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ABSTRACT: In this manuscript, I am proposing an approach 
for identification of correlated exchange in proteins via anal-
ysis of the NMR relaxation dispersion data. For a set of spins 
experiencing exchange, every relaxation dispersion datasets is 
fit individually and then—globally while paired with every 
other dataset. The corrected Akaike’s Information Criteria 
(AICc) for individual and global fits are used to evaluate the 
likelihood of two spins to report on the same dynamic event. 
Application of hierarchical cluster analysis reveals correlated 
spin groups using the difference in AICcs as a measure of 
similarity within the pairs. This approach to detection of 
correlated dynamics is independent of accuracy of best-fit 
parameters rendering it less sensitive to experimental noise. 
High throughput and the absence of the operator bias might 
make it applicable to a relatively lower quality NMR relaxa-
tion dispersion data from large and poorly soluble systems. 

Correlated conformational motions are thought to be in-
volved in a biological function of a number of proteins1-8. 
Spin-relaxation Carr-Purcell-Meiboom-Gill (CPMG) NMR 
experiments provide access to the exchange rates and popu-
lations of the nuclear spins undergoing exchange process9-12. 
Revealing whether the dynamic events detected at two dif-
ferent sites in the protein structure are correlated (that is both 
sites experience the same dynamic event) is a difficult task. 
Typically, dynamic parameters are determined for individual 
sites with high precision and then compared to suggest po-
tential correlations (for examples, see studies on RNAse A13, 
and Ras GTPase8). However, such manual analysis is prone 
to subconscious bias of the researcher: one has to choose 
which fitting parameter is most important or use some kind 
of a parameter combination as a ranking factor.  

Here I am proposing the approach utilizing Akaike's in-
formation theory and statistical clustering for quantitative 
assessment of similarity between exchange events reported 
by multiple spins: the Hierarchical Clustering based on In-
formation Theory (HCIT). The HCIT analysis systematical-
ly examines all possible pairs of spins and assigns similarity 
scores to them. Similarity between millisecond-microsecond 
dynamics of two spins is judged by computing Akaike's In-
formation Criterion14-17 for the global and individual fitting of 
their experimental relaxation dispersions. The global model 
implies that both spins in a given pair are reporting on the 
same conformational exchange event. Thus, we determine 
the common exchange rate constant (kex) and populations of 
states (usually, pa or pb in a two-state model) for both spins 
while allowing for the individual chemical shift differences 
and base transverse relaxation rates. The individual model 
implies independent conformational exchange events giving 
rise to relaxation dispersions observed at the two spins. 
Akaike's Information Theory reveals, based on the values of 
the corrected Akaike's Information Criterion (AICc), how 
likely global fitting for the pair of datasets is more correct 
than individual fitting. The likelihood score is expressed as 
difference between AICc's for the global and individual fit-
ting results. Using a negative normalized AICc difference as a 
measure of a distance between sites in each pair, the hierar-
chical cluster analysis reveals the spins likely to be involved in 
the same dynamic process in the protein structure. The hy-
pothetical correlations proposed by the hierarchical cluster-
ing may be verified experimentally through measurements of 
activation barriers and isotope effects as well as using site-
directed mutagenesis in proteins. 

Theory 
The Hierarchical Cluster analysis based on Information 

Theory, HCIT, is a rigorous procedure for evaluation of simi-
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larity between of exchange modes of different spins followed 
by "blind" grouping of the datasets, without assuming any 
mechanism of exchange. First step of analysis is to perform 
pair-wise fitting of spins to establish similarity in pairs. Indi-
vidual fits of two datasets are compared to a global fit for the 
pair using Akaike's Information Criterion. In this treatment, 
each model (global and individual) is evaluated on basis of its 
sum of squares of residuals from fitting and the number of 
parameters in the equation. The individual model for the 
two-state conformational exchange process includes (1) the 
exchange rate constant, kex, (2) the population of a major 
conformer, pa, (3) the base relaxation rate, R2,0, and (4) the 
chemical shift difference between the states in exchange, Dw. 
For two datasets fit individually, the total number of fitting 
parameters is equal to 8. The global model implies common 
kex and pa for both spins in the pair still allowing for individu-
al base relaxation rates, R2,0, and chemical shift differences 
between the states, Dw (total of 6 fitting parameters). The 
Corrected Akaike's Information Criterion, AICc, is comput-
ed for both models as17: 

  
     (Eq. 1) 

where N is a total number of data points, SS is a sum of 
squares of residuals, K is the number of fitting parameters 
plus 1. The model, which has lower AICc, is more likely to be 
correct. The difference between AICcs may be expressed as 
evidence ratio, ER, defined as 14, 17 

 

     (Eq. 2) 

ER value directly reflects how much more likely the global 
model is correct over the distinct individual models.   

The set of N spins produces N*(N-1)/2 possible pairs. To 
avoid manual comparison of calculated ER values, we subject 
the results to hierarchical cluster analysis18. Hierarchical clus-
tering reveals groups, in which spins are better fit by the glob-
al model when paired to other members of the same cluster, 
and produce poor global fits when paired to any other spins 
outside of the cluster. Results of pairwise testing of N da-
tasets are first presented as a resemblance matrix. Figure 1 
shows an example resemblance matrix with six datasets. The 
green and red color is used to indicates relative magnitude of 
the ER when it is greater than one; crosses stand for ER less 
than one. According to Eq. 2, values of the ER exceeding one 
indicate that the global fitting is preferred. In the context of 
conformational dynamics study, such pair of datasets likely 

reports on the same dynamic event. In contrast, for spins 
with ER<1 individual fitting is preferred, implying that these 
spins reports on distinct conformational dynamics. 

 
Figure 1. Example resemblance matrix. Each cell of the table is 
coded according to the value of ER obtained from individual and 
global fits of each pair of spins. Black circles, diagonal cells not 
involved in analysis.  

Hierarchical clustering is a procedure to help identify 
nearest neighbors in the set of objects according to a specific 
measure18. Using ER as a measure of "distance" between da-
tasets allows to find "closely localized" neighbors that are 
likely to represent a single dynamic event in the protein 
structure. Figure 2 shows hierarchical clustering of the da-
taset from Figure 1, visualizing strong similarity between 
spins X1 and X2, followed by two other groups X3/X4 and 
X5/X6. The hierarchical clustering results in a more nuanced 
grouping than manual analysis because it allows to visualize 
weaker levels of similarity such as between X1/X2 and 
X5/X6 clusters based on favorable ER in X1/X6 pair.  

 
Figure 2. Hierarchical clustering of the six datasets from Figure 1 
based on the pairwise ER values. 

A crucial distinction of the HCIT analysis from a conven-
tional evaluation based on similarity of fitting results is that 
the HCIT is performed without knowledge of best-fit values of 
model parameters. Instead, only the sum of squares and total 
number of parameters are involved in calculations, which 
renders the entire procedure independent of accuracy of the 
fit parameters as long as the best-fit curve is successfully pro-
duced. The anticipated downside of this treatment is that the 
low-quality dataset may be successfully clustered with nearly 
any other datasets because its noise level renders SS of the 
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best fit less sensitive to the model type. Therefore, for suc-
cess of the HCIT, one should avoid inclusion of datasets 
with a relatively low signal-to-noise ratios. 

Results 
To test robustness of the HCIT analysis of the relaxation 

dispersion data, I simulated relaxation datasets for a number 
of spins reporting on three distinct exchange events as well as 
spins that report additional individual dynamics (Table 1). 
Figure 3 visualizes parameters of these dynamic groups and 
uncorrelated spins. 

Table 1. Two-state exchange parameters and chemical shift dif-
ferences utilized in simulations of relaxation dispersion data. 

Spin # kex, s-1 pa  Dw, s-1 

Fast group 

1, 2, 3, 4 900 0.95
  

100, 200, 300, 400 

Slow group 

5, 6, 7, 8 100 0.65 100, 200, 300, 400 

Intermediate group 

9, 10, 11, 12 500 0.80 100, 200, 300, 400 

Uncorrelated spins 

13 100 0.95 100 

14 500 0.9 400 

15 800 0.8 200 

16 1300 0.7 300 

 

Using these exchange parameters and a typical set of 
CPMG frequencies (Table 2) with the two-site all-timescale 
relaxation dispersion equation19, I simulated the transverse 
relaxation rate constants, R2, for the all spins in Table 1. Sup-
porting Figures 1-4 visualize the corresponding relaxation 
dispersion profiles. It is important to note, that "shared dy-
namics" in the spin groups means the same kex and popula-
tions of the two states, which impacts the shape of the curve. 
The spins may have distinct individual Dw values leading to 
different amplitude of the dispersion. The obtained R2 values 
were further used for calculation of peak intensities thus 
simulating outcome of a standard rcCPMG experiment20 
performed in triplicate with a two-point rate determination 
(for details see O'Connor and Kovrigin8).  

 
Figure 3. Exchange process parameters used for simulations. Fast 
group, red; intermediate group, green; slow group, blue; uncorre-
lated spins; gray. Spin numbers are indicated for each group. 

 
Table 2.  CPMG frequencies and the total relaxation time. 

# 1 2 3 4 5 6 

n, Hz 50 75 100 125 150 200 

T, ms 40 26.7 40 32 40 40 

 

# 7 8 9 10 11  

n, Hz 250 300 350 400 520  

T, ms 40 40 40 40 38.5  

 
To assess sensitivity of HCIT analysis to the signal-to-

noise ratio in the data, different amounts of random noise 
were applied to peak intensities to simulate different relative 
acquisition times (Table 3). The obtained datasets were sub-
ject to standard fitting procedures8 both individually or glob-
ally in pairs. The obtained SS along with number of parame-
ters in the fits were subject to hierarchical clustering based 
on the ER computed for the individual and pairwise fits. All 
in-house code necessary for simulations and analysis was 
written in MATLAB and available upon request. 

Table 3.  Addition of noise to the simulated data.  

Dataset quality High 
(ideal) 

Medium 
(good practical) 

Low 
(typical) 

Signal/noise, S/N 1000 180 128 

Acquisition time 
equivalents 

1 1/30 1/60 
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Figure 4 demonstrates output of the HCIT analysis in case 
when signal-to-noise ratio, S/N, is very high (1000). Spin 
names are listed along the vertical axis. Original group of 
each spin is indicated with a horizontal bar on the left with 
the same color code as in Figure 3. As anticipated, all spins 
from the groups are gathered in corresponding clusters. The 
"uncorrelated" spins X13 and X16 are not closely grouped 
with any other due to very distinct dynamic modes. Spins 
X15 and X14 are joined to the fast and intermediate groups, 
respectively. This grouping reflects stronger effect of kex on 
the clustering results than the population difference, which 
may be rationalized recalling that kex value affects the shape of 
the relaxation dispersion curve, while pa is mostly responsible 
for the amplitude of the dispersion (Rex). 

 
Figure 4. Hierarchical clustering of spins according the ER values 
for the global vs. individual fits at a very high signal-to-noise ratio 
(S/N=1000). 

To simulate data with the S/N of a feasible relaxation dis-
persion measurement8, we need to shorten the acquisition 
time by a factor of 30 (S/N decreases to 180). Due to in-
creasing noise in the peak intensities, accuracy of the fitted 
R2 decreases. As a result, dispersion curves of the spins with 
smallest chemical shift differences become poorly defined, 
making us to remove them from analysis (X1 and X9). Fig-
ure 5 demonstrates HCIT analysis of the remaining sensitive 
datasets. The correlated spins mostly remain grouped to-
gether but groups are now more significantly "contaminated" 
with uncorrelated spins. Slow exchange group (blue) re-
mains most stable and this is correlated with its greatest sep-
aration from others in kex vs. pa graph in Figure 3.  

 
Figure 5. Hierarchical clustering of spins according the ER values 
for the global vs. individual fits at a practical signal/noise ratio 
(S/N=180). Acquisition times of this "experiment" is 1/30 of the 
one in Figure 4. The datasets X1, and X9 with Rex smaller than 4x 
R2 RMSD were removed from analysis. 

If the acquisition time is further cut by a factor of two, we 
have to remove additional datasets, X5 and X13, due to er-
rors in R2 becoming comparable to the amplitude of their 
relaxation dispersion curves. The HCIT analysis still correct-
ly keeps the grouped spins together, though allows the inclu-
sion of the X14 (uncorrelated but close in Figure 3) into the 
intermediate group (green) before X11 is clustered.  

 
Figure 6. Hierarchical clustering of spins according the ER values 
for the global vs. individual fits at S/N=128, corresponding to one 
half of the acquisition time of the "experiment" in Figure 5. The 
datasets X1, X5, X9, and X13 with Rex smaller than 4x R2 RMSD 
were removed from analysis. 
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Discussion 
The analysis of simulated data demonstrates how HCIT 

allows for automated grouping of spins without considera-
tion of the values of particular fitting parameters. In a sense, 
it compares shapes of the relaxation dispersion profiles and 
will work even if the fitting procedure is not expected to pro-
duce very accurate best-fit parameters. This is particularly 
important because the Carver-Richards equation19 in the 
intermediate and fast exchange regimes was shown to pro-
vide unstable fits to the relaxation dispersion data obtained at 
a single static magnetic field21. The data discussed in this 
manuscript were simulated using one static magnetic field 
value. Future simulations with two static magnetic fields will 
help determine whether HCIT algorithm provides a mean-
ingful degree of compensation to the loss of sensitivity in a 
one-field setting. In other words, even if the fitting parame-
ters may not be determined at one magnetic field, HCIT 
might be able to reliably detect correlated spin groups in 
such datasets. In many studies, quantitative parameters of 
the exchange dynamics in proteins are not as important by 
themselves as reliable mapping of distinct dynamic modes on 
the protein structure. Ability to perform such qualitative 
analysis may be a key to extending reach of spin relaxation 
NMR measurements to large and challenging systems, where 
the high S/N value is not practically achievable. 
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Supporting Figure 1. Simulated relaxation dispersion curves for the "fast" spin group in Table 1. The horizontal bar is color coded accord-
ing to Figure 3 for easier reference. 
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Supporting Figure 2. Simulated relaxation dispersion curves for the "slow" spin group in Table 1. . The horizontal bar is color coded ac-
cording to Figure 3 for easier reference. 

 

 
Supporting Figure 3. Simulated relaxation dispersion curves for the "intermediate" spin group in Table 1. The horizontal bar is color coded 
according to Figure 3 for easier reference. 

 

 
Supporting Figure 4. Simulated relaxation dispersion curves for the uncorrelated spins in Table 1. The horizontal bar is color coded accord-
ing to Figure 3 for easier reference. 
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