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ABSTRACT 
By accumulation of somatic mutations, cancer genomes evolve, diverging away from the genome of 
the host. It remains unclear to what extent somatic evolutionary divergence is comparable across 
different regions of the cancer genome versus concentrated in specific genomic elements. We 
present a novel computational framework, SASE-mapper, to identify genomic regions that show 
signatures of accelerated somatic evolution (SASE) in a subset of samples in a cohort, marked by 
accumulation of an excess of somatic mutations compared to that expected based on local, context-
aware background mutation rates in the cancer genomes. Analyzing tumor whole genome 
sequencing data for 365 samples from 5 cohorts we detect recurrent SASE at a genome-wide scale. 
The SASEs were enriched for genomic elements associated with active chromatin, and regulatory 
regions of several known cancer genes had SASE in multiple cohorts. Regions with SASE carried 
specific mutagenic signatures and often co-localized within the 3D nuclear space suggesting their 
common basis. A subset of SASEs was frequently associated with regulatory changes in key cancer 
pathways and also poor clinical outcome. While the SASE-associated mutations were not 
necessarily recurrent at base-pair resolution, the SASEs recurrently targeted same functional 
regions, with similar consequences. It is likely that regulatory redundancy and plasticity promote 
prevalence of SASE-like patterns in the cancer genomes.    
 
INTRODUCTION 
A saturation analysis indicated that most of the common, recurrent drivers in protein coding regions in all 
major cancer types are likely to be detected by the genome projects (Lawrence et al., 2014; International 
Cancer Genome Consortium et al., 2010; Collins and Barker, 2007). In contrast, our understanding of 
cancer-associated mutations in non-coding regions, which cover ~98% of the genome is so far 
preliminary at best. Most of the fixed germ line mutations and single nucleotide polymorphisms 
associated with complex traits and diseases are noncoding, and it is suspected that non-coding regulatory 
mutations may have important roles in tumorgenesis as well (Khurana et al., 2016) – providing a rationale 
for tumor whole-genome sequencing. While so far only a relatively small number of recurrent noncoding 
mutations with regulatory functions have been identified, emerging findings suggest that there might be 
additional novel regulatory changes active in cancer genomes (Chang et al., 2016; Scott W Piraino and 
Furney, 2017; Imielinski et al., 2017). 

While a major emphasis of the ongoing efforts focus on detection of recurrent noncoding 
mutations, we adopt a different, evolution-driven approach. Locus-specific accelerated evolution in the 
human lineage (Human accelerated regions) marked by accumulation of a significant excess of germ line 
mutations has been associated with functional regulatory changes in loci regulating the development of 
the central nervous system, limb and other organs linked to human-specific traits(Pollard et al., 2006). 
With accumulation of somatic mutations, cancer genomes also evolve(Podlaha et al., 2012), diverging 
away from the genome of benign, progenitor cell lineages in the host. Somatic mutation frequency varies 
between genomic regions, such that the extent of evolutionary divergence varies considerably between 
different regions. We present a novel computational framework, called SASE-mapper, to identify 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2017. ; https://doi.org/10.1101/177261doi: bioRxiv preprint 

https://doi.org/10.1101/177261
http://creativecommons.org/licenses/by/4.0/


 

2

genomic regions that show signatures of accelerated somatic evolution (SASE) in a subset of samples in a 
cohort, and used it to scan 365 cancer genomes from 5 cohorts representing 4 different cancer types to 
identify signatures of accelerated somatic evolution at a genome-wide scale.   
 
METHODS 
Definition of SASE: Acquired somatic alterations indicate how much a genomic region within a tumor 
genome has evolved from the germline sequence of the host(Podlaha et al., 2012). We defined a signature 
of accelerated somatic evolution (SASE, Figure 1A), which is marked by a significant excess of somatic 
mutations compared to that expected based on the local background mutation frequency, typically in a 
subset of the samples in a cohort. Therefore, it would be distinct from the typical mutational hotspot 
signatures. We argue that loci carrying SASE could be potential targets of context-directed mutagenesis 
and/or selection during tumor evolution and should be investigated for functional and clinical 
significance.  
 
Equivariant genomic regions: While 
identifying SASE, we need to 
consider that local, background 
mutation frequency varies 
considerably between different 
genomic regions(Lawrence et al., 
2014) in a context dependent manner. 
Factors such as evolutionary 
conservation, chromatin, GC content, 
and replication timing play major 
roles in modulating local mutation 
rate. Therefore, we binned the 
genome into 10bp blocks for which 
the mean GERP, PhastCons, and 
phyloP evolutionary conservation 
scores were used to classify the 
region as under high (default: 
GERP>=1.5, phastCons>=0.4, 
phyloP>=1), low (default: GERP<=0, 
PhastCons<=0.1, phyloP<=0) or 
medium conservation. Similarly, we 
classified genomic regions as early, 
late, or variable replication timing 
regions using published 
approach(Pedersen et al., 2013). We 
used similar approaches to classify genomic regions according to their GC content (low<=20%, 
medium<=60%, high>60%) and giemsa-staining based chromatin (euchromatin, intermediate, 
heterochromatin) status(Speir et al., 2016).  

We segmented the genome based on the conservation (low, medium, high), replication timing 
(early, late, variable), GC content (low, medium, high), and chromatin status of the region (euchromatin, 
intermediate, heterochromatin,), and defined regions as equivariant if they had equivalent status for these 
major covariates of mutation rate. Mutation frequency had low variation within EVRs but high variation 
between EVR classes (Supplementary Fig. 1), indicating that our approach accommodates major 
regional variations in mutation frequency. We note that other covariates could be incorporated while 
defining the EVRs, but in doing so the number of segments increases and the total size of the genomic 
segments assigned to an EVR class decreases, such that there may not be enough somatic mutations 
within certain EVR classes for meaningful downstream analyses. Similarly, selecting only equivalent tri-
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nucleotide context within respective EVRs for subsampling is possible, but in some cases it reduces the 
number of possible sites for permutation to generate a meaningful null distribution. Therefore, we used a 
set of EVRs characterized by the combination of conservation and replication timing, which showed 
similar results, but was considerably faster for downstream analysis. 
 
Detection of signatures of accelerated somatic evolution: Let there be N number of completely 

sequenced cancer genomes in a cohort, each having ni (i∈N 1, 2..N) somatic mutations. For each sample, 
inter-mutation distances between successive mutations were calculated (Figure 1B), and the 
corresponding probability to detect such inter-mutation distances in the tumor genome was estimated. For 
this purpose, we generated a context-aware null distribution of inter-mutation distances using a variation 
of the subsampling approach(Bickel et al., 2010) by randomly shuffling mutations among respective 
equivariant regions within the chromosome in that sample. This preserved the context-dependent 
differences in background mutation density and biases arising from known covariates in the null model, 
and allowed us to estimate the probability of detecting certain inter-mutation distances by chance alone. 
Genomic regions with clusters of mutations would have peaks of –log10(p-values) while the valleys 
should mark regions where mutations are sparse. Importantly, the transformation removes biases due to 
overall somatic mutation burden, or common regional covariates(Lawrence et al., 2013), allowing us to 
compare the landscape of p-values between different genomic regions in a cancer genome, between 
cancer genomes, or even between samples across cancer types that have different background burden of 
somatic mutations. It also allowed us to combine signals from adjacent regions in the genome, as 
described below. 

By our definition, a biologically relevant peak should be present in a number of samples, though 
it need not be present in all samples in the cohort. Therefore, we combined p-values from all samples in 
the cohort using the truncated product method(Zaykin et al., 2002), prioritizing the candidate SASE 
regions that show p-values with a chosen threshold (default: <=0.05 in >=3 samples). Final SASE regions 
were determined by identifying peaks in -log10 p-values through comparison of the expected values per 
region to those observed by means of the significant fold change (SFC) metric(Knijnenburg et al., 2014). 
SFC combines the p-value and effect size to determine enrichment and can be interpreted as the lower 
bound on the effect size. At a predefined significance level (default: p-value < 1e-6) SFC is the effect size 
that is significant. Adjacent genomic segments with p-values above the p-value threshold and within a 
specified distance (default: 30bp) were combined, and the contiguous genomic segments and their mean 
significant fold-changes were reported.  

  
Dataset: Genome-wide somatic mutation data for 365 samples from 5 different cancer 
cohorts(International Cancer Genome Consortium et al., 2010; Collins and Barker, 2007; Berger et al., 
2012; Morin et al., 2013; Wang et al., 2014) (Figure 1C) was obtained, and the somatic mutations were 
mapped to hg19. Each cohort had at least 30 samples. Typically the samples in the cohorts were 
sequenced using Illumina sequencing technology at ≥30X. While different cohorts might have processed 
samples differently and called mutations using their preferred pipeline, observed concordance of SASE 
signatures in related cancer types indicates that our results are robust against biases due to variant calling 
and batch effects.   

 
Genomic context and functional elements: We obtained data for DNase hypersensitivity and ChIP-seq 
based transcription factor binding site data for human cell lines (Consortium, 2012), Ensembl predicted 
enhancers (Segway and chromhmm predicted), vistaEnhancers(Visel et al., 2007), and EnhancerFinder 
step1(Erwin et al., 2014) predicted developmental enhancers. As an example, we show in gastric cancer 
the representative region with SASE shown in Figure 1C overlapped with predicted DNase 
hypersensitive open chromatin, H3K4Me1 marks and H3K27ac marks. Functional element enrichment 
was determined by comparing identified SASE regions and the flanking region by way of a one-sided 
binomial test. 3D nuclear context and long-range interaction patterns of the SASE regions were evaluated 
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based on data for lamin-associated domains (Guelen et al., 2008) and HiC based chromosome 
conformation (Rao et al., 2014), respectively. HiC data binned at 100kb resolution was downloaded from 
Rao et al.(Rao et al., 2014) for 5 cell lines. Regions with more than 3 reads, normalized by the method 
previously proposed by (Lieberman-Aiden et al., 2009), and mapped with at least a 30 mapping quality 
score in at least 3 of the 5 cell lines were considered. Signatures of accelerated somatic evolution co-
occurring in 3 samples in addition to supporting hic data were determined to be interacting. The 
GM12878 cell line data was used for lymphoma and chronic lymphocyte leukemia cohorts. We obtained 
genomic context tier annotations from a previous report(Mardis et al., 2009). 
 
Expression and clinical data analysis: A subset of the cohorts analyzed (Collins and Barker, 2007) also 
had paired gene expression and clinical data available. When a SASE was detected in the promoter of a 
gene, its expression level (normalized read counts) was compared between the groups of samples that had 
the signature and other samples in the cohort using Mann-Whitney U test. Survival differences of the 
samples between the groups were examined using log-rank statistic and Kaplan Meier plot. All p-values 
were corrected for multiple testing using Benjamini-Hochberg false discovery rate. 
 
Implementation: SASE-mapper is implemented in Python 2.7. It can run on ~2 million somatic 
mutations from 25 samples on a machine with 4 processors and 8GB of RAM in less than 10 minutes. 
Cohorts with larger number of samples and higher mutation burden may take longer. The rate-limiting 
step is the estimation of combined p-values. A user can change default values for most of the parameters. 
Relaxed parameter settings can permit the detection of broad SASEs, while stringent parameters tend to 
yield narrower regions. 
 
RESULTS 
Validation analysis 
We evaluated SASE-mapper predictions 
by a three-step validation and 
comparative assessment to examine 
whether it can detect realistic examples, 
before applying it to the cohorts of 
completely sequenced cancer genomes 
(Figure 1D). First, we generated a cohort 
with 30 synthetic tumor genomes with 
background somatic mutation frequency 
of ~10/Mb, and spiked 10% of the 
samples (n=3) with an excess of 
mutations (3-5 per sample) at 5 arbitrarily 
chosen regions (length 50bp to 2000bp, 
Figure 2A, Supplementary Fig. 1). 
Default parameters were determined to 
detect all 5 of the spike-ins. We repeated 
the analysis with synthetic cohorts with 
different background mutation rates, 
cohort sizes, and proportion of samples 
carrying the spike, and obtained similar 
results (Figure 2B, Supplementary Fig. 
1). 
 
Second, using a different, promoter-specific algorithm we previously identified evidence for accelerated 
somatic evolution in promoters of known cancer genes such as MYC and BCL2 in lymphoma, which 
were associated with altered expression and poor clinical outcome(Smith et al., 2015). Of the 20 regions 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2017. ; https://doi.org/10.1101/177261doi: bioRxiv preprint 

https://doi.org/10.1101/177261
http://creativecommons.org/licenses/by/4.0/


 

5

detected in that promoter-centric analysis, 19 were also detected by our current, unbiased genome-wide 
analysis (Figure 2C). We found an additional 149 regions with SASE elsewhere in the tumor genomes in 
the cohort. SASE in selected cancer gene promoters, including those detected in this analysis, were 
associated with altered expression of the cancer gene and clinical outcome(Smith et al., 2015). This 
suggests that our genome-wide approach can identify known and novel target regions. Importantly, 
SASE-associated changes (increase or decrease) in expression of these genes were consistent with their 
role in promoting tumor growth, which might be suggestive of selection during somatic evolution. 
 
Lastly, kataegis is a pattern of localized hypermutation identified in some cancer genomes, often resulting 
from multiple cytosine deaminations catalyzed by AICDA/APOBEC family enzymes(Lada et al., 2012). 
In a cohort of lymphoma and chronic lymphocytic leukemia, we detected the kataegis signatures using a 
published definition(Lawrence et al., 2013), and then applied SASE-mapper to detect signatures of 
accelerated evolution. SASE-mapper, despite receiving no prior information about kataegis signatures, re-
identified all the regions with kataegis (Figure 2D). This demonstrates that our framework is able to 
detect biologically and clinically important instances of accelerated somatic evolution, including novel 
mutation signatures, in a cohort of cancer genomes. 
 
Signatures of accelerated somatic evolution in cancer cohorts 
We analyzed somatic mutation data for 14 cohorts, composed of 1,595 samples, representing 10 different 
cancer types (International Cancer Genome Consortium et al., 2010; Collins and Barker, 2007; Berger et 
al., 2012; Morin et al., 2013; Wang et al., 2014) using SASE-mapper to detect signatures of accelerated 
somatic evolution at a genome-wide scale. SASE-mapper used equivariant regions defined based on 
evolutionary conservation and 
replication timing 
(Supplementary Fig. 2), which 
captured most of the regional 
variation in background 
mutation rate, but an extended 
model incorporating chromatin, 
GC content, and other factors 
yielded similar results 
(Methods). Overall, we detected 
4,759 SASE regions, with the 
number varying across cancer 
types (134-3,005 per cohort; 
Supplementary Table 1). In the 
MALY-DE lymphoma cohort, a 
number of loci, including 
promoters of known cancer 
genes such as MYC and BCL2 
exhibit signatures of accelerated 
somatic evolution (Figure 3A; 
Supplementary Table 1). To 
explore the reproducibility of the 
SASE, we compared results 
across independent lymphoma 
cohorts. Of the 168 SASE 
detected in either cohort, 59 
were found in both cohorts. 
Most of these SASEs were also detected in the CLL cohort (Figure 3B), and these three-way hits are 
largely in regulatory regions of known cancer genes (Supplementary Fig. 3). We note that, the cohorts 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2017. ; https://doi.org/10.1101/177261doi: bioRxiv preprint 

https://doi.org/10.1101/177261
http://creativecommons.org/licenses/by/4.0/


 

6

had different sequencing coverage and used different variant detection pipelines, which could add to 
technical variability. Furthermore, SASEs were typically present in a minority of the samples in a cohort, 
such that a moderate size cohort may not have sufficient number of samples with a given signature by 
chance alone. Nonetheless, the observed concordance between the CLL and two lymphoma cohorts was 
highly statistically significant (permutation test; p-values <10-10), suggesting that the identified loci are 
most probably genuine targets. We also detected SASE near known cancer-associated genes in other 
cohorts such as lung cancer (LUSC) cohorts (Figure 3C, Supplementary Table 1). The cohorts that 
most frequently share recurrent SASE are both lymphoma cohorts and CLL (Supplementary Fig. 4), 
which were also most closely related in terms of the disease etiology. Our findings are consistent with that 
reported by other studies. For instance, an investigation into mutational hotspots by Piraino et al.(Scott W. 
Piraino and Furney, 2017) identified both the MYC and BCL2 promoters to be recurrently mutated in 
addition to the MIR142 locus in the ICGC lymphoma cohort (International Cancer Genome Consortium 
et al., 2010). However, their method bins the genome into 50bp segments and is therefore likely to miss 
some other mutational hotspots of different sizes. 
 
Genomic context of SASE 
SASE can be found on all human chromosomes and in a variety of genomic contexts, but some contexts 
were more common that others (Figure 4A). Less than 3 percent of SASEs were observed in protein-
coding genes, and except for the lymphoma cohorts, coding regions were generally depleted for SASE. 
However, SASEs in highly conserved elements in noncoding regions were relatively more common; 36 
percent of SASEs occurred in highly 
conserved elements throughout the 
genome, a vast majority of them 
outside coding regions. Repetitive 
regions showed no systematic 
enrichment, but it is challenging to 
map reads and call mutations in those 
regions. SASEs occurred significantly 
more often in the promoter regions 
than that expected by chance 
(Permutation p-values <0.009 in both 
lymphoma cases); as shown in Figure 
2C and 3A-B, we detected SASE in 
the promoters of known cancer genes 
such as BCL2, IGLL5, BTG2, and 
BCL6 in the lymphoma and CLL 
cohorts. There were additional 
examples of SASE in promoter 
regions of known cancer genes in 
other cohorts. For instance, SASE in 
regulatory regions of RNF212, a ring 
finger protein involved in meiotic 
recombination(Kong et al., 2008) in 
the lung cancer cohort was associated 
with altered expression of the gene 
product and also reduced survival of 
the patients carrying the signature. 
Transcription factor binding sites and 
enhancers were also significantly 
enriched for SASE (Permutation enrichment p-values <0.05) in selected cancer types. In general, many 
SASE were in open chromatin in cancer cells or had epigenomic signatures associated with active 
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regulatory regions, H3K4Me3 (12 cohorts have enrichment p-values <=0.05, Figure 4A). In gastric 
cancer, for example, the representative region with SASE shown in Figure 1C overlapped with predicted 
DNase hypersensitive open chromatin, H3K4Me1 marks, and H3K27ac marks, and had clusters of 
mutations in 14 of the 100 samples. SASEs frequently overlapped with Ensembl(Consortium, 2012)-
predicted binding sites of CTCF (36% of cohorts have p-values <=0.05, Figure 4A), which play 
important roles in long range chromatin looping. It is possible that some of these mutations might alter 
the long-range chromatin interactions, but it needs to be further investigated conclusively.   
 
Some regions with SASE cluster together in the 3D in the nucleus 
We revisited the SASEs in the context of 3D nuclear organization of genomic DNA integrating data on 
lamina associated domains (Guelen et al., 2008) and HiC-based long-range interactions (Rao et al., 2014), 
outlined in the Methods. SASEs were more frequently associated with consistently inter-lamina regions 
(iLAD) that are at the nuclear interior compared to the consistently lamina-associated regions (cLAD) in 
the nuclear periphery (Figure 4A). For instance, of the 168 detected SASE in MALY-DE, 19 occur in 
cLAD and 95 occur in iLAD (Permutation test; p-values <=0.05). Similar patterns were also observed in 
all other cohorts. We analyzed the landscape of somatic mutations in the lymphoma cohort in their 3D 
nuclear context (Figure 4B) by integrating data on nuclear localization and chromosome conformation 
capture (HiC)-based long range interaction data for lymphoblastoid cell lines(Rao et al., 2014), which 
would be developmentally related to the progenitor cell of origin of lymphoma. Nearly 25 percent of 
SASEs in the MALY-DE cohort had at least minimal evidence for interaction (≥ 1 predicted HiC 
interaction, see Methods) with another SASE (detected in the same sample), the majority of which were 
previously identified APOBEC targets (Figure 4C, Supplemental Fig. 5). The SASEs present in a 
majority of the cancer gene promoters in the lymphoma and CLL cohorts had evidence for SASE-SASE 
long-range interactions, indicating their likely shared origin. Another interesting example was the 
signatures of accelerated somatic evolution on chromosome 17 at MIR142 locus, a known AICDA 
target(Robbiani et al., 2009), which had evidence of interaction with 10 other SASEs in the same 
samples. Similar SASE-SASE long-range interactions were detected in both the lymphoma cohorts and 
CLL cohort (Figure 4C), indicating that such overlaps in the 3D are unlikely due to chance alone. 
Evidence for long-range SASE-SASE interactions was also identified in about 15 percent of signatures 
present in the melanoma and lung squamous cell carcinoma cohort (Supplemental Fig. 5). Signatures of 
accelerated somatic evolution on chromosome 1 between 142.5Mb – 142.7Mb, detected recurrently in 
LUSC and gastric. Thus, many SASE regions mapped to different regions within and across 
chromosomes could be spatially clustered in the 3D in the nucleus, and might arise from the same 
mutagenic process.    
 
SASE associated mutation signatures 
We used non-negative matrix factorization-based method (Alexandrov et al., 2013) to infer the likely 
basis of mutation signatures that characterize SASE. This analysis indicated that APOBEC/AICDA 
associated mutagenesis is frequent in SASEs, especially in the lymphoma and CLL cohorts (Figure 4A-B 
and Supplementary Fig. 6). In both the lymphoma cohorts, SASEs exhibit increased instances of C>T 
and C>G mutations compared to frequencies observed in non-SASEs, which is suggestive of 
AICDA/APOBEC mediated hyper-mutation(Alexandrov et al., 2013; Lada et al., 2012) of these regions 
(Figure 4A, p-values <10-10, Chi Squared test). Perhaps unsurprisingly, many of these affected genes with 
SASE in the promoters were also known targets of AICDA. In the CLL samples, T>C substitutions, and 
C>G or C>T at the GCT context were proportionally more common in SASE regions (p-value <0.05, Chi 
Square test). T>C is a classic signature of APOBEC cytidine deaminase mutagenesis pattern, but the 
mechanistic basis for the substitution preference at GCT context is unclear. Interestingly, the SASEs that 
had mutational signatures consistent with AICDA activity also had strong evidence for SASE-SASE 
long-range interactions (Figure 4D). It is likely that AICDA activity in the transcription factories, where 
genomic loci that are distant on the linear DNA but interact in the 3D nuclear territory during 
transcriptional regulation, contributed to the observed patterns. In the lung cancer cohort, C>A 
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substitutions, which are frequently associated with smoking, were relatively depleted in SASE-affected 
regions, and instead transversions (C>T and T>C substitutions) were relatively enriched (Figure 4B; p-
value <10-10, Chi Square test). SASE-affected regions in gastric cancer were also enriched for C>T and 
T>N mutations. Finally, SASE frequently overlapped with predicted kataegis-like signature in different 
cancer cohorts (Supplementary Fig. 7).  
 
Regulatory and clinical significance of SASE 
Genomic and nuclear context of the SASE-associated regions led us to investigate whether SASE, 
especially those proximal to the genes, are associated with regulatory alterations (Figure 5; 
Supplementary Table 1). In the malignant lymphoma cohort, SASE-mapper detected SASE in 45 
regions (median mutations ≥2; present in ≥3 samples) that occurred in predicted regulatory regions (FDR 
corrected p-values <= 0.05, see Methods). Of those, 40 showed altered expression in genes within 2MB 
(cis-interactions) and 5 were associated with alterations in age. For instance, known cancer genes such as 
MYC, BCL2, IGLL5, etc. had altered expression (Smith, Yadav et al. 2015). In the lung squamous cell 
carcinoma cohort, SASE-mapper detected evidence for accelerated somatic evolution in 155 regions 
(median mutations ≥2; present in ≥3 samples) that overlapped with predicted enhancers (FDR corrected 
p-value <= 0.05). Of those, 105 showed altered expression in genes within 2MB. For instance, about 25 
percent of samples contained mutations in a SDHA promoter, which was associated with decreased 
mRNA expression of the gene. A SASE present at telomeric region of chromosome 4 (chr4p16.3) was 
associated with alterations in 
expression of 28 genes in a 2MB 
region including cancer-related 
genes such as FGFRL1, SH3BP2, 
CRIPAK, and POLN. Similarly, 
SASE on chromosomes 7p11.2 
and 11q25 were associated with 
increased expression of PSPH, 
and decreased expression of 
FLI1, respectively. SASE present 
in a RNF212 intron was 
associated with altered 
expression in samples with 
mutations distributed throughout 
the locus (Figure 5A-C).  
 
In the lung squamous cell 
carcinoma cohort, we detected 
SASE an exon of KMT2C, which 
was significantly associated with 
reduced survival. KMT2C (MLL3) is a lysine methyltransferase that is frequently mutated in different 
types of cancers(Song et al., 2014; Herz et al., 2014). SASE present in TAF4 and FLT4 were also 
associated with reduced survival. In addition, signatures of accelerated somatic evolution in intron of 
RNF212(Kong et al., 2008), which correlated with altered mRNA expression, was associated with 
reduced survival as well. Of the 105 SASEs occurring in predicted, non-coding regulatory regions, 4 are 
associated with reduced survival (Figure 5D-F).  
 
DISCUSSION 
We suspect that the SASE probably arises due to a combination of both mutagenesis and selection. In a 
subset of cases, context specific mutagenesis plays a key role (e.g. kataegis and APOBEC signatures in 
lymphoma). Positive selection or relaxation of purifying selection also appears to be important in some 
other cases, especially those associated with deregulation of cancer gene expression and also aggressive 
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tumor progression leading to poor survival. It remains unclear whether all the mutated sites within a 
SASE in a tumor are under positive selection, especially since they are not typically recurrent at the base-
pair resolution in multiple samples in a cohort. One possibility could be that, inherent regulatory 
redundancy in noncoding regions enables different mutations or their combinations to achieve similar 
regulatory consequences, a concept gaining traction recently. An alternate, but not necessarily mutually 
exclusive, possibility is that context specific mutagenesis generates an excess of mutations at a given 
locus, majority of which are passengers that hitchhike one or a few driver mutations. Furthermore, some 
mutations might directly affect oncogenic pathways by creating or perturbing transcription factor binding 
sites, while others could have more subtle effects e.g. modulation of nucleosome occupancy, changes in 
local chromatin or DNA conformations such that their epistatic interactions ultimately change the 
regulatory environment. Further work needs to be done going beyond association to establish causality. In 
any case, when evidence for recurrent noncoding regulatory mutations is sparse, our findings make a case 
for assessment of non-traditional mutational signatures in non-coding regions of cancer genomes.  
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