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Abstract20

Individual alpha frequency (IAF) is a promising electrophysiological marker of interindividual differences21

in cognitive function. IAF has been linked with trait-like differences in information processing and general22

intelligence, and provides an empirical basis for the definition of individualised frequency bands. Despite its23

widespread application, however, there is little consensus on the optimal method for estimating IAF, and24

many common approaches are prone to bias and inconsistency. Here, we describe an automated strategy for25

deriving two of the most prevalent IAF estimators in the literature: peak alpha frequency (PAF) and centre of26

gravity (CoG). These indices are calculated from resting-state power spectra that have been smoothed using a27

Savitzky-Golay filter (SGF). We evaluate the performance characteristics of this analysis procedure in both28

empirical and simulated EEG datasets. Applying the SGF technique to resting-state data from n = 63 healthy29

adults furnished 61 PAF, and 62 CoG estimates. The statistical properties of these estimates were consistent30

with previous reports. Simulation analyses revealed that the SGF routine was able to reliably extract target31

alpha components, even under relatively noisy spectral conditions. The routine consistently outperformed a32

simpler method of automated peak detection that did not involve spectral smoothing. The SGF technique is33

fast, open-source, and available in two popular programming languages (MATLAB and Python), and thus can34

easily be integrated within the most popular M/EEG toolsets (EEGLAB, FieldTrip and MNE-Python). As35

such, it affords a convenient tool for improving the reliability and replicability of future IAF-related research.36
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1 Introduction40

Alpha is the dominant rhythm in the human EEG, and its importance for cognitive processing has been41

recognised since Hans Berger’s seminal work in the early 20th century (cf. Adrian & Matthews, 1934; Berger,42

1929). Interindividual differences in the predominant frequency of alpha-band oscillations (i.e. individual alpha43

frequency; IAF) have been linked with variability in cognitive performance since the 1930s (for a more recent44

review, see Klimesch, 1999; see Vogel & Broverman, 1964). More recent research has revealed that IAF predicts45

performance on a variety of perceptual (e.g., Cecere, Rees, & Romei, 2015; Samaha & Postle, 2015) and46

cognitive (e.g., Bornkessel, Fiebach, Friederici, & Schlesewsky, 2004; Klimesch, Doppelmayr, & Hanslmayr,47

2006) tasks. Individuals with a low IAF process information more slowly (Klimesch, Doppelmayr, Schimke,48

& Pachinger, 1996; Surwillo, 1961, 1963), and show reduced performance on memory tasks (Klimesch, 1999)49

and general intelligence measures (g; Grandy et al., 2013a), in comparison to their high-IAF counterparts.50

IAF is a trait-like characteristic of the human EEG (Grandy et al., 2013b), which shows high heritability51

(Lykken, Tellegen, & Thorkelson, 1974; Malone et al., 2014; Smit, Wright, Hansell, Geffen, & Martin, 2006) and52

test-retest reliability (Gasser, Bächer, & Steinberg, 1985; Kondacs & Szabo, 1999; Näpflin, Wildi, & Sarnthein,53

2007). However, IAF tends to decrease with age from young adulthood onwards (Chiang, Rennie, Robinson,54

Albada, & Kerr, 2011; Köpruner, Pfurtscheller, & Auer, 1984), hence lifelong changes in IAF accompany55

the decline of many cognitive abilities in older adulthood (e.g. Hedden & Gabrieli, 2004; Salthouse, 2011).56

Taken together, this evidence highlights the utility of the IAF as a neurophysiological marker of general brain57

functioning (Grandy et al., 2013a, 2013b).58

In addition to quantifying individual differences in the properties of the dominant alpha rhythm, IAF can also59

be used to derive individualised estimates of the canonical frequency bands beyond alpha (Klimesch, 2012).60

Such empirically-driven approaches to frequency band definition have been proposed to sharpen the precision61

of frequency-domain analyses more generally (Klimesch, 2012). Indeed, using the IAF to distinguish subregions62

of the alpha band has revealed functional dissociations between lower- and higher-frequency alpha-rhythms63

(e.g., Klimesch, 1997). However, despite the potential advantages of deploying the IAF as a reference point for64

various kinds of individualised spectral analysis, no clear consensus on the optimal method for quantifying IAF65

currently exists. This paper thus sets out to develop a rigorous, automated strategy for estimating two of the66

most widely reported indices of IAF: peak alpha frequency (PAF) and alpha frequency centre of gravity (CoG).67

We begin by briefly describing some of the most common strategies for extracting these estimators, and their68

attendant problems.69
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1.1 Peak alpha frequency70

IAF estimation typically depends on the delineation of a singular, prominent spectral peak within the alpha71

bandwidth (standardly defined as 8-13 Hz; Noachtar et al., 2004). In many cases, the PAF can be easily72

discerned upon visual inspection of the power spectral density (PSD) from eyes-closed resting-state EEG73

recorded over parieto-occipital sites. However, this strategy is complicated by the presence of two (or more)74

alpha-band peaks (so-called “split-peaks”; Chiang et al., 2011), or the lack of any obvious deviation from the75

characteristic 1/f -like scaling of background M/EEG spectral activity (the “inverse power-law”; Pritchard,76

1992). Under such circumstances, subjective PAF estimation may be prone to bias and inconsistency (Chiang77

et al., 2008), thus posing a significant challenge to replicability. While conservative approaches to PAF78

identification in the context of ambiguous spectral conditions may help reduce bias, this may result in high79

rates of attrition (see for e.g., Bornkessel-Schlesewsky et al., 2015).80

One approach for improving the objectivity, replicability, and (for larger datasets) practicality of PAF estimation81

is to implement an automated peak-detection algorithm. While this strategy does not solve the basic problem82

of deciding the criteria by which valid PAF estimates are discriminated from split-peaks or spurious background83

fluctuations, it at least applies such criteria consistently across all subjects. Simple algorithms may however84

introduce new sources of bias. For instance, a basic routine that searches for local maxima within the alpha85

band may arbitrarily assign the PAF to the lower bound of the search window in the absence of any notable86

deviation from the inverse-power law (since the highest power estimate will be the supremum found at the87

lowest frequency bin spanned by the window). A more sophisticated approach such as the first-derivative test88

(in which the first derivative of the PSD is searched for downward going zero crossings; cf. Grandy et al., 2013b)89

avoids this problem, but is still incapable of distinguishing substantive peaks from split-peaks or arbitrarily90

small deviations from background spectral activity. Such routines may therefore be too liberal with regard to91

the spectral features they classify as alpha peaks.92

1.2 Alpha-band centre of gravity and reactivity93

The alpha mean or CoG frequency (Klimesch, Schimke, Ladurner, & Pfurtscheller, 1990) has been proposed as94

an alternative method of IAF estimation that circumvents some of the difficulties posed by the absence of a95

dominant alpha peak (Klimesch, 1997; Klimesch, Schimke, & Pfurtscheller, 1993). This estimator computes a96

weighted average of the power contained within the alpha-band, thus rendering a summary measure that is97

sensitive to the spectral distribution of alpha components. Given that the span and location of alpha-rhythm98

activity vary across individuals (Bazanova & Vernon, 2014), Klimesch and colleagues (1990) recommended99
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computing the CoG using bespoke frequency windows designed to capture such variation. However, the100

definition of such individualised alpha-band windows (IAWs) poses a nontrivial challenge, and may rely on101

subjective assessments or arbitrary criteria (Bazanova & Vernon, 2014). One principled solution to this problem102

is to derive the IAW from reactivity-based contrasts between two conditions (pre- vs. peri-stimulus presentation,103

Goljahani et al., 2012; e.g., eyes-closed vs. eyes-open resting-states, Klimesch, 1999). This approach is not104

immune to bias, however, since alpha rhythms are not always substantially attenuated by opening the eyes105

(Gaál, Boha, Stam, & Molnár, 2010; Kreitman & Shaw, 1965), and may only be partially attenuated (e.g.,106

Klimesch et al., 2006) – or even enhanced (e.g., Rihs, Michel, & Thut, 2007) – during experimental tasks.107

1.3 Curve-fitting approaches to alpha-rhythm quantification108

One promising approach to spectral peak quantification that avoids many of the issues highlighted above applies109

iterative curve-fitting techniques to parameterise the statistical properties of the PSD (e.g., Chiang et al., 2008;110

Lodder & Putten, 2011). The practical utility of such methods is clearly apparent from their application to111

large n datasets (Albada & Robinson, 2013; e.g., Chiang et al., 2011), while comparison of Lodder and van112

Putten’s (2011) algorithm with human scorers revealed a high degree of estimator agreement. It is puzzling113

then why such methods have not been taken up more broadly within the IAF literature (cf. Haegens, Cousijn,114

Wallis, Harrison, & Nobre, 2014, for a notable exception). One possibility is that investigators are generally115

unaware of these approaches, given that they have mostly been applied in the context of spectral modeling116

rather than IAF research (nor Bazanova and Vernon, 2014, mention the existence of such methods in their117

reviews of IAF estimation techniques; indeed, neither Goljahani et al., 2012). Alternatively, investigators may118

be put off by the perceived burden involved in accessing these programmes (which we have not been able to119

locate publically) and integrating them within existing analysis pipelines (which may not be compatible with120

such algorithms). We suggest then that one of the critical steps towards achieving a more widespread adoption121

of automated IAF estimators is to make these tools openly available in formats that can be easily assimilated122

within popular methods of M/EEG analysis.123

1.4 Aims of the present study124

In sum, common methodological approaches to IAF estimation are either (1) time-consuming and vulnerable to125

inconsistencies arising from subjective evaluation, or (2) at risk of producing spurious or biased estimates under126

certain plausible spectral conditions. More recent innovations that address these problems via the application127

of sophisticated curve-fitting algorithms have so far found limited uptake within the broader IAF literature,128
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perhaps on account of practical barriers pertaining to software access and implementation. Consequently,129

we sought to develop an automated method of alpha-band quantification that provides fast, reliable, and130

easily replicated estimates of the resting-state IAF in two major programming languages: MATLAB® (The131

MathWorks, Inc., Natick, MA, USA) and Python™. This goal is consistent with recent proposals to make the132

analysis of electrophysiological data as open, transparent, and amenable to replication as possible (Cohen,133

2017).134

2 Method135

Our approach aims to emulate Klimesch and colleagues’ (1990) original attempt to characterise individual136

profiles of resting-state alpha-band activity by means of a relatively simple, non-parametric curve-fitting137

technique; the Savitzky-Golay filter (SGF). The basic strategy runs as follows: First, we extract PSD estimates138

from preprocessed, fast Fourier-transformed EEG signals. Second, we apply the SGF to smooth the PSD139

function and estimate its first- and second-order derivatives. Third, these derivatives are analysed for evidence140

of a distinct spectral peak within the alpha band region. Finally, the first derivative of the PSD is reanalysed141

to locate the bounds of the IAW, from which the CoG is estimated. Our main focus here will be to assess the142

efficacy of this approach in the context of both empirical and simulated data. For a more rigorous account of143

the calculations implemented in the algorithm, see Appendix.144

2.1 Savitzky-Golay smoothing and differentiation145

The SGF is a least-squares polynomial curve-fitting procedure specifically designed to aid the detection of146

spectral peaks amidst noisy conditions (Savitzky & Golay, 1964). The major advantage of the SGF in this147

regard is its ability to smooth peaks while preserving their height, width, position, and CoG (Schafer, 2011;148

see Ziegler, 1981). Consequently, we propose using the SGF in order to attenuate random fluctuations in the149

PSD (and thus improve signal-to-noise ratio; SNR) without substantially distorting the spectral parameters150

of interest in IAF analysis. Eliminating such fluctuations should reduce the number of spurious local optima151

in the derivatives of the PSD, thus improving the overall accuracy and reliability of the first-derivative test.152

Conveniently, SGFs constitute optimal (or near optimal) differentiators (Luo, Ying, He, & Bai, 2005), and153

hence can be deployed to estimate both the smoothed PSD and its derivatives simultaneously.154
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2.2 Implementation155

All functions developed in order to conduct the analyses reported here are open-source and available (along156

with sample datasets and simulation materials) from https://github.com/corcorana/restingIAF. The following157

report focuses on the MATLAB implementation of the algorithm, which is dependent on the Signal Processing158

Toolbox™ and EEGLAB (Delorme & Makeig, 2004). The pipeline (Figure 1) relies on MATLAB’s pwelch159

implementation of Welch’s modified periodogram method (Welch, 1967) to derive PSD estimates. This requires160

the selection of a sliding window function of x length, which determines the frequency resolution of the analysis.161

(Note, alternative methods of PSD estimation could be coupled with the SGF routine, but are not explored162

here.) The following parameters must also be specified in order to execute the algorithm (examples of what we163

consider to be reasonable values are outlined in Section 2.3.4):164

• Fw, SGF frame width (longer = more smoothing; Bromba & Ziegler, 1981);165

• k, SGF polynomial degree (higher = less smoothing/peak height loss; Press, Teukolsky, Vetterling, &166

Flannery, 1992);167

• Wα, the domain of the PSD searched for evidence of peak activity;168

• minP , the minimum power value that a local maximum must exceed to qualify as a peak candidate169

(defined as 1 s.d. above the power estimate predicted by a regression model of the log-transformed PSD);170

• pDiff , the minimum proportion of peak height by which the highest peak candidate within Wα must171

exceed any competitors to be assigned as the PAF;172

• cMin, the minimum number of channel estimates necessary for computing cross-channel averages.173

Since channel spectra may be differentially contaminated by signal noise, our algorithm evaluates the relative174

‘quality’ of channel-wise PAF estimates prior to cross-channel averaging. To this end, we extend the logic175

of the first-derivative test to extract second derivative estimates of the inflection points bounding the PAF.176

These points are used to define the area under the peak (normalised power units), which is then divided by the177

frequency span of this area. The resulting quantity (Q value) thus affords an indication of the relative quality of178

the resolved peak in terms of how well its distributional characteristics conform to the ideal of a highly powered,179

less variable (i.e. narrower) peak (as opposed to broader and/or shallower counterparts). Within-subject channel180

estimates are scaled in proportion to the peak with the highest Q value, and the (weighted) cross-channel181

average computed (hence, channels with the strongest evidence of PAF detection contribute more information182

to the mean estimate of the PAF). We consider this strategy (which only influences results when channel183

estimates fail to converge) an acceptable trade-off between loss of information (incurred by higher rates of184

channel exclusion) vs. loss of precision (incurred by treating all estimates as equally indicative of the estimand).185
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Figure 1: Flow diagrams summarising key steps of the analysis pipeline. (A) depicts processing of channel data, (B) depicts cross-channel averaging, assuming a
sufficient number of estimates. See main text/Appendix for details. PSD: power spectral density; f range: frequency bins included in analysis; P: power estimate; minP:
minimum power necessary to qualify as a candidate peak; pDiff: minimum power difference necessary to qualify as a PAF estimate; Q weights: quantification of relative
peak quality (scaled Q value); cMin: minimum number of channel estimates required for cross-channel averaging; IAW: individualised alpha-band window; f1 and f2:
lower and upper bounds of IAW; PAFM : mean PAF estimate; CoGM : mean CoG estimate; IAFM : PAFM or CoGM ; IAFGA: grand average PAF/CoG estimate.
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2.3 Empirical EEG data186

2.3.1 Participants187

Sixty-three right-handed (Edinburgh Handedness Inventory; Oldfield, 1971), native English-speaking adults188

(42 females, mean age = 35 years, range = 18–74 years) with normal (or corrected-to-normal) vision and189

audition, and no history of psychiatric, neurological, or cognitive disorder, participated in the study. All190

participants provided written, informed consent, and were remunerated for their time. This study was part of a191

larger research project investigating EEG responses to complex, naturalistic stimuli, and was approved by the192

University of South Australia Human Research Ethics Committee (Application ID: 0000035576).193

2.3.2 Procedure194

Participants were seated in a dimly-lit, sound-attenuated room for the duration of the session (2.5–3 hr). Two195

sets of resting-state EEG recordings were acquired approximately 90 min apart at the beginning and end of an196

experimental procedure. This experiment involved watching approximately 70 min of prerecorded television197

programming, followed by an old/new cued recall task. As per our standard laboratory protocol, both sets of198

resting-state recordings comprised approximately 2 min of eyes-open EEG followed by 2 min of eyes-closed199

EEG. Participants were instructed to sit still, relax, and avoid excessive eye movements during this time.200

Note, only data from the eyes-closed component of the resting-state recordings are analysed here. We favour201

eyes-closed resting-state data on the basis that it demonstrates (1) greater interindividual variability in alpha202

power (Chen, Feng, Zhao, Yin, & Wang, 2008), and (2) higher within-session reliability and test-retest stability203

of IAF estimates (Grandy et al., 2013b) than eyes-open data. Eyes-closed recordings may also be advantageous204

in reducing ocular artifact.205

2.3.3 EEG acquisition and preprocessing206

EEG was recorded continuously from 64 cap-mounted Ag/AgCl electrodes via Scan 4.5 software for the207

SynAmpsRT amplifier (Compumedics® Neuroscan™, Charlotte, NC, USA). The online recording was digitised208

at a rate of 1000 Hz, bandpass filtered (passband: 0.05–200 Hz), and referenced to the vertex electrode (AFz209

served as the ground electrode). Eye movements were recorded from bipolar channels above and below the left210

eye, and on the outer canthi of both eyes. Electrode impedances were maintained below 12.5 kΩ.211

EEG data acquired from eyes-closed resting-state recordings were preprocessed in MATLAB 2015a212

(v8.5.0.197613). All EEG channels were imported into MATLAB via EEGLAB (v13.6.5b) and re-referenced213
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to linked mastoids. Each dataset was then trimmed to retain only the EOG and the nine centro-posterior214

electrodes constituting the region of interest for this analysis: Pz, P1/2, POz, PO3/4, Oz, O1/2. These215

channels were subjected to zero-phase, finite impulse response highpass (passband: 1 Hz, -6 dB cutoff: 0.5 Hz)216

and lowpass (passband: 40 Hz, -6 dB cutoff: 45 Hz), Hamming-windowed sinc filters. Automated artifact217

detection routines were then applied to identify regions of channel data (segmented into 2 s epochs) that218

contained excessive deviations in the frequency domain (frequency range: 15–40 Hz, spectral threshold: 10 dB).219

Channels that exhibited an improbable signal distribution (kurtosis z-score > 5) were excluded from analysis.220

EOG channels were removed following artifact rejection, and remaining channels were downsampled to 250 Hz221

in preparation for spectral analysis. Datasets exceeding 120 s were trimmed to this duration in order to reduce222

variability in the quantity of data analysed per participant.223

2.3.4 IAF analysis parameters224

Initial parameters for the IAF analysis were determined on the basis of preliminary testing on an independent225

dataset (collected as part of a separate EEG protocol). We implemented pwelch with a 1024 sample Hamming226

window (i.e. 4 times the sampling rate raised to the next power of 2; window overlap = 50%), yielding a227

frequency resolution of ~0.24 Hz. SGF and peak detection parameters were defined as follows: Fw = 11228

(corresponding to a frequency span of ~2.69 Hz); k = 5; Wα = [7, 13 Hz]; pDiff = .20 (meaning that the largest229

peak detected within Wα had to be at least 20% higher than any other peak to qualify as the PAF estimate);230

cMin = 3. minP was automatically determined for each channel spectrum according to its distributional231

characteristics.232

2.4 Simulated EEG data233

2.4.1 Single component simulations234

As an initial proof of concept, we analysed the performance of the SGF routine in extracting target alpha235

frequency components embedded within noisy time series. These composite signals were created by combining236

a sine wave oscillating at target frequency Fα with a 2 min ‘pink noise’ signal (i.e. a randomly sampled signal237

with a frequency distribution scaled in accordance with the 1/f inverse power-law). SNR was manipulated by238

varying the length of the target signal embedded in the composite time series (e.g., for SNR = 0.5, the first239

half of the signal would comprise the convolution of the alpha and noise signals, whereas the second half would240

comprise only the noise signal).241

We examined PAF estimation at SNR = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, and 0.50, generating 1000242
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simulated signals for each SNR level. The target frequency was randomly sampled (with replacement) from a243

vector ranging from 7.5 to 12.5 in iterations of 0.1. We compared the SGF routine’s capacity to extract these244

target peaks with a that of a simple peak detection routine designed to locate the local maximum (LM) within245

Wα. To avoid spurious estimates from suprema at the lower bound of Wα, this routine evaluated whether the246

LM exceeded the power estimates of adjacent frequency bins (thus making it functionally equivalent to the247

first-derivative test).248

2.4.2 Mixture and multi-channel simulations249

Next, we investigated the performance of the SGF routine under more ecologically valid spectral conditions.250

This involved creating alpha signals that were comprised of a set of neighbouring frequency components251

from different channels. We did this by sampling an ‘actual’/‘measured’ alpha frequency per channel from252

a truncated Gaussian distribution centered at the randomly sampled target Fα (selected as for the single253

component simulation) for each simulated (sub)component (targets chosen uniformly from the standard alpha254

band, as above). The tails of the Gaussian were truncated ± 2.5 Hz from its mean/target frequency. Alpha255

signals were thus constructed by creating a weighted average of frequencies within this distribution; in other256

words, a Gaussian blur was applied to the frequency-domain signal in order to generate a mixture of alpha257

waves in the time domain.258

Constructed alpha signals were again combined with random pink noise signals at a specified SNR. This time,259

each composite alpha signal was replicated 9 times, and combined with an independently sampled pink noise260

signal. This yielded a dataset of 9 synthetic ‘channels’, each comprised of identical alpha signals embedded261

within stochastically varying background noise. This enabled us to examine how our algorithm’s channel262

exclusion and averaging procedures performed under varying levels of SNR and peak dispersal.263

As per the preliminary analysis, we compared the accuracy of SGF-generated PAF estimates against those264

produced by the LM procedure. For the latter, the optimisation function was applied to the mean PSD265

calculated for each set of simulated channel data. The simulation of broader alpha-band components also266

afforded the opportunity to assess the performance of the CoG estimator implemented in the SGF routine.267

Finally, we repeated the multi-channel simulations using a set of alpha signals sampled via a bimodal Gaussian268

window. This analysis was designed to replicate troublesome empirical cases in which IAF calculation is269

complicated by the presence of a split-peak; either through poor resolution of a single underlying component,270

or where dominant activity across multiple alpha-generators results in overlapping frequency components. This271

analysis likewise investigated the effect of modulating the composition of the alpha signal, and the SNR of the272
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combined time series, on IAF estimation. As the bimodal sampling window introduced the possibility of more273

extreme peaks (since peaks necessarily fell either side of the window centre), the span of Wα was extended to274

[6, 14 Hz]. This exception aside, all simulation analyses implemented the same set of parameters as described275

in Section 2.3.4.276

3 Results277

3.1 Empirical EEG data278

3.1.1 Global performance of the SGF routine279

Figure 2: Stacked bar chart displaying number of chan-

nels from which PAF (lower half) and CoG (upper

half) estimates were derived across participants. Es-

timates are further divided according to EEG recording

(pre/post). Totals normalised to take into account ex-

cluded channels. Post-experiment data were unavailable

for 3 participants (indicated by hatching).

Post-experiment resting-state recordings were missing280

for 3 participants. A total of 11 channels (all from281

separate recordings) were excluded on the basis of282

excessive kurtosis. This left a total 1096 PSDs to283

estimate across the sample (pre = 561, post = 535).284

Of these, a total 944 PAF (pre = 480, post = 464) and285

1003 CoG (pre = 507, post = 496) estimates were ex-286

tracted. As Figure 2 indicates, the estimation routine287

extracted a high proportion of PAF and CoG esti-288

mates across most individuals. Two participants failed289

to surpass the cMin threshold for both recordings290

and were therefore excluded from the PAF analysis.291

Visual inspection of channel spectra confirmed the292

absence of any consistent alpha peak. The CoG was293

however estimated for one of these individuals.294

3.1.2 Statistical properties of IAF estimates295

Mean IAF estimates were centred about 10 Hz, with296

the majority falling in the range of 9 to 11 Hz. Both297

estimators were similarly distributed in both sets of298

recordings (see Figure 3A). Intraclass correlation coefficients (ICC3,k: PAFM = .96; CoGM = .98) indicated299

that variance in PAFM and CoGM estimates was predominantly attributable to interindividual differences300
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Figure 3: Statistical properties of PAF and CoG estimates. A: Histograms displaying distribution of mean
PAF and CoG estimates across pre/post recordings. B: Scatterplots showing correlations between pre and post
IAF estimates (left column), and grand-averaged IAF estimates as a function of age (right column). Broken
line indicates perfect positive correlation. Red line indicates 2nd-degree polynomial fit.

across the sample, rather than intraindividual differences between recordings (see Figure 3B). These data301

are therefore in accord with previous reports of the IAF’s high temporal stability (at least within the same302

recording session) and interindividual variability (at least in the context of eyes-closed resting-state EEG).303

Kernel density estimation of grand-averaged alpha peak and gravity estimates (PAFGA and CoGGA, respectively)304

suggested that the probability density function underlying both estimators was well-characterised by a Gaussian305

distribution, although CoGGA was rather more heavy-tailed. Despite this difference, PAFGA and CoGGA306

produced remarkably consistent results (ICC3,k = .97; R2 = .90). This finding, which extends that reported in307

a smaller sample by Jann, Koenig, Dierks, Boesch, and Federspiel (2010), lends weight to the claim that these308

two estimators tap into the same fundamental oscillatory process(es).309

As a final point of comparison with previous findings, we examined the relation between age and IAF (Figure310

3B). Both estimators showed a similar trend towards reduced IAF as age increases beyond the fourth decade.311

However, this association accounted for a rather small proportion of the variance (R2 = 0.05 and 0.04 for312

PAFGA and CoGGA, respectively). This is consistent with previously reported findings from much larger313

datasets (e.g., Chiang et al., 2011).314
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3.2 Simulated EEG data315

3.2.1 PAF estimator performance as a function of SNR316

Preliminary analysis of synthetic EEG data focused on the number of PAF estimates extracted at each SNR317

level, and how well these estimates approximated the ground truth stipulated by the frequency of the alpha318

signal embedded in the synthetic time series. The results of this analysis are summarised in Table 1.319

Table 1: Summary statistics characterising PAF estimation as a

function of estimation method and SNR. PAFLM : PAF estimated

via the local maximum detection method; PAFSG: PAF estimated

via the Savitzky-Golay smoothing method; n PAF : total number of

PAF estimates extracted from 1000 simulated time series; RMSE :

root mean squared error; maxDiff : maximum absolute difference be-

tween estimated and target frequency; binShift: number of estimates

that diverged from their target frequency by > 0.24 Hz.

SNR 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50

n PAF

PAFLM 985 1000 1000 1000 1000 1000 1000 1000

PAFSG 659 955 997 1000 1000 1000 1000 1000

RMSE

PAFLM 1.06 0.22 0.10 0.08 0.07 0.07 0.07 0.07

PAFSG 0.09 0.09 0.08 0.07 0.07 0.07 0.07 0.07

maxDiff

PAFLM 5.42 4.83 0.70 0.50 0.50 0.23 0.22 0.14

PAFSG 0.62 0.75 0.75 0.31 0.26 0.18 0.13 0.13

binShift

PAFLM 224 70 29 8 4 0 0 0

PAFSG 7 14 3 2 1 0 0 0

The SGF technique failed to extract PAF estimates for approximately one-third of simulations at SNR = 0.05,320

however the proportion of estimated alpha peaks rapidly approached ceiling as SNR increased beyond 0.10.321

Average error (RMSE) was generally low for all levels of SNR, suggesting that alpha peaks were consistently322
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estimated with a high degree of accuracy when detected by the SGF analysis routine. Between 1-2% of323

PAF estimates in the SNR < 0.15 conditions deviated from their target frequencies by the equivalent of up324

to 3 frequency bins. Given the rareness of these binShift deviations in the higher SNR conditions, and the325

relatively low magnitude of such discrepancies when they did occur, it seems that the SGF technique exhibited326

near-optimal performance at SNR ≥ 0.30.327

The LM routine returned PAF estimates for all simulated spectra; however, 15 estimates in the SNR = 0.05328

condition were discarded as lower bound suprema. Even with these estimates removed, LM detection was329

associated with a 12-fold increase in average estimate error in the SNR = 0.05 condition as compared to the330

SGF method. Of the 224 estimates that were shifted by more than one frequency bin from their corresponding331

target frequency, 42 deviated by 1 to 2.5 Hz, while a further 56 deviated by > 2.5 Hz. All of these extreme errors332

constituted underestimates of the target component. The LM procedure was also markedly less accurate in the333

SNR = 0.10 condition, where it registered more than double the RMSE of SGF-resolved peaks. Average LM334

estimation error converged with that of the SGF technique in higher SNR conditions, although the magnitude335

of worst errors (maxDiff ) remained elevated relative to SGF-generated PAF estimates.336

To give a flavour of how smoothing may have influenced the PSD estimates generated by pwelch at each SNR337

level, a selection of simulated PSD functions are illustrated in Figure 4. Both techniques return identical338

PAF estimates at the higher SNRs. The SGF also tends to attenuate peak height, as would be expected of339

a smoothing procedure. The SNR = 0.30 panel reveals one instance where the application of the smoothing340

procedure to a reasonably blunt component results in the erroneous ascription of PAF to a neighbouring341

frequency bin. The advantages of the SGF technique are however thrown into relief by two scenarios where the342

LM estimator errs. In the SNR = 0.05 panel, the LM routine identifies a spurious fluctuation at 7.57 Hz as the343

PAF (Fα = 9.9 Hz). Here, the LM technique is disadvantaged by its inability to evaluate whether the detected344

LM constitutes a substantial deviation from background noise. The second scenario arises when the target345

component is suboptimally resolved by pwelch, resulting in either a broad structure featuring two maxima346

(SNR = 0.10) or a more clearly defined split-peak (SNR = 0.20). In both cases, smoothing helps to recover the347

shape of the peak component underlying the spectral data, thus culminating in more veridical PAF estimates348

than those derived via the LM method.349

In sum, this preliminary analysis provides compelling evidence that the SGF method generally furnishes350

accurate estimates of the PAF when a singular alpha component is present within the PSD. Such accuracy is351

maintained even at relatively low SNR levels, although the extraction of low-powered peaks amidst background352

noise becomes more challenging when SNR drops below 0.15. The more conservative nature of the SGF method353

(as compared to LM detection) in the context of low SNR may however be advantageous in protecting against354

15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/176792doi: bioRxiv preprint 

https://doi.org/10.1101/176792
http://creativecommons.org/licenses/by/4.0/


Figure 4: Channel spectra randomly sampled from each SNR condition. Blue functions represent PSD estimates
generated by pwelch. Red functions indicate effect of smoothing these estimates with the Savitzky-Golay filter
(SGF). Fα: Target alpha component frequency; PAFSG and PAFLM : Estimates of Fα rendered by the SGF
and local maximum methods, respectively. a.u.: Arbitrary unit; NaN : No estimate returned.

inaccurate PAF estimates issuing from spurious background fluctuations.355

3.2.2 Multi-channel dataset simulations356

Given that the PAF estimators approached ceiling performance at moderate levels of SNR in the previous357

analysis, we limited multi-channel simulations to a low (0.15) and a moderate (0.40) SNR condition. A total of358

100 datasets, each comprising 9 synthetic EEG channels, were simulated for each level of alpha component359

dispersal in both SNR conditions (yielding a total 5400 PSD estimates). The results of this analysis are360

summarised in Figure 5 and Table 2.361
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Figure 5: Box plots summarising spread of estimator error across simulation conditions. Centre marks indicate
median error, edges indicate interquartile range (IQR), whiskers indicate approximately 1.5 × IQR. Zero
estimate error (broken horizontal line) corresponds to extraction of the target alpha peak frequency. Negative
error indicates underestimation of the target frequency, positive error indicates overestimation. Dispersal of the
target alpha component broadest in the left column (α = 1.0) and narrowest in the right (α = 4.0). LM and
SG: PAF estimated via the Local Maximum and Savitzky-Golay routines, respectively. CoG: CoG estimated
via the Savitzky-Golay routine. Y-axis scaling varied across α levels to aid visualisation.
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Table 2: Estimator performance as a function of SNR and alpha

component distribution (α = 1.0 corresponds to a broad peak, α

= 4.0 a narrow peak). PAFLM : Local maximum PAF estimator;

PAFSG: Savitzky-Golay filter (SGF) PAF estimator; CoG: SGF

CoG estimator; RMSE : root mean squared error; maxDiff : maxi-

mum absolute difference between estimated and target frequency;

% Dev: percentage of estimates that diverged from the target fre-

quency by > 0.5 Hz; n chans: median (s.d.) number of channels

furnishing PAF/IAW estimates per simulated dataset.

SNR 0.15 0.40

α 1.0 2.5 4.0 1.0 2.5 4.0

RMSE

PAFLM 0.72 0.38 0.30 0.63 0.38 0.26

PAFSG 0.47 0.21 0.15 0.48 0.17 0.10

CoG 0.57 0.45 0.27 0.34 0.16 0.12

maxDiff

PAFLM 1.53 0.90 0.73 1.84 0.86 0.62

PAFSG 1.24 0.59 0.38 1.29 0.68 0.31

CoG 1.45 1.21 0.73 0.86 0.46 0.27

% Dev

PAFLM 63 17 14 42 22 3

PAFSG 30 2 0 33 1 0

CoG 42 30 7 18 0 0

n chans (s.d.)

PAFSG 5 (1.81) 6 (1.53) 8 (1.23) 5 (1.52) 7 (1.27) 9 (0.70)

CoG 9 (0.79) 9 (0.36) 9 (0.10) 9 (0) 9 (0) 9 (0)

Across all Distribution × SNR conditions, the SGF routine failed to generate average PAF estimates for 11362

datasets. Eight of these instances occurred in the low SNR condition (7 α = 1.0; 1 α = 2.5), while the remainder363

occurred when attempting to recover broad component structures (α = 1.0) in the moderate SNR condition.364

By contrast, both the LM and the CoG estimators rendered estimates for all 600 simulated datasets.365
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All three estimators demonstrated consistent reductions in error as alpha component dispersal diminished366

(i.e. as target peaks became narrower). This finding is congruent with the intuition that, irrespective of SNR,367

recovery of broader component structures poses a greater challenge for automated estimation procedures368

than the recovery of narrower, sharper peaks. Further, there was some indication of a Distribution × SNR369

interaction effect, such that error indices for a given α level were more elevated in the low (as compared to370

the moderate) SNR condition. Although this effect was somewhat marginal (and not entirely consistent) for371

the PAF estimators, it was more clearly apparent for the CoG estimator. These general trends (i.e. improved372

estimation accuracy with decreased component dispersal and increased SNR) were mirrored by both the average373

(median) number of channels that contributed to PAFSG estimation, and the degree of variability (s.d.) in the374

number of channels retained by the SGF procedure for each set of simulations. This is to say that a higher375

proportion of channels rendered PAF estimates as SNR increased and peak dispersal decreased, while volatility376

in the number of channels selected for mean PAF/IAW estimation correspondingly declined.377

As per the single component analysis, PAF estimates from low SNR simulations were more accurate on average378

when estimated with the SGF procedure. Unlike the prior analysis, however, the RMSE of PAFLM failed to379

converge with that of PAFSG in the moderate SNR condition (indeed, RMSE of the former was more than380

double that of the latter for both intermediate and narrow peak estimates). The magnitude of worst estimate381

errors (maxDiff ) was likewise consistently elevated for PAFLM as compared to PAFSG-generated estimates.382

Perhaps most notably, PAFLM produced considerably more estimate errors in excess of ± 0.5 Hz than PAFSG383

(27% vs. 11%). This contrast was most stark at α ≥ 2.5, where the error rate associated with PAFLM was 14%384

(compared to < 1% for PAFSG).385

Comparison of SGF-generated estimates of PAF and CoG discloses an interesting interaction between estimator386

performance and SNR. While the PAF estimator resulted in diminished RMSEs, lower maximal deviations, and387

fewer estimation errors ± 0.5 Hz in the low SNR simulations, this pattern was inverted (with the exception of388

one RMSE value) in the moderate SNR condition. This latter result provides encouraging evidence in favour of389

our method’s capacity to accurately localise the beginning and end of the IAW (at least when the embedded390

alpha signal is not too weak). Interestingly, even though the CoG performed less consistently when SNR was391

low, it still tended to be more reliable than the PAFLM estimator. For instance, the CoG method resulted in392

a 16% reduction in substantial estimate errors compared to the LM method. While CoG may therefore be393

more susceptible to bias than its PAFSG counterpart when channel spectra contain relatively high degrees of394

background noise, it may still offer tangible advantages over LM-based peak detection strategies.395
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3.2.3 Split-peak simulations396

Finally, we repeated the multi-channel dataset simulations with composite signals constructed using a bimodal397

sampling window. This window comprised two overlapping Gaussians (α = 2.5), the right-most of which was398

scaled equal to, 0.25, or 0.50 times larger than its counterpart. The frequency offset between the two Gaussian399

peaks was equivalent to 1.6 Hz. The results of this analysis are summarised in Figure 6 and Table 3.400

Figure 6: Box plots summarising spread of estimate deviation from the centre frequency of the sampling
window. Centre marks indicate median deviation, edges indicate interquartile range (IQR), whiskers indicate
approximately 1.5 × IQR. Zero deviation (broken horizontal line) corresponds to estimating the midpoint
between the two components. Peak locations indicated by dotted horizontal lines. Left column: Schematic of the
sampling window used to construct composite alpha signals simulated in corrosponding row. The discrepancy
between simulated peaks (higher relative to lower frequency bins) ranges from 0 (top row) to +0.50 (bottom
row). LM and SG: Local Maximum and Savitzky-Golay PAF estimates, respectively. CoG: Savitzky-Golay
CoG estimates.
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Table 3: Estimator performance as a function of SNR and relative

weighting of bimodal peaks. Right-most Gaussian function was

either 0, 0.25, or 0.50 times larger than the left (PeakDiff ). PAFLM :

Local maximum PAF estimator; PAFSG: Savitzky-Golay filter

(SGF) PAF estimator; CoG: SGF CoG estimator; RMSE : root mean

squared error (relative to centre frequency of sampled components);

maxDiff : maximum absolute difference between estimates and

centre frequency of sampled components; n chans: median (s.d.)

number of channels furnishing PAF/IAW estimates per dataset.

SNR 0.15 0.40

PeakDiff 0 +0.25 +0.50 0 +0.25 +0.50

RMSE

PAFLM 0.69 0.69 0.75 0.84 0.79 0.76

PAFSG 0.40 0.44 0.51 0.38 0.45 0.55

CoG 0.62 0.56 0.51 0.14 0.12 0.15

maxDiff

PAFLM 1.40 1.62 1.40 1.47 1.25 1.30

PAFSG 0.93 1.03 1.04 1.10 1.03 1.03

CoG 1.77 1.17 1.47 0.33 0.29 0.32

n chans (s.d.)

PAFSG 4 (1.52) 5 (1.49) 5 (1.68) 5 (1.36) 6 (1.64) 6 (1.31)

CoG 9 (0.46) 9 (0.48) 9 (0.51) 9 (0) 9 (0) 9 (0)

PAFSG failed to find evidence of a distinct peak in 11% of low SNR datasets (Equal = 14, +0.25 = 7, +0.50 =401

11), and 2% of moderate SNR datasets (Equal = 3, +0.25 = 4, +0.50 = 0). Median number of channel PAF402

estimates was also reduced as compared to the corresponding SNR conditions in the single-peak, multi-channel403

simulations. As per the single peak, multi-channel simulations, both PAFLM and CoG returned estimates for404

all 600 simulated datasets.405

Across all conditions, PAFLM returned more variable and extreme results than PAFSG; although interpretation406

of this observation is complicated by the presence of a (somewhat) dominant peak in the +0.25 and +0.50407

conditions. As both SNR and peak difference increase, PAFLM shows stronger migration towards the higher408
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frequency peak than either of the SGF estimators, although note that it is still more prone to erroneously409

ascribing the PAF to the secondary (lower frequency) peak. On the other hand, PAFSG is less liable to410

spurious fluctuations in the PSD, tending instead to curb PAF estimation towards the centre mass of the411

double component. This might suggest that marginal local maxima are absorbed within the recapitulation of a412

broader peak structure as a consequence of spectral smoothing. As SNR and peak inequality increase, PAFSG413

estimates cluster in closer proximity to the dominant peak. This then explains why RMSE increases relative to414

the centre frequency: as SNR improves and the split-peak becomes more asymmetrical (and hence, one peak415

more dominant over its competitor), more evidence accrues in favour of an underlying PAF.416

The CoG estimator demonstrates an intermediate level of variability compared to the PAF estimators under417

low SNR conditions, but is markedly less variable under moderate SNR conditions. The box plots in Figure418

6 also indicate that the CoG estimator performed similarly across the different degrees of peak inequality419

within each SNR level. Irrespective of peak scaling, CoG estimates were substantially more precise when SNR420

= 0.40. Indeed, compared to the other two estimators, CoG is both remarkably stable and closely centred421

around the centre frequency of the window function. As such, this finding provides compelling evidence that422

our implementation of the CoG estimator renders an accurate summary of the underlying alpha component423

distribution.424

4 Discussion425

We have proposed a novel method for estimating the two most prevalent indices of individual alpha frequency426

(IAF) in the literature. This method pairs a common approach to the automated detection of local maxima427

(i.e. searching for first derivative zero crossings) with a well established method of resolving spectral peaks428

(i.e. Savitzky-Golay filtering) to derive an estimate of peak alpha frequency (PAF). It also extends the logic of429

the first-derivative test to estimate the bounds of the alpha peak component, thus enabling calculation of the430

alpha-band centre of gravity (CoG). Like other automated curve-fitting algorithms reported in the literature431

(e.g., Chiang et al., 2008; Lodder & Putten, 2011), this method addresses key limitations of visual PSD analysis432

(e.g., proneness to subjective bias, inefficiency, and poor replicability), while improving upon alternative433

automated approaches that may be prone to various artifacts (e.g., failure to differentiate a single dominant434

peak from competing spectral peaks or spurious fluctuations, reliance on alpha-band reactivity). Unlike these435

algorithms, however, our method is openly accessible and easy to integrate within existing MATLAB and436

Python-based analysis pipelines.437

Our results demonstrate that the SGF technique can extract a high proportion of IAF estimates from an empirical438
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dataset, and that the sample-wide properties of these estimates (intraindividual stability, interindividual variance,439

etc) are consonant with prior reports in the literature. Furthermore, application of the technique to simulated440

datasets verified its ability to render accurate estimates of peak location, even under highly degraded SNR441

conditions. When extended to more complex simulations, the SGF technique was shown to recover target442

values with greater precision than an alternative peak detection method. We begin by considering the key443

findings of our analyses, before reflecting on present limitations and potential directions for future research.444

4.1 Estimation of IAFs from an empirical EEG dataset445

Savitzky-Golay filtering of pwelch-generated PSD functions resulted in the extraction of a rather impressive446

number of IAF estimates from a moderate-sized dataset. This suggests our technique offers substantive benefits447

in terms of data retention in comparison to subjective analysis, which can result in high rates of attrition if448

dominant peaks cannot be confidently distinguished from background noise (e.g. Bornkessel-Schlesewsky et al.,449

2015). We note also that our SGF method furnished a higher proportion of PAF estimates than that produced450

by the Gaussian curve-fitting procedure implemented by Haegens and colleagues (2014). It may be the case451

that our non-parametric approach, which attempts to smooth the PSD rather than fit a specified function to it,452

retains more data by virtue of its capacity to accommodate a broader range of alpha-band distributions.453

By the same token, it is reassuring that neither of the two cases in which the technique failed to extract454

PAF estimates demonstrated compelling evidence of any concerted alpha peak activity on visual inspection455

of their respective PSD plots. It is also worth pointing out that the diverse age range of participants within456

this study is likely to have posed a nontrivial challenge to any automated alpha-band quantification routine,457

given the typically reported changes in both spectral power and distribution associated with older adulthood458

(e.g., Dustman, Shearer, & Emmerson, 1999). That our technique was able to extract estimates for the vast459

majority of sampled individuals, and that it did so using a fixed set of parameters defined a priori on the basis460

of preliminary testing in an independent dataset, speaks to its capacity to derive resting-state IAF estimates461

across a broad spectrum of the healthy population.462

Comparison of grand-averaged PAF and CoG estimates revealed a high degree of intercorrelation, despite463

certain differences in their distribution. Although this might prompt concerns of redundancy, we interpret464

this finding positively: the CoG seems to tap into a similar underlying neural process (or set of processes)465

as the PAF. Although not necessary in the present analysis on account of the high proportion of PAFs that466

were extracted across participants, this finding suggests that the CoG estimator might warrant deployment467

as an alternative marker of IAF in cases where the PAF cannot be obtained. In any case, given the dearth468

of research directly comparing these two measures (most IAF-related research involves some variant of PAF,469
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perhaps on account of the additional complexities involved in calculating the CoG), we suggest it would be470

informative if investigators adopted the policy of reporting both indices in parallel. Should it be the case that471

PAF and CoG track one another almost identically, then only one of these measures need be selected for the472

remaining analysis (see for e.g., Jann et al., 2010). However, if it turns out that PAF and CoG diverge under473

certain circumstances, delineating such cases might help improve our understanding of the IAF (and alpha-band474

dynamics more generally). It is of course a notable advantage of our method that it enables investigators to475

rapidly derive sample-wide estimates of PAF and CoG simultaneously, thus furnishing a convenient means of476

estimator comparison. To the best of our knowledge, no previously reported automated technique provides this477

functionality.478

4.2 Estimation of simulated IAFs479

Our preliminary simulation analyses indicated that the SGF technique approached an optimal level of per-480

formance when 2 min synthetic signals featured approximately 36 s of alpha-band oscillations (SNR = 0.30).481

Indeed, the peak detection routine performed reasonably well when signals contained as little as 12 s of482

alpha-band activity, with fewer than 6% of simulated alpha components undetected or erroneously estimated483

by more than one frequency bin.484

Interestingly, our analysis shows that less sophisticated approaches to peak estimation can result in substantial485

error at comparably low levels of SNR. It is likely that most of these inaccurate estimates derived from spurious486

local maxima occurring due to fluctuations in background spectral activity. Indeed, the LM method’s propensity487

to underestimate PAF in low SNR conditions supports this interpretation, since the inverse power-law (which488

is not generally taken into account by LM detection methods) increases the probability of spurious local489

maxima at lower frequencies within the search window. Such artifacts are undesirable not only for the obvious490

reason that they introduce additional noise into IAF-related analyses, but also insofar as such errors diminish491

confidence in automated analysis methods (after all, such errors would presumably have been avoided had492

spectral data been subjected to visual inspection). Indeed, we consider it preferable that an automated peak493

detection routine should reject spectra showing inconclusive evidence of any concerted alpha-band activity,494

rather than generate highly deviant estimates of the underlying (albeit weak) signal. It is a strength of the495

SGF technique, then, that it applies more stringent criteria in the evaluation of candidate peaks.496

In addition to demonstrating that the SGF technique performs consistently well in low-to-moderate SNR497

conditions, our analysis also confirmed that the application of this smoothing procedure did not cause excessive498

distortion of PAF estimates. Furthermore, our analysis highlighted that discrete Fourier analysis methods499

(such as Welch’s modified periodogram) might precipitate artifactual split-peaks, and that such cases can be500
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ameliorated by means of a smoothing procedure. Consequently, the single component simulation analysis501

stands as a basic proof of concept that the SGF method is capable of (1) extracting a high proportion of502

underlying peak frequencies without introducing systematic bias, and (2) improving upon existing techniques of503

peak resolution and estimation, thus helping to maximise the number of IAF estimates that can be extracted504

from a given dataset. We acknowledge however that the estimation of sharply defined, single frequency alpha505

components may well be unrepresentative of genuine electrophysiological data in many contexts. While it is506

encouraging then that the SGF technique performed well under these reasonably favourable conditions, it was507

necessary to demonstrate its capabilities when confronted with more complex, ecologically valid signals.508

The multi-channel simulation analyses were designed to be more faithful to empirical resting-state EEG data, in509

as much as each target signal comprised a range of alpha components embedded within a variety of nonidentical510

(but highly correlated) time series. These simulations also enabled us to examine the performance characteristics511

of the SGF routine’s CoG estimator, which was expected to closely approximate the PAF in the context of512

Gaussian-distributed alpha components. The critical finding across all simulation conditions was that the SGF513

technique rendered PAF and CoG estimates that almost always improved upon LM-derived PAF estimates514

from averaged channel spectra. This finding held irrespective of whether estimator deficits were quantified in515

terms of the average error across simulated datasets, magnitude of worst (i.e. most deviant) estimate errors, or516

percentage of estimates in the dataset that deviated from the ground truth by more than ± 0.5 Hz (a threshold517

previously used by Lodder and Putten, 2011, to evaluate the performance of their peak detection algorithm).518

Leaving aside the superiority of the SGF over the LM detection routine, one might still raise the concern that519

its performance falls somewhat short when applied to broadly-dispersed alpha component structures. Indeed,520

the RMSE of the PAF estimator in both SNR conditions of the single-peak analysis approaches the ± 0.5521

Hz threshold demarcating substantial estimate deviation, while the CoG exceeds this limit when SNR is low.522

Correspondingly, low-α multi-channel simulations returned a much higher proportion of estimates exceeding523

the ± 0.5 Hz error threshold (as compared to simulations involving higher α levels), especially in the case524

of the PAF estimator. It ought to be borne in mind, however, that all simulation analyses were performed525

using SGF parameters identical to those used in the empirical analysis. This is pertinent because it is likely526

that the filter frame width (Fw = 11) was suboptimally narrow for the purpose of smoothing such broad527

peak structures. Indeed, post hoc analysis (not reported) revealed that simply doubling the length of the528

filter frame can halve the number of simulations that failed to produce PAF estimates, as well as reducing529

substantial estimate deviation by one third under moderate SNR conditions. Corresponding improvements530

were not realised however in the context of low SNR; hence, the recovery of broadly dispersed, relatively weak531

alpha signals remains technically challenging.532
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Of the three IAF estimators examined in these simulations, the CoG was most sensitive to manipulation533

of the SNR. That low SNR simulations should inflict notable performance decrements is hardly surprising,534

however, given that CoG calculation depends upon the spectral characteristics of the entire (individualised)535

alpha-band interval across all available channels. Not only does low SNR pose nontrivial difficulties in defining536

the bounds of the alpha interval (thus threatening to introduce noise by either including extraneous data from537

beyond the alpha interval, or excluding portions of the alpha band from analysis), the relative weakness of538

the alpha signal means that a higher proportion of background noise contributes to CoG calculation. This539

scenario may be compounded by the fact that the traditional method of computing CoG estimates averages540

across all available channels, not just those that contributed to calculation of the IAW (although note that541

the average number of channels selected to infer this bandwidth remained high even in the doubly challenging542

conditions posed by the low SNR × broad component dispersal combination of the single-peak analysis). It543

might be the case then that the central tendency-like properties of the CoG, which may have underpinned its544

strong performance in the moderate SNR simulations (where, of the three estimators, it was the least prone to545

substantial estimate deviation), render it more vulnerable to error when substantive alpha-band activity is546

relatively sparse. Consequently, it could be useful to investigate whether the performance of the CoG estimator547

in relatively noisy conditions can be augmented through the development of more robust methods of calculation.548

Taking the results of the single- and split-peak simulations together, it is tempting to conclude that the PAF549

estimator outperforms its CoG counterpart in the former scenario, while the opposite is true in the latter.550

Even under relatively favourable spectral conditions, the CoG estimator tended to underestimate the target551

frequency in the single-peak simulations. Indeed, CoG estimates increasingly deviated from the centre frequency552

of the target component as the latter became narrower, which seems counterintuitive if such peaks ought to be553

less difficult to resolve and parameterise. We suggest however that this tendency derived from the skewness554

introduced into the Gaussian-distributed target components when they were combined with the pink noise555

signal. This observation thus reinforces the point that PAF and CoG estimators summarise different features556

of the spectral distribution, and that they need not always converge. Analysis of the split-peak simulations557

suggests however that the SGF method may still be somewhat prone to PAF estimate distortion when the558

underlying pwelch routine fails to consistently resolve dual subcomponents across channel spectra. This finding559

suggests a more stringent cMin criterion might be advisable to avoid PAF estimates that might in fact reflect560

a more CoG-like average across channels that, due to random noise fluctuations, resolve only one of two (or561

more) underlying subcomponents. In our view, the fact that the SGF approach to PAF estimation does not562

fully eliminate the methodological and conceptual challenges posed by split-peaks is not so much an intrinsic563

shortcoming of our technique in particular, but reflects rather a problematic attribute of the PAF in general.564

These data thus lend weight to the argument that the CoG, insofar as it avoids these difficulties, might be565
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preferable to the PAF.566

4.3 Limitations and future developments567

We aimed to design an accessible, fast, automated routine that calculates reliable PAF and CoG estimates from568

posterior channel EEG data recorded during short periods of relaxed, eyes-closed wakefulness. Although limited569

in its current scope, we believe that the programme could be adapted for application across a broader range570

of empirical contexts (e.g., quantifying spectral dynamics across various frequency bands during task-related571

activity; quantifying peak characteristics across different topographical regions). It may prove more challenging,572

however, to accurately resolve estimates of IAF under conditions that are less conducive to the manifestation573

of a dominant alpha peak (or indeed, in populations known to manifest spectral characteristics that differ from574

those of neurotypical adults). Further research would therefore be required to establish the utility of the SGF575

technique for applications beyond the rather circumscribed conditions examined here.576

One aspect of performance that was not investigated in our analysis was whether the accuracy and precision of577

IAF estimates depend upon the method used to derive underlying PSD estimates. In its present implementation,578

our algorithm relies upon Welch’s method to estimate the PSD that is subjected to the SGF’s smoothing and579

differentiation operations. It may therefore be worthwhile to investigate whether alternative methods of PSD580

estimation (e.g., the multitaper method, continuous wavelet transform) can be exploited in conjunction with581

the SGF technique in order to further improve IAF estimation.582

Another possible avenue for optimising the performance characteristics of the SGF routine would be to develop583

a function that automatically adapts the Fw (filter width) and k (polynomial degree) parameters in accordance584

with the approximate span of the dominant frequency component located within the search window Wα.585

This would involve implementing an iterative fitting process, where the empirical features of the alpha-band586

component are initially parameterised in order to scale Fw and k. Once these parameters have been determined587

for the data at hand, smoothing and estimation procedures would proceed as described above.588

Finally, it would be desirable to create a package that incorporates the MATLAB implementation of the SGF589

routine within the EEGLAB graphical user interface. Not only would this help to make the procedure accessible590

to the broadest possible range of EEGLAB users, it would also provide a convenient platform for integrating591

visualisations of the spectral analysis that may (for instance) assist in the diagnosis of suboptimal parameter592

settings. We intend to explore a number of these possibilities in future work.593
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5 Conclusion594

We have developed a free, open-source programme for automatically estimating individual alpha frequency in595

resting-state EEG data. This programme has been shown to perform more accurately than a simpler automated596

peak detection routine, and may return a higher proportion of empirical IAF estimates than techniques relying597

on parametric curve-fitting procedures. Furthermore, this method is not dependent on phasic changes in598

alpha-band reactivity, which may produce biased IAF estimates. In addition to its obvious advantages from599

the perspective of replicability and efficiency, our simulations indicate that this method could help to improve600

the accuracy and precision of future IAF-related research. This technique may also open up new lines of601

methodological inquiry, insofar as it facilitates the direct comparison of two prevalent indices of IAF that have602

for the most part been investigated in isolation of one another.603
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