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Abstract1

Characterizing transcriptomes in non-model organisms has resulted in a massive increase in our2

understanding of biological phenomena. This boon, largely made possible via high-throughput sequencing,3

means that studies of functional, evolutionary and population genomics are now being done by hundreds or4

even thousands of labs around the world. For many, these studies begin with a de novo transcriptome5

assembly, which is a technically complicated process involving several discrete steps. The Oyster River6

Protocol (ORP), described here, implements a standardized and benchmarked set of bioinformatic processes,7

resulting in an assembly with enhanced qualities over other standard assembly methods. Specifically, ORP8

produced assemblies have higher Detonate and TransRate scores and mapping rates, which is largely a9

product of the fact that it leverages a multi-assembler and kmer assembly process, thereby bypassing the10

shortcomings of any one approach. These improvements are important, as previously unassembled11

transcripts are included in ORP assemblies, resulting in a significant enhancement of the power of12

downstream analysis. Further, as part of this study, I show that assembly quality is unrelated with the number13

of reads generated, above 30 million reads. Code Availability: The version controlled open-source code is14

available at https://github.com/macmanes-lab/Oyster_River_Protocol. Instructions for software15

installation and use, and other details are available at http://oyster-river-protocol.rtfd.org/.16
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1 Introduction19

For all biology, modern sequencing technologies have provided for an unprecedented opportunity to gain a20

deep understanding of genome level processes that underlie a very wide array of natural phenomena, from21

intracellular metabolic processes to global patterns of population variability. Transcriptome sequencing has22

been influential (1; 2), particularly in functional genomics (3; 4), and has resulted in discoveries not possible23

even just a few years ago. This in large part is due to the scale at which these studies may be conducted24

(5; 6). Unlike studies of adaptation based on one or a small number of candidate genes (e.g., (7; 8)), modern25

studies may assay the entire suite of expressed transcripts – the transcriptome – simultaneously. In addition26

to issues of scale, as a direct result of enhanced dynamic range, newer sequencing studies have increased27
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ability to simultaneously reconstruct and quantitate lowly- and highly-expressed transcripts (9; 10). Lastly,28

improved methods for the detection of differences in gene expression (e.g., (11; 12)) across experimental29

treatments have resulted in increased resolution for studies aimed at understanding changes in gene30

expression.31

As a direct result of their widespread popularity, a diverse toolset for the assembly of transcriptome exists,32

with each potentially reconstructing transcripts others fail to reconstruct. Amongst the earliest of specialized33

de novo transcriptome assemblers were the packages Trans-ABySS (13), Oases (14), and SOAPdenovoTrans34

(15), which were fundamentally based on the popular de Bruijn graph-based genome assemblers ABySS (16),35

Velvet (17), and SOAP (18) respectively. These early efforts gave rise to a series of more specialized de novo36

transcriptome assemblers, namely Trinity (19), and IDBA-Tran (20). While the de Bruijn graph approach37

remains powerful, newly developed software explores novel parts of the algorithmic landscape, offering38

substantial benefits, assuming novel methods reconstruct different fractions of the transcriptome.39

BinPacker (21), for instance, abandons the de Bruijn graph approach to model the assembly problem after40

the classical bin packing problem, while Shannon (22) uses information theory, rather than a set of software41

engineer-decided heuristics. These newer assemblers, by implementing fundamentally different assembly42

algorithms, may reconstruct fractions of the transcriptome that other assemblers fail to accurately assemble.43

In addition to the variety of tools available for the de novo assembly of transcripts, several tools are44

available for pre-processing of reads via read trimming ((e.g., Skewer (23), Trimmomatic (24), Cutadapt (25)),45

read normalization (khmer (26)), and read error correction (SEECER (27) and RCorrector (28), Reptile (29)).46

Similarly, benchmarking tools that evaluate the quality of assembled transcriptomes including TransRate47

(30), BUSCO (Benchmarking Universal Single-Copy Orthologs - (31)), and Detonate (32) have been developed.48

Despite the development of these evaluative tools, this manuscript describes the first systematic effort49

coupling them with the development of a de novo transcriptome assembly pipeline.50

The ease with which these tools may be used to produce and characterize transcriptome assemblies51

belies the true complexity underlying the overall process (33; 34; 35; 36). Indeed, the subtle (and not so52

subtle) methodological challenges associated with transcriptome reconstruction may result in highly variable53

assembly quality. In particular, while most tools run using default settings, these defaults may be sensible54

only for one specific (often unspecified) use case or data type. Because parameter optimization is both55

dataset-dependent and factorial in nature, an exhaustive optimization particularly of entire pipelines, is never56

possible. Given this, the production of a de novo transcriptome assembly requires a large investment in time57

and resources, with each step requiring careful consideration. Here, I propose an evidence-based protocol for58

assembly that results in the production of high quality transcriptome assemblies, across a variety of59
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commonplace experimental conditions or taxonomic groups.60

This manuscript describes the development of The Oyster River Protocol1 for transcriptome assembly. It61

explicitly considers and attempts to address many of the shortcomings described in (10), by leveraging a62

multi-kmer and multi-assembler strategy. This innovation is critical, as all assembly solutions treat the63

sequence read data in ways that bias transcript recovery. Specifically, with the development of assembly64

software comes the use of a set of heuristics that are necessary given the scope of the assembly problem65

itself. Given each software development team carries with it a unique set of ideas related to these heuristics66

while implementing various assembly algorithms, individual assemblers exhibit unique assembly behavior. By67

leveraging a multi-assembler approach, the strengths of one assembler may complement the weaknesses of68

another. In addition to biases related to assembly heuristics, it is well known that assembly kmer-length has69

important effects on transcript reconstruction, with shorter kmers more efficiently reconstructing70

lower-abundance transcripts relative to more highly abundant transcripts. Given this, assembling with71

multiple different kmer lengths, then merging the resultant assemblies may effectively reduce this type of72

bias. Recognizing these issue, I hypothesize that an assembly that results from the combination of multiple73

different assemblers and lengths of assembly-kmers will be better than each individual assembly, across a74

variety of metrics.75

In addition to developing an enhanced pipeline, the work suggests an exhaustive way of characterizing76

assemblies while making available a set of fully-benchmarked reference assemblies that may be used by77

other researchers in developing new assembly algorithms and pipelines. Although many other researchers78

have published comparisons of assembly methods, up until now these have been limited to single datasets79

assembled a few different ways (37; 38), thereby failing to provide more general insights.80

2 Methods81

2.1 Datasets82

In an effort at benchmarking the assembly and merging protocols, I downloaded a set of publicly available83

RNAseq datasets (Table 1) that had been produced on the Illumina sequencing platform. These datasets84

were chosen to represent a variety of taxonomic groups, so as to demonstrate the broad utility of the85

developed methods. Because datasets were selected randomly with respect to sequencing center and read86

1Named the Oyster River Protocol because the ideas, and some of the code, was developed while overlooking the Oyster River, located
in Durham, New Hampshire. NB, the naming assembly of protocols after bodies of water was, to the best of my knowledge, first done by
C. Titus Brown (The Eel Pond Protocol: http://khmer-protocols.readthedocs.io/en/latest/mrnaseq/index.html), and may have
subconsciously influenced me in naming this protocol.
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number, they are likely to represent the typical quality of Illumina data circa 2014-2017.87

Table 188

Type Accession Species Num. Reads Read Length

Animalia ERR489297 Anopheles gambiae 206M 100bp

Animalia DRR030368 Echinococcus multilocularis 73M 100bp

Animalia ERR1016675 Heterorhabditis indica 51M 100bp

Animalia SRR2086412 Mus musculus 54M 100bp

Animalia DRR036858 Mus musculus 114M 100bp

Animalia DRR046632 Oncorhynchus mykiss 82M 76bp

Animalia SRR1789336 Oryctolagus cuniculus 31M 100bp

Animalia SRR2016923 Phyllodoce medipapillata 86M 100bp

Animalia ERR1674585 Schistosoma mansoni 39M 100bp

Plant DRR082659 Aeginetia indica 69M 90bp

Plant DRR053698 Cephalotus follicularis 126M 90bp

Plant DRR069093 Hevea brasiliensis 103M 100bp

Plant SRR3499127 Nicotiana tabacum 30M 150bp

Plant DRR031870 Vigna angularis 60M 100bp

Protozoa ERR058009 Entamoeba histolytica 68M 100bp

89

Table 1 lists the datasets used in this study. All datasets are publicly available for download by accession90

number at the European Nucleotide Archive or NCBI Short Read Archive.91

2.2 Software92

The Oyster River Protocol can be installed on the Linux platform, and does not require superuser privileges,93

assuming Linuxbrew (39) is installed. The software is implemented as a stand-alone makefile which94

coordinates all steps described below. All scripts are available at95

https://github.com/macmanes-lab/Oyster_River_Protocol, and run on the Linux platform. The96

software is version controlled and openly-licensed to promote sharing and reuse. A guide for users is97

available at http://oyster-river-protocol.rtfd.io.98
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2.3 Pre-assembly procedures99

For all assemblies performed, Illumina sequencing adapters were removed from both ends of the sequencing100

reads, as were nucleotides with quality Phred ≤ 2, using the program Trimmomatic version 0.36 (24),101

following the recommendations from (40). After trimming, reads were error corrected using the software102

RCorrector version 1.0.2 (28), following recommendations from (41). The code for running this step of the103

Oyster River protocols is available at104

https://github.com/macmanes-lab/Oyster_River_Protocol/blob/master/oyster.mk#L134. The105

trimmed and error corrected reads were then subjected to de novo assembly.106

2.4 Assembly107

I assembled each trimmed and error corrected dataset using three different de novo transcriptome108

assemblers and three different kmer lengths, producing 4 unique assemblies. First, I assembled the reads109

using Trinity release 2.4.0 (19), and default settings (k=25), without read normalization. The decision to110

forgo normalization is based on previous work (42) showing slightly worse performance of normalized111

datasets. Next, the SPAdes RNAseq assembler (version 3.10) (43) was used, in two distinct runs, using kmer112

sizes 55 and 75. Lastly, reads were assembled using the assembler Shannon version 0.0.2 (22), using a kmer113

length of 75. These assemblers were chosen based on the fact that they [1] use an open-science114

development model, whereby end-users may contribute code, [2] are all actively maintained and are115

undergoing continuous development, and [3] occupy different parts of the algorithmic landscape.116

This assembly process resulted in the production of four distinct assemblies. The code for running this117

step of the Oyster River protocols is available at118

https://github.com/macmanes-lab/Oyster_River_Protocol/blob/master/oyster.mk#L142.119

2.5 Assembly Merging via OrthoFuse120

To merge the four assemblies produced as part of the Oyster River Protocol, I developed new software that121

effectively merges transcriptome assemblies. Described in brief, OrthoFuse begins by concatenating all122

assemblies together, then forms groups of transcripts by running a version of OrthoFinder (44) packaged123

with the ORP, modified to accept nucleotide sequences from the merged assembly. These groupings124

represent groups of homologous transcripts. While isoform reconstruction using short-read data is125

notoriously poor, by increasing the inflation parameter by default to I=4, it attempts to prevent the collapsing126
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of transcript isoforms into single groups. After Orthofinder has completed, a modified version of TransRate127

version 1.0.3 (30) which is packaged with the ORP, is run on the merged assembly, after which the best (=128

highest contig score) transcript is selected from each group and placed in a new assembly file to represent129

the entire group. The resultant file, which contains the highest scoring contig for each orthogroup, may be130

used for all downstream analyses. OrthoFuse is run automatically as part of the Oyster River Protocol, and131

additionally is available as a stand alone script,132

https://github.com/macmanes-lab/Oyster_River_Protocol/blob/master/orthofuser.mk.133

2.6 Assembly Evaluation134

All assemblies were evaluated using ORP-TransRate, Detonate version 1.11 (45), shmlast version 1.2 (46),135

and BUSCO version 3.0.2 (31). TransRate evaluates transcriptome assembly contiguity by producing a score136

based on length-based and mapping metrics, while Detonate conducts an orthogonal analysis, producing a137

score that is maximized by an assembly that is representative of input sequence read data. BUSCO evaluates138

assembly content by searching the assemblies for conserved single copy orthologs found in all Eukaryotes.139

We report default BUSCO metrics as described in (31). Specifically, "complete orthologs", are defined as query140

transcripts that are within 2 standard deviations of the length of the BUSCO group mean, while contigs falling141

short of this metric are listed as "fragmented". Shmlast implements the conditional reciprocal best hits142

(CRBH) test (47), conducted in this case against the Swiss-Prot protein database (downloaded October, 2017)143

using an e-value of 1E-10.144

In addition to the generation of metrics to evaluation the quality of transcriptome assemblies, I generated145

a distance matrix of assemblies for each dataset using the sourmash package (48), in an attempt at146

characterizing the algorithmic landscape of assemblers. Specifically, each assembly was characterized using147

the compute function using 5000 independent sketches. The distance between assemblies was calculated148

using the compare function and a kmer length of 51. These distance matrices were visualized using the149

isoMDS function of the MASS package (https://CRAN.R-project.org/package=MASS).150

2.7 Statistics151

All statistical analyses were conducted in R version 3.4.0 (49). Violin plots were constructed using the152

beanplot (50) and the beeswarm R packages (https://CRAN.R-project.org/package=beeswarm).153

Expression distributions were plotted using the ggjoy package154

(https://CRAN.R-project.org/package=ggjoy).155
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3 Results and Discussion156

Fifteen RNAseq datasets, ranging in size from (30-206M paired end reads) were assembled using the Oyster157

River Protocol and with Trinity. Each assembly was evaluated using the software BUSCO, shmlast,158

Detonate, and TransRate. From these, several metrics were chosen to represent the quality of the produced159

assemblies. Of note, all the assemblies produced as part of this work are available at160

https://www.dropbox.com/sh/ehxvd0ont9ge8id/AABZxRCwcpaxb7rXWclTBbJga, and will be moved to161

dataDryad after acceptance. A file containing the evaluative metrics is available at162

https://github.com/macmanes-lab/Oyster_River_Protocol/blob/master/manuscript/orp.csv, while163

the distance matrices are available within the folder164

https://github.com/macmanes-lab/Oyster_River_Protocol/blob/master/manuscript/. R code used165

to conduct analyses and make figures is found at https:166

//github.com/macmanes-lab/Oyster_River_Protocol/blob/master/manuscript/R-analysis.Rmd.167

3.1 Assembled transcriptomes168

The Trinity assembly of trimmed and error corrected reads generally completed on a standard Linux server169

using 24 cores, in less than 24 hours. RAM requirement is estimated to be close to 0.5Gb per million170

paired-end reads. The assemblies on average contained 176k transcripts (range 19k - 643k) and 97Mb (range171

14MB - 198Mb). Other quality metrics will be discussed below, specifically in relation to the ORP produced172

assemblies.173

ORP assemblies generally completed on a standard Linux server using 24 cores in three days. Typically174

Trinity was the longest running assembler, with the individual SPAdes assemblies being the shortest. RAM175

requirement is estimated to be 1.5Gb - 2Gb per million paired-end reads, with SPAdes requiring the most. The176

assemblies on average contained 153k transcripts (range 23k - 625k) and 64Mb (range 8MB - 181Mb).177

The distance between assemblies of a given dataset were calculated using sourmash, and a MDS plot was178

generated (Figure 1). Interestingly, each assembler tends to produce a specific signature which is relatively179

consistent between the fifteen datasets. Shannon differentiates itself from the other assemblers on the first180

(x) MDS axis, while the other assemblers (SPAdes and Trinity) are separated on the second (y) MDS axis.181
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Figure 1182
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Figure 1. MDS plot describing the similarity within and between assemblers. Colored x’s mark individual183

assemblies, with red marks corresponding to the ORP assemblies, green marks corresponding to the184

Shannon assemblies, blue marks corresponding to the SPAdes55 assemblies, orange marks corresponding185

to the SPAdes75 assemblies, and the black marks corresponding to the Trinity assemblies. In general186

assemblies produced by a given assembler tend to cluster together.187

3.1.1 Assembly Structure188

The structural integrity of each assembly was evaluated using the TransRate and Detonate software189

packages. As many downstream applications depend critically on accurate read mapping, assembly quality190

is correlated with increased mapping rates. The split violin plot presented in figure 2A visually represents the191

mapping rates of each assembly, with lines connecting the mapping rates of datasets assembled with192

Trinity and with the ORP, respectively. The average mapping rate of the Trinity assembled datasets was193

87% (sd = 8%), while the average mapping rates of the ORP assembled datasets was 93% (sd=4%). This test194

is statistically significant (one-sided Wilcoxon rank sum test, p = 2E-2). Mapping rates of the other195

assemblies are less than that of the ORP assembly, but in most cases, greater than that of the Trinity196

assembly. This aspect of assembly quality is critical. Specifically mapping rates measure how representative197
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the assembly is of the reads. If we assume that the vast majority of generated reads come from the198

biological sample under study, when reads fail to map, that fraction of the biology is lost from all downstream199

analysis and inference. This study demonstrates that across a wide variety of taxa, assembling RNAseq200

reads with any single assembler alone may result in a decrease in mapping rate and in turn, the lost ability to201

draw conclusions from that fraction of the sample.202

Figure 2B describes the distribution of TransRate assembly scores, which is a synthetic metric taking into203

account the quality of read mapping and coverage-based statistics. The Trinity assemblies had an average204

optimal score of 0.35 (sd = .14), while the ORP assembled datasets had an average score of 0.46 (sd = .07).205

This test is statistically significant (one-sided Wilcoxon rank sum test, p-value = 1.8E-2). Optimal scores of the206

other assemblies are less than that of the ORP assembly, but in most cases, greater than that of the Trinity207

assembly. Figure 2C describes the distribution of Detonate scores. The Trinity assemblies had an average208

score of -6.9E9 (sd = 5.2E9), while the ORP assembled datasets had an average score of -5.3E9 (sd = 3.5E9).209

This test not is statistically significant, though in all cases, relative to all other assemblies, scores of the ORP210

assemblies are improved (become less negative), indicating that the ORP produced assemblies of higher211

quality.212

In addition to reporting synthetic metrics related to assembly structure, TransRate reports individual213

metrics related to specific elements of assembly quality. One such metric estimates the rate of chimerism, a214

phenomenon which is known to be problematic in de novo assembly (33; 51). Rates of chimerism are215

relatively constant between all assemblers, ranging from 10% for the Shannon assembly, to 12% for the216

SPAdes75 assembly. The chimerism rate for the ORP assemblies averaged 10.5% (± 4.7%). While the new217

method would ideally improve this metric by exclusively selecting non-chimeric transcripts, this does not218

seem to be the case, and may be related to the inherent shortcomings of short-read transcriptome assembly.219

Of note, consistent with all short-read assemblers (33), the ORP assemblies may not accurately reflect the220

true isoform complexity. Specifically, because of the way that single representative transcripts are chosen221

from a cluster of related sequences, some transcriptional complexity may be lost. Consider the cluster222

containing contigs {AB, A, B} where AB is a false-chimera, selecting a single representative transcript with the223

best score could yield either A or B, thereby excluding an important transcript in the final output. We believe224

this type of transcript loss is not common, based on how contigs are scored (Table 1, Figure 3, (30)), though225

strict demonstration of this is not possible, given the lack of high-quality reference genomes for the majority226

of the datasets. More generally, mapping rates, Detonate and TransRate score improvements suggest that227

this type of loss is not widespread.228
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Figure 2229
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Figure 2. TransRate and Detonate generated statistics. Split violin plots depict the relationship between230

Trinity assemblies (brown color) and ORP produced assemblies (blue color). Red and black dots indicate231

the value of a given metric for each assembly. Lines connecting the red and black dots connect datasets232

assembled via the two methods.233

3.1.2 Assembly Content234

The genic content of assemblies was measured using the software package Shmlast, which implements the235

conditional reciprocal blast test against the Swiss-prot database. Presented in Table 2 and in Figure 3A, ORP236

assemblies recovered on average 13364 (sd=3391) blast hits, while all other assemblies recovered fewer237

(minimum Shannon, mean=10299). In every case across all assemblers, the ORP assembler retained more238

reciprocal blast hits, though only the comparison between the ORP assembly and Shannon was significant239

(one-sided Wilcoxon rank sum test, p = 4E-3). Notably, in all cases, each assembler was both missing240

transcripts contained in other assemblies, and contributed unique transcripts to the final merged assembly241

(Table 2), highlighting the utility of using multiple assemblers.242
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Table 2243

Assembly Genes Delta Unique

Concatenated 14674 ± 3590

SPAdes55 −1739 ± 758 570 ± 266

SPAdes75 −2711 ± 2047 301 ± 195

Shannon −4375 ± 3508 302 ± 241

Trinity −1952 ± 803 520 ± 301

244

Table 2 describes the number of genes contained in the assemblies, with the row labelled concatenated245

representing the combined average (± standard deviation) number of genes contained in all assemblies of a246

given dataset. The other rows contain information about each assembly. The column labelled delta contains247

the average number (± standard deviation) of genes missing, relative to the concatenated number. The248

unique column contains the average number of genes (± standard deviation) unique to that assembly.249

Regarding BUSCO scores, Trinity assemblies contained on average 86% (sd = 21%) of the full-length250

orthologs as defined by the BUSCO developers, while the ORP assembled datasets contained on average 86%251

(sd = 13%) of the full length transcripts. Other assemblers contained fewer full-length orthologs. The Trinity252

and ORP assemblies were missing, on average 4.5% (sd = 8.7%) of orthologs. The Trinity assembled253

datasets contained 9.5% (sd = 17%) of fragmented transcripts while the ORP assemblies each contained on254

average 9.4% (sd = 9%) of fragmented orthologs. The other assemblers in all cases contained more255

fragmentation. The rate of transcript duplication, depicted in figure 3B is 47% (sd = 20%) for Trinity256

assemblies, and 34% (sd = 15%) for ORP assemblies. This result is statistically significant (One sided257

Wilcoxon rank sum test, p-value = 0.02). Of note, all other assemblers produce less transcript duplication258

than does the ORP assembly, but none of these differences arise to the level of statistical significance.259

While the majority of the BUSCO metrics were unchanged, the number of orthologs recovered in duplicate260

(>1 copy), was decreased when using the ORP. This difference is important, given that the relative frequency261

of transcript duplication may have important implications for downstream abundance estimation, with less262

duplication potentially resulting in more accurate estimation. Although gene expression quantitation software263

(52; 53) probabilistically assigns reads to transcripts in an attempt at mitigating this issue, a primary solution264

related to decreasing artificial transcript duplication could offer significant advantages.265
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Figure 3266
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Figure 3. Shmlast and BUSCO generated statistics. Split violin plots depict the relationship between Trinity267

assemblies (brown color) and ORP produced assemblies (blue color). Red and black dots indicate the value268

of a given metric for each assembly. Lines connecting the red and black dots connect datasets assembled269

via the two methods.270

3.1.3 Assembler Contributions271

To understand the relative contribution of each assembler to the final merged assembly produced by the272

Oyster River Protocol, I counted the number of transcripts in the final merged assembly that originated from a273

given assembler (Figure 4). On average, 36% of transcripts in the merged assembly were produced by the274

Trinity assembler. 16% were produced by Shannon. SPAdes run with a kmer value of length=55 produced275

28% of transcripts, while SPAdes run with a kmer value of length=75 produced 20% of transcripts276
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Figure 4277
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Figure 4 describes the percent contribution of each assembler to the final ORP assembly.278

To further understand the potential biases intrinsic to each assembler, I plotted the distribution of gene279

expression estimates for each merged assembly, broken down by the assembler of origin (Figure 5, depicting280

four randomly selected representative assemblies). As is evident, most transcripts are lowly expressed, with281

SPAdes and Trinity both doing a sufficient job in reconstructing these transcripts. Of note, the SPAdes282

assemblies using kmer-length=75 is biased, as expected, towards more highly expressed transcripts relative283

to kmer-length 55 assemblies. Shannon demonstrates a unique profile, consisting of, almost exclusively284

high-expression transcripts, showing a previously undescribed bias against low-abundance transcripts.285

These differences may reflect a set of assembler-specific heuristics which translate into differential recovery286

of distinct fractions of the transcript community. Figure 5 and Table 2 describe the outcomes of these287

processes in terms of transcript recovery. Taken together, these expression profiles suggest a mechanism by288
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which the ORP outperforms single-assembler assemblies. While there is substantial overlap in transcript289

recovery, each assembler recovers unique transcripts (Table 2 and Figure 5) based on expression (and290

potentially other properties), which when merged together into a final assembly, increases the completeness291

Figure 5292
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Figure 5 depicts the distribution of gene expression (log(TPM+1)), broken down by individual assembly, for293

four representative datasets. As predicted, the use of a higher kmer value with the SPAdes assembler294

resulted in biasing reconstruction towards more highly expressed transcripts. Interestingly, Shannon uniquely295

exhibits a bias towards the reconstruction of high-expression transcripts (or away from low-abundance296

transcripts).297

3.2 Quality is independent of read depth298

This study included read datasets of a variety of sizes. Because of this, I was interested in understanding if299

the number of reads used in assembly was strongly related to the quality of the resultant assembly.300
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Conclusively, this study demonstrates that between 30 million paired-end reads and 200 million paired-end301

reads, no strong patterns in quality are evident (Figure 6). This finding is in line with previous work, (42)302

suggesting that assembly metrics plateau at between 20M and 40M read pairs, with sequencing beyond this303

level resulting in minimal gain in performance.304

Figure 6305
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Figure 6 depicts the relationship between a subset of assembly metrics and the number of read pairs. There306

is no significant relationship. In all cases the x-axis is millions of paired-end reads.307

4 Conclusions308

For non-model organisms lacking reference genomic resources, the error corrected, adapter- and309

quality-trimmed reads must be assembled de novo into transcripts. While the assembly package Trinity310

(19) is thought to currently be the most accurate stand-alone assembler (32), a merged assembly with311

multiple assemblers results in higher quality assemblies. Specifically, use of the Oyster River Protocol, which312

contains a recipe for read error correction, quality trimming, assembly with multiple software packages, and313

merging resulted in a final assembly, the structure of which was greatly improved.314

Specifically, the improvements in assembly metrics described here are attributed to the multi-way315

approach, where three different assemblers and three different kmer lengths were used. This approach316
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allows the strengths of one assembler to effectively complement the weaknesses of another, thereby317

resulting in a more complete assembly than otherwise possible. These enhancements are important, as318

unassembled transcripts are invisible to all downstream analysis.319
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