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Abstract1

Characterizing transcriptomes in non-model organisms has resulted in a massive increase in our2

understanding of biological phenomena. This boon, largely made possible via high-throughput sequencing,3

means that studies of functional, evolutionary and population genomics are now being done by hundreds or4

even thousands of labs around the world. For many, these studies begin with a de novo transcriptome5

assembly, which is a technically complicated process involving several discrete steps. The Oyster River6

Protocol (ORP), described here, implements a standardized and benchmarked set of bioinformatic processes,7

resulting in an assembly with enhanced qualities over other standard assembly methods. Specifically, ORP8

produced assemblies have higher TransRate scores and mapping rates, which is largely a product of the fact9

that it leverages a multi-assembler and kmer assembly process, thereby bypassing the shortcomings of any10

one approach. These improvements are important, as previously unassembled transcripts are included in11

ORP assemblies, resulting in a significant enhancement of the power of downstream analysis. Further, as12

part of this study, we show that assembly quality is unrelated to taxonomy, nor is it related to the number13

of reads generated, above 30 million reads. Code Availability: The version controlled open-source code is14

available at https://github.com/macmanes-lab/Oyster_River_Protocol. Instructions for software15

installation and use, and other details are available at http://oyster-river-protocol.rtfd.org/.16
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1 Introduction19

For all biology, modern sequencing technologies has provided for an unprecedented opportunity to gain a20

deep understanding of genome level processes that underlie a very wide array of natural phenomena, from21

intracellular metabolic processes to global patterns of population variability. Transcriptome sequencing has22

been influential, particularly in functional genomics, and has resulted in discoveries not possible even just a23

few years ago. This in large part is due to the scale at which these studies may be conducted. Unlike24

studies of adaptation based on one or a small number of candidate genes (e.g. (1; 2)), modern studies may25

assay the entire suite of expressed transcripts – the transcriptome – simultaneously. In addition to issues of26

scale, as a direct result of enhanced dynamic range, newer sequencing studies have increased ability to27

simultaneously reconstruct and quantitate lowly- and highly-expressed transcripts, (3; 4). Lastly, improved28
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methods for the detection of differences in gene expression (e.g., (5; 6)) across experimental treatments has29

resulted in increased resolution for studies aimed at understanding changes in gene expression.30

As a direct result of their widespread popularity, a diverse toolset for the assembly and analysis of31

transcriptome exists. Notable amongst the wide array of tools include several for quality visualization -32

FastQC (available here) and SolexaQA (7), read trimming (e.g. Skewer (8), and Trimmomatic (9), read33

normalization (khmer (10)), error correction (SEECER (11) and RCorrector (12)), assembly (Trinity (13),34

SOAPdenovoTrans (14)), and assembly verification (TransRate (15)), BUSCO (Benchmarking Universal35

Single-Copy Orthologs - (16)), and RSEM-eval (17)). The ease with which these tools may be used to36

produce transcriptome assemblies belies the true complexity underlying the overall process. Indeed, the37

subtle (and not so subtle) methodological challenges associated with transcriptome reconstruction may38

result in highly variable assembly quality. Production of an accurate transcriptome assembly requires a39

large investment in time and resources. Each step in it’s production requires careful consideration. Here, I40

propose an evidence-based protocol for assembly that results in the production of the high quality41

transcriptome assemblies.42

This manuscript describes the development of a multi-assembler and multi-kmer protocol. This43

innovation is critical, as all assembly solutions treat the read data in ways that bias transcript recovery.44

Specifically, the development of assembly software comes the use of a set of heuristics, that are necessary45

given the scope of the assembly problem itself. Given each software development team carries with it a46

unique set of ideas related to these heuristics, individual assemblers exhibit unique assembly behavior. By47

leveraging a multi-assembler approach, the strengths of one assembler may complement the weaknesses of48

another. In addition to biases related to assembly heuristics, it is well known that assembly kmer-length has49

important effects on transcript reconstruction, with shorter kmers more efficiently reconstructing50

lower-abundance transcripts relative to longer assembly kmer-lengths. Given this, assembling with multiple51

different kmer lengths, then merging the resultant assemblies may effectively reduce this type of bias.52

Recognizing these issue, I hypothesize that an assembly that resulted from the combination of multiple53

different assemblers and lengths of assembly-kmers would be better than each individual assembly, across a54

variety of metrics.55
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2 Methods56

2.1 Datasets57

In an effort at benchmarking the assembly and merging protocols, I downloaded a set of publicly available58

RNAseq datasets (Table 1) that had been produced on the Illumina sequencing platform. These datasets59

were chosen to represent a variety of taxonomic groups, so as to demonstrate the broad utility of the60

developed methods. Because datasets were selected randomly with respect to sequencing center and read61

number, they are likely to represent the typical quality of Illumina data circa 2014-2017.62

Table 163

Type Accession Species Num. Reads Read Length

Plant DRR053698 Cephalotus follicularis 126M 90bp

Plant DRR082659 Aeginetia indica 69M 90bp

Insect ERR489297 Anopheles gambiae 206M 100bp

Tapeworm DRR030368 Echinococcus multilocularis 73M 100bp

Plant DRR031870 Vigna angularis 60M 100bp

Fish DRR046632 Oncorhynchus mykiss 82M 76bp

Plant DRR069093 Hevea brasiliensis 103M 100bp

Amoebozoa ERR058009 Entamoeba histolytica 68M 100bp

Nematode ERR1016675 Heterorhabditis indica 51M 100bp

Mammal SRR2086412 Mus musculus 54M 100bp

Plant SRR3499127 Nicotiana tabacum 30M 150bp

Mammal SRR1789336 Oryctolagus cuniculus 31M 100bp

Polychaeta SRR2016923 Phyllodoce medipapillata 86M 100bp

Schistosome ERR1674585 Schistosoma mansoni 39M 100bp

Mammal DRR036858 Mus musculus 114M 100bp

64

Table 1 lists the datasets used in this study. All datasets are publicly available for download by65

accession number at the European Nucleotide Archive.66

2.2 Software67

The Oyster River Protocol is implemented as a stand-alone makefile which coordinates all steps described68

below. All scripts are available at https://github.com/macmanes-lab/Oyster_River_Protocol, and run69
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on the Linux platform. The software is version controlled and openly-licensed to promote sharing and reuse.70

A guide for users is available at http://oyster-river-protocol.rtfd.io.71

2.3 Pre-assembly procedures72

For all assemblies performed, Illumina sequencing adapters were removed from both ends of the sequencing73

reads, as were nucleotides with quality Phred ≤ 3, using the program Trimmomatic version 0.36 (9),74

following the recommendations from (18). After trimming, reads were error corrected using the software75

RCorrector version 1.0.2 (12), following recommendations from (19). The code for running this step of the76

Oyster River protocols is available at here. The trimmed and error corrected reads where then subjected to77

de novo assembly.78

2.4 Assembly79

I assembled each RNAseq dataset using three different de novo transcriptome assemblers and three different80

kmer lengths. First, I assembled the reads using Trinity release 2.4.0 (13), and default settings (k=25),81

without read normalization. Next, the SPAdes RNAseq assembler (version 3.10) (20) was used, in two82

distinct runs, using kmer sizes 55 and 75. Lastly, reads were assembled using the assembler Shannon version83

0.0.2 (21), using a kmer length of 75. This assembly process resulted in the production of four distinct84

assemblies. The code for running this step of the Oyster River protocols is available here.85

To compare the optimized Oyster River Protocol with a more standard workflow conducted where a86

single kmer length is used (k=25), trimmed (but not error corrected) reads were assembled using the default87

settings in Trinity, with the exception of digital normalization, which was not performed.88

2.5 Assembly Merging via OrthoFuse89

To merge the four assemblies produced as part of the Oyster River Protocol, I developed new software that90

effectively merges transcriptome assemblies. Described in brief, OrthoFuse begins by concatenating all91

assemblies together, then forms groups of transcripts by running a version of OrthoFinder (22) packaged92

with the ORP, modified to accept nucleotide sequences from the merged assembly. These groupings93

represent groups of homologous transcripts. Of note, the inflation parameter has been increase by default to94

I=4, to prevent the collapsing of transcript isoforms into a single groups. After Orthofinder has completed,95

a modified version of TransRate version 1.0.3 (15) which is packaged with the ORP, is run on the merged96

assembly, after which the best (= highest contig score) transcript is selected from each group and placed in97
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a new assembly file to represent the entire group. The resultant file, which contains the highest scoring98

contig for each orthogroup, may be used for all downstream analyses. OrthoFuse is run automatically as99

part of the Oyster River Protocol, and additionally is available as a stand along script, here.100

2.6 Assembly Evaluation101

All assemblies were evaluated using ORP-TransRate and BUSCO version 3.0.2. TransRate evaluates102

transcriptome assembly contiguity by producing a score based on contig and mapping metrics, while BUSCO103

evaluates assembly content by searching the assembly for conserved single copy orthologs. In addition to104

this, final assemblies were compared to the Swissprot protein database using blastX (23) and an e-value of105

1e−10.106

2.7 Statistics107

All statistics analyses were conducted in R version 3.4.0 (24). Violin plots were constructed using the108

beanplot (25) and the beeswarm R packages (https://CRAN.R-project.org/package=beeswarm).109

Expression distributions were plotted using the ggjoy package110

(https://CRAN.R-project.org/package=ggjoy). Plots for visualizing the unique content of each assembly111

were constructed using the UpsetR package (26).112

3 Results113

Fifteen RNAseq datasets, ranging in size from (30-206M paired end reads) were assembled using the Oyster114

River Protocol and with Trinity. Each assembly was evaluated using the software BUSCO and TransRate.115

From these, seven metrics were chosen to represent the quality of the produced assemblies. Of note, all the116

assemblies produced as part of this work are available here, and will be moved to dataDryad after117

acceptance.118

3.1 Trinity-assembled transcripts119

Trinity assemblies generally completed on standard a standard Linux server using 24 cores in less than 24120

hours. RAM requirement is estimated to be close to 0.5Gb per million paired-end reads. The assemblies on121

average contained 176k transcripts (range 19k - 643k) and 97Mb (range 14MB - 198Mb). Other quality122

metrics will be discussed below, specifically in relation to the ORP produced assemblies.123
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3.2 Oyster River Protocol- assembled transcripts124

ORP assemblies generally completed on standard a standard Linux server using 24 cores in three to five125

days. Typically Trinity was the longest running assembler, with the individual SPAdes assemblies being126

the shortest. RAM requirement is estimated to be 1.5Gb - 2Gb per million paired-end reads, with SPAdes127

requiring the most. The assemblies on average contained 153k transcripts (range 23k - 625k) and 64Mb128

(range 8MB - 181Mb).129

3.2.1 Assembly Structure130

The structural integrity of each assembly was evaluated using the TransRate software package. Using131

mapping metrics, I evaluated each of the Trinity and ORP produced assemblies (Figure 1). As many132

downstream application depend critically on read mapping, assemblies that maximize this metric are133

desirable. The split violin plot presented in figure 1A visually represent the mapping rates of each assembly,134

with lines connecting the mapping rates of datasets assembled with Trinity and with the ORP, respectively.135

The average mapping rate of the Trinity assembled datasets was 83% (sd=9%), while the average mapping136

rates of the ORP assembled datasets was 95% (sd=2%). This test is statistically significant (One sided137

Wilcoxon rank sum test, p = 0.0001322). Figure 1B describes the distribution of assembly scores, which is a138

synthetic metric taking into account multiple mapping and coverage-based statistics. The Trinity139

assemblies had an average score of 0.22 (sd = .1), while the ORP assembled datasets had an average score of140

0.33 (sd = .08). This test is statistically significant (One sided Wilcoxon rank sum test, p-value = 0.01836).141

Lastly, figure 1C describes the distribution of optimal assembly scores, which is the same synthetic metric as142

above, but measured after the removal of poorly-supported transcripts. The Trinity assemblies had an143

average score of 0.32 (sd = .09), while the ORP assembled datasets had an average score of 0.45 (sd = .08).144

This test is statistically significant (One sided Wilcoxon rank sum test, p-value = 0.001351).145

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2017. ; https://doi.org/10.1101/177253doi: bioRxiv preprint 

https://doi.org/10.1101/177253
http://creativecommons.org/licenses/by/4.0/


Figure 1146
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Figure 1. TransRate generated statistics. Split violin plots depict the relationship between Trinity147

assemblies (brown color) and ORP produced assemblies (blue color). Red and black dots indicate the148

value of a given metric for each assembly. Lines connecting the red and black dots connect datasets149

assembled via the two methods.150

3.2.2 Assembly Content151

The genic content of assemblies was measured using the software package BUSCO version 3.0.2, using the152

Eukaryota database. Trinity assemblies contained on average 86% (sd = 21%) of the full-length orthologs,153

while the ORP assembled datasets contained on average 85% (sd = 16%) of the full length transcripts. This154

different is not statistically significant (Figure 2A). Figure 2B depicts the percent of missing transcripts in155

Trinity and ORP assembled datasets. The Trinity and ORP assemblies each contained on average 4.4%156

(sd = 8.7%) missing orthologs. Figure 2C depicts the percent of transcripts that are reconstructed in157

fragmented (not full length) forms in Trinity and ORP assembled datasets. The Trinity assembled158

datasets contained 10% (sd = 17%) of fragmented transcripts while the ORP assemblies each contained on159

average 10.7% (sd = 13%) of fragmented orthologs. This difference is not statistically significantly different.160

The rate of transcript duplication, depicted in figure 2D is 47% (sd = 20%) for Trinity assemblies, and161

34% (sd = 15%) for ORP assemblies. This result is statistically significant (One sided Wilcoxon rank sum162

test, p-value = 0.02953).163
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Figure 2164
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Figure 2. BUSCO generated statistics. Split violin plots depict the relationship between Trinity165

assemblies (brown color) and ORP produced assemblies (blue color). Red and black dots indicate the166

value of a given metric for each assembly. Lines connecting the red and black dots connect datasets167

assembled via the two methods.168

3.2.3 Assembler Contributions169

To understand the relative contribution of each assembler to the final merged assembly produced by the170

Oyster River Protocol, I counted the number of transcripts in the final merged assembly that originated171

from a given assembler. On average, 33% of transcripts in the merged assembly were produced by the172

Trinity assembler. 18% were produced by Shannon, while SPAdes produced the remaining 49% of173

transcripts.174

To further understand the potential biases intrinsic to each assembler, I plotted the distribution of gene175

expression estimates for each merged assembly, broken down by the assembler of origin (Figure 3, depicting176

four randomly selected representative assemblies). As is evident, most transcripts are lowly expressed, with177

SPAdes and Trinity both doing a sufficient job in reconstructing these transcripts. Of note, the SPAdes178

assemblies using kmer-length=75 is biased, as expected, towards more highly expressed transcripts relative179

to kmer-length 55 assemblies. Shannon demonstrates a unique profile, consisting of, almost exclusively180

high-expression transcripts, given a previously undescribed bias against low-abundance transcripts.181
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Figure 3182
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Figure 3 depicts the distribution of gene expression (log(TPM+1)), broke down by individual assembly,183

for four representative ORP merged final assemblies. As predicted, the use of a higher kmer value with184

the SPAdes assembler resulted in biasing reconstruction towards more highly expressed transcripts.185

Interestingly, Shannon uniquely exhibits a strong bias towards the reconstruction of high-expression186

transcripts (or away from low-abundance transcripts).187

Lastly, though the same read data were assembled, each assembler reconstructed unique transcripts.188

Using the dataset DRR069093 as an example, across the four different assemblies, a sum of 276852189

SwissProt entries were matched. Of these 86% were recovered in all four assemblies. The SPAdes assembly190

using a kmer value of 55 recovered 96% of all transcripts, while the SPAdes assembly using a kmer value of191

75 recovered 93%. The Trinity assembly recovered 96% of the transcripts, while Shannon recovered 90%.192

Depicted in Figure 4, the SPAdes assembly using a kmer value of 55 recovered 3749 unique transcripts,193

Trinity recovered 3055, Shannon recovered 2526, and SPAdes assembly using a kmer value of 75 recovered194
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Figure 4 depicts the overlap in identified transcripts between the various assemblies for one197

representative (DRR069093) dataset.198

4 Discussion199

For non-model organisms lacking reference genomic resources, the error correction, adapter and quality200

trimmed reads should be assembled de novo into transcripts. While the assembly package Trinity (13) is201

thought to currently be the most accurate stand-alone assembler (17), this study demonstrates that a202

merged assembly with multiple assemblers (and kmer lengths) results in the highest quality assembly.203

Specifically, the Oyster River Protocol, which contains a recipe for read error correction, quality trimming,204

assembly with multiple software packages and merging, resulted in a final assembly, the structure of which205

was greatly improved.206

TransRate scores were significantly improved by using the Oyster River Protocol for transcriptome207

assembly. One metric in particular, the read mapping metric, was vastly improved (Figure 1A). The aspect208

of quality that this metric assays is critical - specifically measuring how representative of the reads the209

assembly is. If we assume that the vast majority of generated reads come from the biological sample under210
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study, when reads fail to map, that fraction of the biology is lost. Troublesome, this biology is lost from all211

downstream analysis and inference. This study conclusively demonstrates that across a wide variety of taxa,212

assembling with Trinity alone may result in a substantial decrease in mapping rate and in turn, the lost213

ability to draw conclusions from that fraction of the sample.214

In contrast to TransRate scores, the BUSCO metrics were essentially unchanged by assembly with the215

Oyster River Protocol. The recovery of complete orthologs, the proportion of orthologs reconstructed in216

fragmented form, and missing orthologs were stable across both assembly methods. The number of217

orthologs recovered in duplicate (>1 copy), was decreased when using the ORP. Here, we hypothesize that218

the relative frequency of transcript duplication may have important implications for downstream abundance219

estimation, with less duplication potentially resulting in more accurate estimation. While gene expression220

quantitation software (27; 28) probabilistically assigns reads to transcripts in an attempt at mitigating this221

issue, while not evaluated as part of this work, a primary solution related to decreasing artificial transcript222

duplication could offer significant advantages.223

4.1 Each Assembler Recovers Different Transcripts224

The main benefit of the Oyster River Protocol is related to the fact that assemblies are constructed four225

different ways, using three different assemblers (Trinity, Shannon, SPAdes) and three different values for226

kmer length (k=25,55,75). As described above, each assembler carries with it a set of heuristics, and these227

heuristics translate into differential recovery of distinct fractions of the transcript community. Figure 3228

depicts this process. Looking at the distribution of gene expression, within the SPAdes assemblies, kmer229

length influences the recovery of transcripts, with longer kmers shifting the distribution to more highly230

expressed transcripts. Interestingly, Shannon seems to have a very different set of expression-based biases,231

demonstrating an apparent bias against low-abundance transcripts. Trinity exhibits a typical distribution,232

similar to the SPAdes assembler using a shorter value for kmer length.233

Taken together, these expression profiles suggest a mechanism by which the ORP outperforms, Trinity,234

and presumably other single-assembler assemblies. While there is substantial overlap in transcript recovery,235

each assembler recovers unique transcripts (Figure 5), based on expression (and potentially other236

properties), which when merged together into a final assembly, increases the completeness237
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4.2 Does Taxonomy Influence Assembly Quality?238

Because I was interested in designing a study with broad applicability, I chose read datasets that239

represented a variety of Eukaryotic groups. Although not originally designed for this purpose, this decision240

may allow me to understand the influence that intrinsic properties of transcription and transcriptome241

complexity in different taxonomic groupings may have on assembly. Figure 5 depicts several previously242

described assembly metrics, broken down by assembly method and by taxonomic group. Given the small243

sample (n=4 vertebrate, n=5 plant, n=6 invertebrate), it is impossible to draw strong conclusions, but244

generally, both Trinity and the Oyster River Protocol perform equally well across groups. Invertebrate245

assembly seems to be the most variable in resultant quality, though this may be driven by low sample size246

coupled with the specific (potentially low quality) datasets chosen at random.247

Figure 5248
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Figure 5 depicts a subset of assembly metrics broken down by taxonomic group. In general, no249

consistent patterns are observed, suggesting that the described assembly protocol performs well across250

eukaryotic groups.251

4.3 Does Read Depth Influence Quality?252

This study included read datasets of a variety of sizes. Because of this, I was interested in understanding if253

the number of reads used in assembly was strongly related to the quality of the resultant assembly.254

Conclusively, this study demonstrates that between 30 million paired-end reads and 200 million paired-end255
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reads, no strong patterns in quality are evident (Figure 6). This finding is in line with previous work, (29)256

suggesting that assembly metrics plateau at between 20M and 40M read pairs, with sequencing beyond this257

level resulting in minimal gain in performance.258

Figure 6259
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Figure 6 depicts the relationship between the a subset of assembly metrics and the number of read pairs.260

There is no significant relationship. In all cases the x-axis is millions of paired-end reads.261

5 Conclusions262

For non-model organisms lacking reference genomic resources, the error correction, adapter and quality263

trimmed reads should be assembled de novo into transcripts. While the assembly package Trinity (13) is264

thought to currently be the most accurate stand-alone assembler (17), a merged assembly with multiple265

assemblers results in the highest quality assembly. Specifically, use of the Oyster River Protocol, which266

contains a recipe for read error correction, quality trimming, assembly with multiple software packages, and267

merging resulted in a final assembly, the structure of which was greatly improved.268

Specifically, the improvements in assembly metrics described here are attributed to the multi-way269

approach, where three different assemblers and three different kmer lengths were used. This approach allows270

the strengths of one approach to effectively complement the weaknesses of another, thereby resulting in a271
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more complete assembly than otherwise possible. These enhancements are important, as unassembled272

transcripts are invisible to all downstream analysis.273
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