-t, Logistic or Gaussian distributions [19]. The Cauchy-314 

Lorentz density distribution has longer tails, while the Student’s-t and Logistic density 315 

distributions exhibit heavier tails (kurtosis). The Gaussian distribution therefore seemed 316 

more suitable for empirical modeling of first-derivative melt curves. A preliminary curve 317 

fitting analysis using the Cauchy-Lorentz distribution function showed lower fit scores than 318 

the Gaussian distribution function. 319 

 320 

Fig. 2 GD of first derivative of high-resolution melt curves of amplicons from gDNA of 321 

unmodified target sites. gDNA from mock-transfected HEK293T cells (Mocks) were PCR 322 

amplified using primer pairs targeting F8-S2 or CCR5 loci to obtain high resolution melt 323 

curve data as described in Materials and Methods. The normalized and fluorescence 324 

corrected melt curve data (nFcRFU) from F8-S2 (A and C) and CCR5 (B and D) target 325 

sites were numerically differentiated as described in Materials and Methods (Equation 7). 326 

1-GD (A and B) and 2-GD curve fitting of derivative melt curves were done using 327 

CurveExpert Professional using Equation 9 and Equation 10, respectively. The first 328 

derivative (y-axis: -d(nFcRFU)/dT) was plotted against temperature (x-axis) and is shown 329 

as blue dots. The 1-GD curve fit to the first derivative data is shown as a red trace in A and 330 

B. The individual Gaussians of 2-GD curve fit are shown as brown (g3(x)) or green dashed 331 

lines and their sum (g2(x) + g3(x)) is depicted as a solid red line in C and D. Table E 332 

shows the Gaussian parameters determined from 1-GD curve fitting of A and B, while 333 

Table F shows the parameters identified by 2-GD curve fitting of C and D using the 334 

CurveExpert Professional software. 335 
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Two-Gaussian decomposition is superior to one-Gaussian modeling of 336 

derivative melt curves of unmodified target sites 337 

We first determined the parameters of the Gaussian components of first derivatives of 338 

nFcRFU(x) of unmodified or control samples (mocks) by curve fitting using the commercial 339 

software CurveExpert Professional(Materials and Methods). Gaussian curve fitting 340 

requires the user to input initial guesses for three of the parameters of a Gaussian 341 

function: curve weight (w), curve center (µ), and width at half-maximal height (σ) or 342 

standard deviation (SD). After multiple converging iterations using systematic changes to 343 

the parameters of the model, the software finds parameters with the fitting accuracy 344 

required or the maximum number of iterations is reached. The curve fitting output consists 345 

of the curve-fitted weight (‘w’ or area under the curve), curve center (µ) and the SD (σ). 346 

The better the curve fit, the closer the weight or area under the curve approaches 1 for 347 

derivatives of normalized melt curves. 348 

We wished to use the simplest possible mathematical model for measuring the proportion 349 

of mutant population in the amplicon of the target region. This would consist of one 350 

Gaussian component for describing first derivative of nFcRFU of unmodified mocks and 351 

another Gaussian for the mutant population. The first derivative melting curves (-352 

d(nFcRFU(x))/dx) from unmodified F8-S2 and CCR5 loci (Fig. 2A and 2B) were curve fitted 353 

using a single-Gaussian function, g2(x) (Materials and Methods, Equation 9). We refer to 354 

this as single-Gaussian decomposition (1-GD). Modeling the first derivative of the F8-S2 355 

target site showed the area under the curve had a weight (w2) of 0.9537 ± 0.0021. The 356 

deviation of the fitted curve from the actual melt curve was clearly visible over the pre-melt 357 

to melt transition region where the Tm of the amplicons with deletion mutations is situated 358 

(Fig. 2A). 1-GD curve fitting for the CCR5 target was similar to that of F8-S2 target but with 359 

only a slight divergence from the actual derivative melt curve (Fig. 2B). Consistent with this 360 
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the area under the curve was 1.003 ± 0.0039 (from four independent replicates). As in the 361 

case of the F8-S2 target site, we saw a small divergence in the early melting region Fig. 362 

2B (g2(x) vs. -d(nFcRFU)/dT). 363 

Since the mutant molecules contribute to the melt profile in the early melt region, it was 364 

necessary to ensure a more accurate curve fitting over this region than provided by a 365 

single Gaussian component. To this end, we tested modeling of derivative melt curves of 366 

unmodified controls as a sum of two Gaussian functions, g2(x) + g3(x), (Materials and 367 

Methods, Equation 10). As for the 1-GD curve fitting, we provided initial best guesses for 368 

the five parameters (three for first Gaussian component and two for the second Gaussian 369 

component). For the g3(x) Gaussian we suggested initial guesses for the mean (µ3) over 370 

the pre-melt/melt transition region. We stipulated that the sum of weights for w2 and w3 371 

should equal one and set free w2 (and thereby, w3= 1-w2). The results of this curve fitting 372 

experiment are shown in Fig. 2C and 2D for the F8 and CCR5 loci, respectively. Unlike 1-373 

GD curve fitting, the sum of two Gaussian curve fitting (Fig. 2, g2(x) + g3(x) indicated by a 374 

red trace vs. -d(nFcRFU)/dT  indicated by blue dots) recreated the derivative melt curve 375 

nearly perfectly. When we compared CurveExpert Professional scores (see Materials and 376 

Methods, Comparing two curve fitting models), the two-Gaussian decomposition (2-GD) 377 

model outscored the 1-GD model for both F8 and CCR5 mock samples (Table 1). This 378 

difference, although slight, was statistically significant (paired Student’s-t test, p = 0.0000). 379 

The AICc values were lower for the 2-GD model indicating that it had a better fit. The 380 

relative likelihood calculations from the AICc values of both 1- and 2-GD models, also 381 

showed that 2-GD model was better (Table 1). 382 

 383 
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Table 1 2-GD model shows better fit than 1-GD for derivative melt curve data of mocks 384 

Targeting 

Plasmid 
Selection Sample 

1-GD 

score 
2-GD score 1-GD AICc 2-GD AICc ∆AICc 

Relative 

likelihood 

pBackbone No F8-S2 Mock 1 981 995 -625 -785 160 0.0000 

pBackbone No F8-S2 Mock 2 982 995 -629 -795 166 0.0000 

pDonor No F8-S2 Mock1 980 995 -620 -786 166 0.0000 

pDonor No F8-S2 Mock 2 980 996 -618 -812 194 0.0000 

pBackbone Yes F8-S2 Mock 1 978 996 -615 -813 198 0.0000 

pBackbone Yes F8-S2 Mock 2 979 996 -618 -803 185 0.0000 

pDonor Yes F8-S2 Mock 1 981 995 -629 -791 161 0.0000 

pDonor Yes F8-S2 Mock 2 981 996 -625 -806 181 0.0000 

None No CCR5 Mock 1 984 997 -732 -979 247 0.0000 

None No CCR5 Mock 2 985 998 -748 -969 221 0.0000 

None No CCR5 Mock 3 984 998 -729 -1057 328 0.0000 
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None No CCR5 Mock 4 983 997 -721 -990 268 0.0000 

  385 
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First-derivative melt curves from unmodified F8-S2 and CCR5 target sites provided distinct 386 

Gaussian parameters from curve fitting as expected from their differing amplicon sizes, 387 

sequences and differing Tms. Thus, they exhibited distinct centers or means for both 1-GD 388 

(µ2 of 79.19 ± 0.002 vs. 82.753 ± 0.087) (Table E in Fig. 2) and 2-GD fitting (µ2 of 79.31 ± 389 

0.017 vs. 82.898 ± 0.088 and µ3 of 78.642 ± 0.013 vs. 82.265 ± 0.069 for F8-S2 and 390 

CCR5, respectively) (Table F in Fig. 2). Likewise, they showed distinct differences in the 391 

contribution of weights: w2 of 0.954 ± 0.002 vs. 1.003 ± 0.004 in 1-GD fitting; and w2 of 392 

0.647 ± 0.006 vs. 0.587 ± 0.009 for F8-S2 and CCR5, respectively in 2-GD fitting. These 393 

results highlight the requirement for determining Gaussian parameter values for each 394 

target site from amplicons obtained from corresponding control or unmodified samples. 395 

Estimating percentage of mutants by GD of derivative melt curves from 396 

genome-edited samples 397 

Comparing derivative melt curves of unmodified and genome-edited samples shows a 398 

distinct mutant molecules' peak with a lower melting temperature (Fig. 2 vs. Fig. 3). We 399 

hypothesized that upon decomposition of the melting profile into its Gaussian components, 400 

the area under the mutant peak would correspond to the proportion of mutant molecules in 401 

the PCR product. The Gaussian function representing the mutant population was 402 

designated g1(x) in Equations 11 and 12 (Materials and Methods). 403 

 404 

Fig. 3 3-GD of first derivative of high-resolution melt curves for estimation of mutant 405 

percentage in genome-edited samples. gDNA was isolated from HEK293T cells 406 

transfected with F8-S2 targeting RGENs or CCR5 targeting TALENs and PCR amplified 407 

using corresponding primer pairs to obtain high resolution melt curve data (Materials and 408 

Methods). 3-GD curve fitting was done on first derivative melt curves using CurveExpert 409 

Professional and Equation 12 as described in Materials and Methods. The individual 410 
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Gaussians-g1(x) (purple dashed line), g2(x) (brown dashed line) and g3(x) (green dashed 411 

line) and their sum- g1(x)+ g2(x) + g3(x) (red solid line) were overlaid over the first 412 

derivative melt curve (blue dots). GD of F8-S2 is shown in A and of CCR5 in B. Table C 413 

shows the parameters (weights, centers and SDs) of 3-GD. The parameters that were 414 

fixed from GD of mocks and those that were set free during 3-GD of edited samples are 415 

shown in the Comments column. The g1 weight (w1) represents the mutation frequencies 416 

in the amplicons of genome-edited F8-S2 and CCR5 target sites, respectively. 417 

 418 

Since the better curve fitting of unmodified controls was obtained by using sum of two 419 

Gaussian functions, we modeled derivative melt curves of test samples as a sum of three 420 

Gaussian functions, g1(x) + g2(x) + g3(x) (Materials and Methods, Equation 12). The 421 

parameters obtained from 2-GD of derivative melt curves of unmodified controls from F8-422 

S2 and CCR5 (means and weights) were then used to decompose corresponding test or 423 

genome-edited samples. The different Gaussian components, g1(x), g2(x) and g3(x), and 424 

their sum g1(x)+ g2(x) + g3(x) are shown in Fig. 3. The predicted curve of the sum of the 425 

three Gaussians  was a near-perfect fit to the original derivative melt curve from test 426 

samples (Fig. 3, g1(x) + g2(x) + g3(x), indicated by a red tracing vs. -d(nFcRFU)/dT (Fig. 427 

3, blue dots). The area under the g1 curve, w1, of three-Gaussian decomposition (3-GD) 428 

was deemed to represent the mutant population. The percentage of mutant population 429 

estimated in amplicons of genome-edited F8-S2 and CCR5 target sites by 3-GD, shown in 430 

Table C in Fig. 3, was 18.6 ± 3.2% vs. 23.2 ±  8.7%, respectively. These results 431 

demonstrate that first derivative melt curves from genetically altered sites can be modeled 432 

successfully as a sum of three Gaussian functions. 433 

Since the 1-GD of unedited samples was below the data points in the pre-melt to melt 434 

transition region (Fig. 2), we hypothesized that 2-GD of genome-edited samples would 435 
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over estimate the mutant frequency. The results of these comparisons are shown in Fig. 4. 436 

2-GD modeling estimated significantly higher mutant frequency than 3-GD modeling of 437 

edited samples (Fig. 4A and 4B) as predicted. 438 

 439 

Fig. 4 Comparison of mutant percentage estimation by 2- and 3-GD. First derivatives of 440 

high-resolution melt curves from genome-edited samples were curve fitted using 2- or 3-441 

GD models as described in Materials and Methods (Equation 11 and Equation 12, 442 

respectively). The mutant percentages estimated from curve fitting are shown along the y-443 

axis for F8-S2 (A) and CCR5 (B). Two molecular clones (10 and 11) of dgRNAs targeting 444 

F8-S2 site and two pairs of TALENs (L1R1 and L2R2) targeting CCR5 site were tested. 445 

The mutant percentages were compared using Student’s t-test (two-tailed). The p-values 446 

of the pair-wise comparisons of 2-GD and 3-GD are shown above the bars. 447 

 448 

Better curve fitting of 3-GD over 2-GD modeling was also revealed by the CurveExpert 449 

Professional scores (Table 2). These differences were statistically significant (paired 450 

Student's t-test, p = 0.00001). The AICc values were lower, indicating a better fit, for the 3-451 

GD model. Relative likelihood determinations from AICc values also revealed that the 3-452 

GD model was better. These results demonstrated that the 3-GD modeling was the 453 

appropriate choice for GD of first derivative melt curves of amplicons of genome-edited 454 

target sites. 455 

 456 
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Table 2 3-GD model achieves better fit than 2-GD for derivative melt curve data of genome-edited samples 457 

F8-S2 site CCR5 site 

 2-GD 

Score 

3-GD 

Score 

2-GD 

AICc 

 3-GD 

AICc 
∆AICC 

Relative 

likelihood  

 2-GD 

Score 

3-GD 

Score 

2-GD 

AICc 

3-GD 

AICc 
∆AICc 

Relative 

likelihood  

979 992 -780 -911 131 0.0000 990 997 -837 -988 151 0.0000 

990 996 -879 -1005 126 0.0000 985 995 -776 -907 130 0.0000 

992 996 -923 -1008 85 0.0000 978 993 -733 -870 137 0.0000 

983 994 -797 -949 153 0.0000 968 990 -690 -830 140 0.0000 

990 995 -871 -978 108 0.0000 978 993 -728 -871 143 0.0000 

992 996 -888 -1000 112 0.0000 973 992 -704 -857 154 0.0000 

991 996 -869 -980 111 0.0000 972 992 -703 -851 148 0.0000 

ND ND     ND ND 968 991 -681 -834 152 0.0000 

 458 
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Comparison of GD method to prior approaches for measuring efficiency 460 

of genome editing 461 

We next carried out 3-GD of high resolution melt curves of samples previously 462 

characterized by NGS and by an alternative approach to measure mutant population 463 

based on difference curve areas (DCAs) of normalized high-resolution melt curve profiles. 464 

These samples exhibited a wide range of mutant percentages that were influenced by 465 

puromycin drug selection and the use a donor template containing plasmid (pDonor-F8) or 466 

its corresponding control plasmid (pBackbone) [12]. There were four categories of 467 

samples: (1) pBackbone/Unselected, (2) pDonor/Unselected, (3) pBackbone/Selected, 468 

and (4) pDonor/Selected. These four categories showed progressively increasing 469 

percentages of mutations in the earlier study [12]. Two different clones of RGENs targeting 470 

the F8-S2 site, clone 10 and clone 11, were tested. Clone 10 had previously exhibited 471 

higher efficiencies than clone 11. 472 

Results of curve fitting of derivative melt curves of mocks using 2-GD and of genome-473 

edited samples by 3-GD are shown for all the replicate samples in Fig. 5A. In all instances, 474 

GD was able to accurate model the derivative melt curves including the mutant molecules’ 475 

peak. The area under this peak ,w1, is shown as percentage within the plots. RGEN F8-S2 476 

clone 10 edited samples showed higher percentages of mutants than clone 11. Drug-477 

selected samples exhibited higher mutant frequencies than corresponding unselected 478 

samples and samples that received pDonor-F8 template (to effect homologous 479 

recombination) exhibited higher mutant frequencies than corresponding samples that 480 

received the control pBackbone plasmid.   481 

 482 

Fig. 5 Mutant frequency determination by 3-GD and comparison to difference curve areas 483 

(DCAs) and next generation sequencing (NGS) data. HEK293T cells were transfected with 484 
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F8-S2 targeting dgDNA clone 10 (F8-S2 Cl.10) or clone 11 (F8-S2 Cl.11) together with a 485 

dCas9-FokI construct. The cells were also cotransfected with either pBackbone or pDonor-486 

F8 targeting plasmids (Materials and Methods). Following transfection, gDNAs were 487 

isolated from unselected cells or cells selected with puromycin and used for amplification 488 

by PCR using appropriate primer pairs targeting F8-S2 loci to obtain high-resolution melt 489 

curve data. (A) Mutant percentage estimations by 3-GD for the four different categories of 490 

samples from unedited and edited F8-S2 site are identified on the left. The derivative melt 491 

curves are shown as blue dots and the fitted curves from GD as red traces. Four PCR 492 

replicates were analyzed for each clone with one exception (F8-S2 clone 10, 493 

pBackbone/Unselected) for which only three replicates were tested. The mutant frequency 494 

(percentage) estimated from the area of the mutant peak (w1 parameter from g1(x)), of 3-495 

GD) for each replicate is shown within the plot. (B-D) The average mutant frequency 496 

determined by GD for the different categories in A were compared to mutant frequencies 497 

determined by difference curve areas (DCA) (C) and to mutant frequency determination 498 

from next generation sequencing (NGS). NGS was only done on unselected samples. (E) 499 

Mutant frequency estimation from GD of high resolution melt curve data from gDNA of 500 

HEK293T cells transfected with TALENs (two independent pairs of molecular clones 501 

L1R1, L2R2) targeting CCR5 locus. CCR5 edited samples were also analyzed by NGS. 502 

Error bar = 1 SD. 503 

 504 

Direct comparison of the results with mutant frequency determination using DCA  is shown 505 

in Fig. 5B-C. Consistent with our previous observations, the percentage of mutants 506 

estimated by both methods were within 3% of each other for both selected and unselected 507 

samples (pBackbone or pDonor). There were two exceptions where the differences were 508 

4.6% and 11.3%, respectively, with GD providing lower estimates. Possible explanations 509 

for this discrepancy are provided in Discussion. The NGS of unselected samples treated 510 
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with pBackbone showed a similar trend as the above two methods (Fig. 5D) with clone 10 511 

again showing higher efficiency of target site modification than clone 11. NGS generally 512 

provided higher estimations of mutant frequencies than GD or DCA methods due to the 513 

inclusion of insertion mutations in the calculations.  514 

We used GD to also estimate the proportion of mutants in amplicons of samples edited at 515 

the CCR5 locus. Here too, the results of GD and NGS showed similar trends (Fig. 5D). 516 

These results in toto demonstrate that curve fitting of first derivative of high-resolution melt 517 

curves is comparable to other methods used previously for estimating the proportion of 518 

mutants in amplicons of genome-edited target sites. The results also indicate that one 519 

could estimate mutant frequency percentages by GD for target sites for which there is no 520 

ready availability of a 100% mutant population to generate calibration curves for the DCA 521 

method (in this case genome-edited CCR5 target site). 522 

The size of the PCR product does not affect estimation of percentage of 523 

mutants by GD from the same target locus despite exhibiting distinct 524 

Gaussian parameters. 525 

We next wished to test if the size of the amplicon affected the estimation of percentage of 526 

mutants. To this end, we amplified unmodified or genome-edited CCR5 target sites using 527 

two sets of primers. The same antisense primer (SK145) was used for both PCR 528 

amplifications but one of the sense primers (SK214) was situated further upstream of 529 

primer SK144 so that the resulting amplicon sizes were 140 and 107 bp, respectively. GD 530 

of high-resolution melt curves of both sizes of amplicons was done as above. Results are 531 

shown in Fig. 6. The larger amplicon exhibited higher means (µ1, µ2 and µ3) for the three 532 

Gaussian functions than the smaller one, as expected, and also showed distinguishable 533 

SDs (Table 3). The percentages of mutants estimated from the larger or smaller PCR 534 

product sizes determined by GD were 29.8 ± 1.1 % vs. 28.9 ± 8.6 %, respectively. The 535 
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values were not statistically significant (Student’s t-test, p≥0.05). These results suggest 536 

that small differences in amplicon sizes (less than 50 bp) do not affect the estimation of 537 

genome-editing efficiency by GD. 538 

 539 

Fig. 6 Size of PCR product does not affect determination of mutant percentage by GD. 540 

The CCR5 target site in gDNA of unmodified or genome-edited cells were amplified using 541 

two pairs of primers designed to produce two distinct sizes of product (107 bp and 140 bp, 542 

respectively). The amplicons were subjected to high-resolution melting and then 543 

processed to correct for temperature-dependent quenching of fluorescence of free and 544 

dsDNA-bound fluorophore. The resulting melt curves of genome-edited (for clone pair 545 

L1R1) and unmodified controls (Mock) are shown (A & C). Corresponding first-derivatives 546 

of processed melt curves are shown in B and D. Replicates G1 and G2, A1 and A2 refer to 547 

gDNA samples amplified using primers that produce 107 bp amplicon, whereas G5 and 548 

G6, and A5 and A6 refer to gDNA samples amplified using primers that produce 140 bp 549 

amplicon. The derivative melt curves were decomposed using the 3-GD model to estimate 550 

the mutant frequency. The estimated mutant frequencies for both sizes of amplicons are 551 

shown in (E). Error bar = 1 SD. 552 

 553 
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Table 3 Parameters determined by 3-GD of two different size amplicons from the CCR5-554 

edited target site 555 

Gaussian 

Parameters 
107 bp PCR product 140 bp PCR product 

W1 (%) 29.8 ± 1.1 28.9 ± 8.6 

µ1 79.8 ± 0.23 82.1 ± 0.19 

σ1 1.88 ± 0.20 1.07 ± 0.26 

w2 0.49 ± 0.01 0.48 ± 0.06 

µ2 82.8  84.2 

σ2 0.57 ± 0.01 0.51 ± 0.01 

w3 0.21 ± 0.00 0.24 ± 0.03 

µ3 82.1 83.6 

σ3 0.77 ± 0.05 0.65 ± 0.12 

 556 

 557 

Discussion 558 

Here we outline a method for estimating the efficiency of genome-editing reagents by GD 559 

of high-resolution melt curve data. An initial pre-processing of the raw melt curve data was 560 

required to correct for the quenching effect of temperature on measurement of 561 

fluorescence as a prelude to GD for estimating the genome-editing efficiency. Our 562 

approach consisted of two separate steps for correcting melting curves for temperature-563 

dependent quenching of fluorophore. The initial step of cleaning the data involved 564 
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removing the background fluorescence emanating from the free or unbound fluorophore. 565 

Two methods have been used for this purpose. The first is to use an arbitrary cutoff point 566 

in the post-melt region of the raw melt curve and subtract this value from all upstream 567 

RFUs. We found that this method sometimes resulted in a small but narrow tail in the post-568 

melt region of the curve before it hit the baseline. This discrepancy could affect curve 569 

fitting of the first derivate of the processed melt curve. The tail also hinted at a 570 

temperature-dependent quenching of the free fluorophore. We confirmed this quenching 571 

from linear regression analysis of no template controls used in PCR across the entire 572 

range of melting (Fig. 1). The computed background RFU from linear regression of the 573 

post-melt region of individual melt curves was used to effectively subtract the effect of free 574 

fluorophore on the melt curve. 575 

The second step to processing the melt curve involved correcting for temperature-576 

dependent quenching of the dsDNA-bound fluorophore evidenced in the pre-melt region. 577 

As for the post-melt region, regression analysis of the pre-melt region can be used to 578 

determine the efficiency of fluorescence of the dsDNA-bound fluorophore at any 579 

temperature point along the melt curve profile. While detection efficiency can be computed 580 

for individual melt curve profiles, we found that the temperature range of the pre-melt 581 

region could be much shorter for some genome-edited samples due to the expected lower 582 

Tms for deletion mutations. For example, the pre-melt regions were only nominally present 583 

for drug-selected samples that had a very high proportion of mutant molecules in the 584 

amplicon (Fig. 5). In this case the mutant population constituted more than 90% of the 585 

PCR product. 586 

We found that for a given target, and pair of primers, the efficiency of detection of dsDNA-587 

bound fluorophore could be computed accurately and solely from unmodified or mock-588 

transfected samples. These efficiencies could not be distinguished from those estimated 589 

from the individual test samples where sufficient pre-melt region was present (Fig. 1D). 590 
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We therefore chose to determine bound fluorophore detection efficiency from replicates of 591 

mock-transfected samples and averaging them. Correction for the quenching of 592 

fluorescence of dsDNA-bound fluorophore could be simply achieved by dividing the 593 

BcRFU(x) by the detection efficiency, E(x) (Materials and Methods, Equation 4). This 594 

process effectively eliminated the downward slope of the pre-melt region (Fig. 1C). 595 

The temperature-dependent decay of fluorescence of dsDNA-bound fluorophore could be 596 

modeled using either a first- or second-order polynomial function. For CCR5 samples, the 597 

pre-melt region, following a correction using a first-order polynomial, showed a gentle 598 

upward trajectory (saddleback pre-melt region) indicating that the RFU was not 599 

compensated appropriately. Estimating the dsDNA-bound fluorophore efficiency using a 600 

second-order polynomial curve fitting of the pre-melt region eliminated this artifact. From 601 

this one can surmise that the fluorescence decay of dsDNA-bound fluorophore at higher 602 

temperatures is better modeled with a second-order polynomial. 603 

Correction for temperature-dependent quenching of fluorophores has been described 604 

previously. Watras et al., found that fluorescence of chromophoric dissolved organic 605 

matter (CDOM) decreased as ambient water temperature increased [20]. They suggested 606 

compensating for the quenching using the equation: 607 

����� � �����

���	
������
         (13) 608 

where t = temperature (°C), r= reference and m = measured values, the coefficient, ρ, is 609 

the quotient of slope divided by the intercept. The actual coefficient value, ρ, was found to 610 

be instrument-dependent. A similar approach was recommended by Ryder et al [21,22]. 611 

������� � ��������� � 	1 � ������� � ��������     (14) 612 

where ft is the temperature correction coefficient, ref and meas refer to reference and 613 

measured temperatures. The two formulae for calculating fluorescence compensation 614 
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were shown to be mathematically identical [23]. This correction method is comparable to 615 

our approach. Our initial attempts at correction for the quenching effect was to determine 616 

the slope of pre-melt region and use it in place of the coefficient, ρ, in Equation 13. This 617 

was combined with a simple baseline cut off for correction of melt curve data. We, 618 

however, prefer first-order polynomial curve fit to determine and subtract the background 619 

from individual melting curves, and then correct for the quenching effect of temperature on 620 

dsDNA-bound fluorophore by dividing with the efficiency of detection of dsDNA determined 621 

from unmodified controls. Both approaches should provide comparable results for 622 

subsequent curve fitting after numerical differentiation. Our approach eliminates the 623 

requirement for slope determination of the pre-melt region for each of the test samples 624 

easing computation. 625 

Palais and Wittwer described two methods for background correction [24]. 1) A baseline 626 

method: 627 

���� � �
����
�

��
����
�
        (15) 628 

where, M(T) is the corrected melt curve, F(T) is the experimentally obtained melt curve, 629 

and L1(T) and L0(T) refer to linear equations describing pre-melt and post-melt regions of 630 

the curve, respectively. Thus, M(T) corresponds to FcRFU(x), F(T) to RFU(x), L1(T) to 631 

Fprem(x) and Lo(T) to Bpom(x) of this study. 632 

2) They also described an exponential background subtraction model: 633 

���� � ���� � ����           (16) 634 

 Where the background, ���� � ���
���� 

� and � are determined as described in detail in their publication. 

The exponential background correction is recommended by Palais and Wittwer for 635 

experiments involving multiple small amplicons and unlabeled probes, and also where the 636 
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pre- or post-melt regions of melt curve exhibit a concavity. We evaluated the exponential 637 

background subtraction method to process the raw melting curve data for amplicons of F8-638 

S2 and CCR5 loci in unedited mock samples. The results are shown in Figs. 7A and 7B 639 

and indicate that this correction method only partially compensated for the quenching 640 

observed in the pre-melt region. Since the mutant population encroaches on pre-melt 641 

region and extends into the melt transition portion, we abandoned this approach for 642 

preprocessing the high-resolution melt curves. 643 

 644 

Fig. 7 Comparison of different methods of processing melt curve data for background and 645 

fluorescence quenching correction. Melt curve data from amplicons of unmodified or 646 

control samples from F8-S2 (A) or CCR5 target loci (B) were either unprocessed (-dF/dT, 647 

blue trace) or corrected using exponential background subtraction method of Palais and 648 

Wittwer (24) (-dF/dT-dB/dT, red dashes) or the method described in this study (-649 

d(nFcRFU)/dT, green trace). 650 

 651 

Our method for preprocessing melt curve data is mathematically indistinguishable from the 652 

simpler baseline model of Palais and Wittwer (Equation 15). One difference between the 653 

Palais and Witter method and our method is that we first subtract background emanating 654 

from unbound fluorophore before correcting for efficiency of detection of dsDNA-bound 655 

fluorophore. The second difference is that we formulate the decrease in fluorescence of 656 

the pre-melt region not as a background problem but rather as an issue of detection 657 

efficiency. The third difference is that the quenching of dsDNA-bound fluorophore was 658 

modeled using either a first- or a second-order polynomial function depending on the 659 

particular target amplicon. The final difference is that we determined ds-DNA bound 660 
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fluorophore detection efficiencies from control or mock samples and applied those to 661 

correct melt curves of genome-edited samples. 662 

After preprocessing melt curve data, we used GD to successfully model first derivative 663 

melt curves. Cuellar and coworkers were amongst the earliest investigators to analyze 664 

high-resolution denaturation profiles of reassociated repetitive DNA sequences using a 665 

combination of higher derivative analysis and curve fitting [25]. They were able to 666 

distinguish "thermal classes" of repetitive DNA duplexes exhibiting different amounts of 667 

base pair mismatch in reassociated DNA. Reassociated Escherichia coli DNA exhibited a 668 

single thermal class while pea and mung bean re-associated DNAs showed five distinct 669 

thermal classes. These investigators obtained the first to fifth derivatives of the melting 670 

profiles by numerical differentiation followed by smoothing using nine-point running 671 

averages. For curve fitting of first derivative curves they used a software program called 672 

RESOLV. Their results showed that the number of peaks identified by RESOLV 673 

corresponded well with the fifth derivative of the melting profiles of reassociated mung 674 

bean or pea DNAs. While these investigators were able to use an empirical approach to 675 

identify multiple Gaussian components in reassociated DNA of legumes, they were unsure 676 

if the components corresponded to populations of distinct sequences. 677 

Moore and Gray proposed a method dubbed derivative domain fitting for resolving a 678 

mixture of normal distributions in the presence of a contaminating background [26]. They 679 

proposed this model for analyzing flow cytometric data. A requirement for decomposition 680 

was that Gaussian peaks had to be separated by an SD greater than two. They mentioned 681 

difficulties in accurately modeling the background by their method. While their approach is 682 

an example of GD of data, their study is not directly comparable to ours. 683 

Nellåker and coworkers proposed a mixture model to analyze of melting temperature data 684 

[27]. The premise of their model is that distinct Tm categories indicate presence of 685 
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population of unique sequences. The "mixture model" allows calculating the proportions of 686 

amplicons contributing to the distinct Tm categories identified in the mixes. Nellåker and 687 

coworkers state that their mixture model actually denotes mixture distributions of statistical 688 

distributions that arise from sampling of mixed populations.  They formulate the probability 689 

density function, g(x) as follows: 690 

���� � ������� � � � ������������ 0 ! �� ! 1, # � 1 … %, �� � � � �� � 1    (17) 691 

The parameters π1 … πk are referred to as the mixing weights or proportions. They applied 692 

the mixture models to Tm data assuming it to consist of normally distributed components 693 

with each component having the same standard deviation. They used a Gaussian 694 

distribution function for their model. Thus, the function g(x) (Equation 17) was represented 695 

as: 696 

���� � ∑ ��
�

�√��
�
���	
�

�

���
���        (18) 697 

where, � refers to temperature, and '� refers to  

Tm of individual components of the mixture 

The sum of Gaussian functions that we used in this study (Materials and Methods, 698 

Equations 9 and 10) to curve fit the first derivative of processed melt curves, is similar to 699 

that of Nellåker and coworkers. However, Nellåker and coworkers used their Gaussian 700 

function for modeling Tm distributions of individual components of their mixture and did not 701 

apply it to derivative transformations of melt curves of mocks. Here, we apply the sum of 702 

Gaussian functions to empirically reproduce the shape of the first derivative of high-703 

resolution melt curves for both mocks (sum of two Gaussians) and genome-edited 704 

samples (sum of three Gaussians). A second difference is that we did not assume the SD 705 

was the same for the decomposed Gaussian components. They were designated as 706 

separate parameters for each Gaussian and set free during the modeling. However both 707 
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Gaussian models sought to measure the proportion of particular component of the mixes, 708 

the only difference being, we designated the weight of the different components as w1-3 709 

instead of πi. This also eliminated possible confusion between the weight coefficient and 710 

the mathematical constant π. In our case too, the sum of the weights of the Gaussian 711 

components of first derivative melt curves equaled one. 712 

Mann et al., also used a Gaussian model to curve fit melt curve derivatives [28]. They 713 

were interested in automating the screening of first derivative melt curves following PCR to 714 

detect products with unusual or aberrant melt curves to rapidly eliminate those samples 715 

from further analyses. They used a different background correction method than those 716 

described above. Their approach provides a pure Gaussian after subtraction of a sigmoid 717 

shaped background fluorescence that does not retain the granularity of the derivative melt 718 

curve from genome-edited target sites. In our model, the shape of the derivative melt 719 

curve is critical for the precise quantitative decomposition into its Gaussian components. 720 

There was good correspondence between the results obtained by GD and our earlier 721 

described method based on DCAs for estimating mutant amplicon frequency (Fig. 5). The 722 

DCA method was previously validated from NGS of the same amplicons. While the GD 723 

and DCA methods yielded comparable estimation of editing efficiencies, there were a few 724 

exceptions for amplicons consisting almost entirely of mutant species (Fig. 5A vs. 5B, 725 

pDonor/Selected samples). We know, from our earlier study using a TaqMan assay, that 726 

these gDNA samples have no detectable wildtype amplicons. Our explanation for this 727 

anomaly is that 3-GD of nearly pure mutant amplicons (Equation 12) generates Gaussians 728 

that overlap with those of mocks (Fig. 5A). In support of this hypothesis is our earlier 729 

finding that indels with sufficiently large insertions can mimic wildtype molecules in HRMA 730 

and constitute less than 10%. It is rather unlikely for mutant frequencies to approach such 731 

high levels in transient transfection experiments in the absence of drug selection. We 732 
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therefore believe that this would not pose a significant hurdle for the GD model for 733 

estimation of editing efficiencies. 734 

During GD of mocks, we were intrigued by the small discrepancy in the derivative melt 735 

curves at the melt transition temperature seen in single-Gaussian modeling. This seemed 736 

more pronounced in F8-S2 samples. We hypothesized that in F8-S2 amplicons, there 737 

were regions of the sequence that melted sooner or behaved as a nearly independent 738 

domain that was AT-rich. To identify these regions in the sequence, we wrote a Python 739 

function that determined the percentage of As and Ts in sliding windows of 10-mers that 740 

shifted by one nucleotide. The moving averages (period = 5) are shown in Fig. 8A and 8B 741 

(green traces). In the F8-S2 sequence, two initial broad regions with high AT content were 742 

visible (Fig. 8A). In contrast, in the CCR5 sequence, few AT-rich regions that seemed 743 

narrower were seen (Fig. 8 B). 744 

 745 

Fig. 8 Analysis of F8-S2 and CCR5 target sequence features and melting properties in 746 

silico. Sliding window analysis of percentage of AT (%AT) in F8-S2 (A) or CCR5 (B) 747 

sequences of target sites amplified by PCR. The percentage of As and Ts were 748 

determined in a sliding overlapping window of 10-mers. The shift was by 1 bp. These are 749 

shown as green dashes. The data was smoothed using running averages with a period of 750 

5 (solid green line). The sum of free energies (∆Gs) in a sliding window of 10-mers and a 751 

shift of 1 bp is shown along the left y-axis in kJ/mol (blue dots). The running averages 752 

were calculated as for %AT traces and are shown as blue traces. Putative AT-rich 753 

domains are marked I-IV. (C- H) The F8-S2 and CCR5 target sequences were used as 754 

input in the UMelt web analysis tool (29). UMelt predicted derivative melt curve (C and D), 755 

"Dynamic Profile” of melting (E and F) using a sliding temperature control that was situated 756 

close to the predicted Tm for each sequence to identify portions of the target sequences 757 
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(nucleotide position indicated on the x-axis) that may have melted earlier than the rest. 758 

The web tool also provided a "Melting Profile" analysis that shows potential regions that 759 

might show greater tendency to melt earlier (G and H). 760 

 761 

We wrote another Python function to compute the free energy of a 10-mer sequence 762 

window by using the nearest-neighbor method. For this analysis too, we used a sliding 763 

window that shifted by one nucleotide. The moving averages (period =2) are shown in Fig. 764 

8 (blue traces). Again, the initial AT-rich region exhibited lower free energies (∆Gs) for F8-765 

S2 sequence than that of the CCR5 sequence (Fig. 8A and 8B). 766 

We next used the online web tool uMelt [29] to determine if the melting profiles of F8-S2 767 

and CCR5 amplicon sequences could be distinguished by in silico analysis. For F8-S2 768 

amplicon, the derivative melt curve predicted by uMelt web tool, showed a bulge in the 769 

early melt region (Fig. 8C). The Dynamic Profile window also predicted melting at earlier 770 

temperatures at both ends, particularly at the 5’ end of the sequence (Fig. 8D). The 771 

Melting Profile pane (Fig. 8E) also showed increased melting at lower temperatures for the 772 

first 50 base pairs. In contrast to F8-S2, for the CCR5 target sequence amplicon, the web 773 

tool predicted only a small deviation of melt curve in the early melt region (Fig. 8F). The 774 

Dynamic Profile (Fig. 8G) for CCR5 target amplicon also showed nearly equal rates of 775 

melting from both ends of the sequence with a barely visible enhancement for the left end. 776 

Likewise, the Melting Profile pane (Fig. 8H) showed very little propensity for a separate 777 

domain that exhibited different melting characteristics than the rest of the sequence for 778 

CCR5. The differences noted between the predicted derivative melt curves and the 779 

experimentally derived counterparts have been attributed to uMelt software being based 780 

on ∆Gs determined for pairs of nucleotides using a spectrophotometric method rather than 781 

on fluorescence emission from the binding of dsDNA-binding fluorophores. Nevertheless, 782 
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uMelt analysis supports the two-Gaussian model for curve fitting of unmodified control 783 

samples. 784 

In conclusion, this paper describes a method to correct high-resolution melt curves for 785 

temperature-dependent quenching of free and dsDNA-bound fluorophore. This is the first 786 

report, to the best of our knowledge, to demonstrate that first derivative melting curves of 787 

properly processed high-resolution melt curve data can be precisely modeled as a sum or 788 

superposition of Gaussian functions. The GD model successfully estimated efficiency of 789 

genome-editing by engineered sequence-directed endonucleases without a requirement 790 

for standard curves and has the additional advantage of being a single-tube method. 791 
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