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Abstract 

Recently, the field of development neuroscience aims to uncover the developmental trajectory of 

the human brain and understand the changes that occur as a function of aging. Here we present 

an adult lifespan dataset of functional magnetic resonance imaging (fMRI) data including 

structural MRI and resting-state functional MRI. 494 healthy adults (age range: 19-80 years; 

Males=187) were recruited and completed two multi-modal MRI scan sessions in the Brain 

Imaging Central of Southwest University, Chongqing, China. The goals of the dataset are to give 

researchers the opportunity to map the developmental trajectory of structural and functional 

changes of human brain to replicate previous findings.  

Background & Summary 

Magnetic resonance imaging (MRI) has been one of the most dominant techniques to investigate 

the human brain, because it permits the detailed, noninvasive and safe assessment of human 

brain. MRI is also able to perform the data collection of various image modalities, such as 

structural magnetic resonance imaging (sMRI), functional MRI (fMRI) and diffusion tensor 

imaging (DTI). In particular, these imaging measurements have been effectively used to capture 

brain structural and functional changes in development (Krogsrud et al., 2016), aging (Maniega et 

al., 2015), psychiatric disorders (Hazlett et al., 2017), etc. For example, the feature of resting-state 

functional connectivity can predict individuals’ brain maturity across development (Dosenbach et 

al., 2010), as well as can be used as a “fingerprint” to identify individuals (Finn et al., 2016). Thus, 

the measurements of MRI have great contribute to serve as imaging biomarkers of normal 

development, aging, clinical diagnosis and therapeutic assessments. 

One of the most urgent scientific issue confronting us in the 21
st

 century is how can we maintain 

a healthy mind for human life. Besides paying attention to uncover the developmental course an 

original brain grows up to a mature one, another critical question in lifespan developmental 

neuroscience is how the brain changes as a function of aging. There is a necessity to answer this 

question, because only if we reveal the healthy brain aging mechanism can we discover the 

causes of brain diseases relating to aging (e.g., Alzheimer’s disease). Based on measurements of 

various image modalities, researchers have uncovered many appealing findings in normal aging 

brain. For example, structurally, most brain regions follow a liner decline of gray matter volume 

(GMV) with normal aging, while nonlinear age trajectories were also observed in some regions 

(e.g., medial temporal lobe), which indicated a preservation of GMV during the early adult 

lifespan (Ziegler et al., 2012); functionally, increasing age was found accompany by decreasing 

segregation of brain systems, and this age-related effect was more prominent in associative 

systems than in sensory and motor systems (Chan et al., 2014). 

For the sake of characterizing age-related changes in cognition and brain structure and function, 

the data repository for the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) initial 

study cohort has yet provided a multi-model dataset from a large, cross-sectional adult lifespan 

population-based sample (Taylor et al., 2015). However, there is still lack of the open access 

dataset allowing researchers to discover meaningful regulations of normal brain aging or verify 

previous findings. Moreover, to reveal age-related changes of human brain should be based on 

large continuous samples, which in a way limit research activities in aging. Thus, an additional 

open access normal adult lifespan data with large sample is needed for researchers who are 

interested in this domain or require an independent dataset for cross-validation. Here, we 

describe the data generated in the Southwest University Adult Lifespan dataset (SALD), which is 
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one part of our ongoing project to examine the association among brain imaging, creativity and 

mental health (BCM). The SALD comprises a large cross-sectional sample (total scans = 494; age 

span = 19-80y), multi-modal (sMRI and rs-fMRI) investigation of the neural underpinnings. The 

goal of the SALD is to understand what a normal brain looks like and how it structurally and 

functionally changes at each decades of life from age 20 through 80. Now, it is available for 

research through the International Data-sharing Initiative (INDI, 

http://fcon_1000.projects.nitrc.org/indi/retro/sald.html). We hope our free data sharing can 

speed the progress of normal brain aging studies.   

Methods 

Participants 

The 494 participants (308 Females, 187 Males, aged 19 to 80) included in the release were 

selected from a large dataset of individuals who have participated in the ongoing BCM data 

collection initiative (for more details, see figure 1). The young adults (18-25) of the lifespan 

sample enrolled as college students of Southwest University in Chongqing, China. Many of the 

mid adults (age 26 to 40) were recruited directly from staff of Southwest University. The rest of 

adults sample were recruited from communities close to the university campus. The data 

collection was initiated in 2010 and was terminated in 2015. We primarily recruited participants 

through leaflets, online advertisements, and face-to-face propaganda. The exclusion criteria 

included: (1) MRI related exclusion criteria, which included claustrophobia, metallic implants, 

Meniere’s Syndrome and a history of fainting within the previous 6 months; (2) current 

psychiatric disorders and neurological disorders; (3) use of psychiatric drugs within the three 

months prior to scanning; (4) pregnancy; or (5) a history of head trauma. Informed written 

consent was obtained from each participant. Besides, we required participants to refrain from 

drinking during the day before the scanning and the scanning day. The dataset collection was 

approved by the Research Ethics Committee of the Brain Imaging Center of Southwest University.  

Image Acquisitions 

All of the data were collected at the Southwest University Center for Brain Imaging using a 3.0-T 

Siemens Trio MRI scanner (Siemens Medical, Erlangen, Germany) in the following order: (1) 3D 

structural MRI (sMRI); (2) Resting-state fMRI; (3) Task-fMRI (only for a subgroup of subjects).  

(1) 3D structural MRI  

A magnetization-prepared rapid gradient echo (MPRAGE) sequence was used to acquire 

high-resolution T1-weighted anatomical images (repetition time = 1,900 ms, echo time = 2.52 ms, 

inversion time = 900 ms, flip angle = 90 degrees, resolution matrix = 256 × 256, slices = 176, 

thickness =1.0 mm, voxel size = 1 × 1 × 1 mm
3
).  

(2) Resting-state fMRI  

During the resting-state MRI scanning, the subjects were instructed to lie down, close their eyes, 

and rest without thinking about a specific thing, but refrain from falling asleep. The 8-min scan of 

242 contiguous whole-brain resting-state functional images was obtained using gradient-echo 

planar imaging (EPI) sequences with the following parameters: slices = 32, repetition time 

(TR)/echo time (TE) = 2000/30 ms, flip angle = 90, field of view (FOV) = 220 × 220 mm, and 

thickness/slice gap = 3/1mm, and voxel size = 3.4 × 3.4 × 4 mm
3
. 

Date Records 

This dataset is publicly available at the International Data-sharing Initiative (INDI) (All of MRI data 

can be accessed at http://fcon_1000.projects.nitrc.org/indi/retro/sald.html). We removed the 
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facial information of each participant the S-MRI data and the Neuroimaging Informatics 

Technology Initiative (NIFTI) headers according to FCP/INDI policies. The contents and data 

structures of these packages are detailed as follows: 

MRI data and demographic information 

sMRI scans 

Location: sub <ID>/anat/anat.nii.gz 

rfMRI scans 

Location: sub <ID>/func/func.nii.gz 

Demographic information 

File format: Excel file  

Basic demographic information including age, sex and handedness is provided in the Excel file. 

Besides, the quality assessment measures to different scans were also included in this file. 

Quality Control Report  

The folder quality-assessment-protocol compackage of quality assessment (QA) analysis results 

performed in the present study for the structural and functional images. It contains csv files 

(named qap_anatomical_spatial.csv, qap_functional_spatia.csv, and qap_functional_temporal.csv, 

respectively). Those files were generated by the Preprocessed Connectomes Project (PCP) Quality 

Assessment Protocol and we didn’t change any part of the pipline. For more details about its 

procedure and the measures included, see the website of PCP Quality Assessment Protocol 

(http://preprocessed-connectomes-project.org/quality-assessment-protocol/). All data were 

made available to users regardless of data quality because there are no consensus criteria to 

determine what kind of MRI images should be excluded.  

Technical Validation 

Results of QA measures  

To quantitatively assess the quality of the MRI data, a series of widely used QA measures have 

been calculated. All measures computed by the PCP Quality Assessment Protocol can be found 

together with the data. Figures 2 and 3 indicate the distributions of the several representative QA 

measures of the structural MRI and resting-state fMRI, respectively, across participants. For more 

information about the QA measures, see uploded csv files. 

Relationship between age, head motion and signal-to-noise ratio (SNR)  

To investigate the impact of head motion during the resting-state fMRI scanning on age and the 

overall quality of images, we correlated the head motion (as measured by mean FD) with age and 

the SNR in the entire sample (N = 494). Results revealed a significant and positive correlations 

exist between mean FD and age (r = 0.372, p< 0.001), and this relationship enchanced (r = 0.455, 

p< 0.001) after we removed 16 subjects who is the outliers of mean FD values. However, no 

significant result was found in the relationship between mean FD and SNR (r = 0.055, p = 0.222). 

Figure 4 indicates these two correlations. The results suggested that head motion may increase 

with age and the head motion in this dataset didn’t significantly affect the overall quality of 

images in a linear trend. 

 

 

Replication of previous findings 

To test whether this dataset is technically valid, we tried to use the current data to replicate some 

previous findings. Here, sMRI and resting-state fMRI data were respectively conducted based on 
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this objective. 

sMRI data 

A large amount of studies have reported that structural development during normal aging is 

accompanied with a declining trajectory of the total gray matter volume (Allen et al., 2005; 

Giorgio et al., 2010; Good et al., 2001; Grieve et al., 2005; Hasan et al., 2007); as well as, cortical 

gray matter volume was found to be a decline over adulthood (Kalpouzos et al., 2009; Sullivan et 

al., 2004; Walhovd et al., 2005a). Besides, the decreases were always reported to be most 

pronounced in the frontal and parietal lobes (Good et al., 2001; Kalpouzos et al., 2009; Resnick et 

al., 2003; Smith et al., 2007; Ziegler et al., 2012). Here, we were attempt to replicate these robust 

findings in the current dataset. 

The sMRI (1 × 1 × 1 mm3
) data was preprocessed by using SPM8 (Welcome Department of 

Cognitive Neurology, Lodon, UK; www.fil.ion.ucl.ac.uk/spm). For better registration, all 

T1-weighted structural images were automatically co-registered to the anterior 

commissure-posterior commissure (AC-PC) by SPM8 based script. Then, a spatially adaptive 

nonlocal means (SANLM) denoising filter (Manjon et al. 2010) was used by VBM8 toolbox 

(http://www.neuro.uni-jena.de/vbm/download/). Next, using the unified segmentation 

procedure, the coregistered images from each participant were segmented into grey matter (GM), 

white matter and cerebrospinal fluid (Ashburner& Friston, 2005). The GM images of each 

participant were spatially normalized to a study-specific T1-weighted template using a 

diffeomorphic nonlinear registration algorithm (DARTEL; diffeomorphic anatomical registration 

through exponentiated lie algebra). The DARTEL registration involves: first computing the specific 

template based on the average tissue probability maps from all the participants; second warping 

each participant’s segmented maps into a specific template. In order to improve the alignment 

and achieve a more accurate inter-subject registration, the procedure was repetitively conducted 

until a best study-specific template was generated. Subsequently, registered images were 

transformed to Montreal Neurological Institute (MNI) space and a further modulation was 

conducted to preserve the volume of GM. Finally, a 6-mm full width at half-maximum (FWHM) 

Gaussian kernel was applied to smooth the modulated GM images.                          

We first used pearson correlation to detect the relationship between age and total gray matter 

volume (GMV). Then, multiple linear regressions were used to determine GMV regions that were 

associated with age, controlling for total GMV. To avoid edge effects around the borders between 

GM and WM, we used explicit masking to restrict the search volume. The explicit masking was 

achieved by the SPM Masking Toolbox (http://www0.cs.ucl.ac.uk/staff/g.ridgway/masking/). This 

approach reduced the risk of false negatives caused by overly restrictive masking, as potentially 

interesting voxels may be excluded from the statistical analysis (Ridgway et al., 2009). For the 

regression analysis, we used the family-wise error (FWE) of p< 0.05 at the whole brain level and ≥ 

20 contiguous voxels as a threshold to correct for multiple comparisons.  

The results indicated that age is significantly correlated with total GMV (r = -0.305, p< 0.001). 

Almost all areas of the cerebral cortex exhibited significant age-related decline in GMV. In 

addition, frontal, parietal and temporal lobes showed most pronounced function, which to a 

large extent confirmed previous findings (Fig. 5). However, in accordance with one prior research 

(Ziegler et al., 2012), we found that occipital regions were less affected by age. 

Resting-state fMRI data 

There is a widely reported finding indicated that clear segmentation between neural systems 
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would lose consistently over the course of normal human aging: many intrinsic functional 

connectivity brain networks gradually become less internally coherent with age (Chan et al., 2014; 

Contreras et al., 2015; Dennis & Thompson, 2014; Sala-Llonch, Bartrés-Faz, & Junqué, 2015). For 

the attempt to replicate this finding, the current dataset was used to describe the changing 

trajectories of within-system connectivity along with age.  

The resting-state fMRI data were preprocessed using Data Processing Assistant for Resting-State 

fMRI (DPASF, http://resting-fmri.sourceforge.net/) implemented in the MATLAB 2014a (Math 

Works, Natick, MA, USA) platform. The first 10 volumes of the functional images were discarded 

to account for signal equilibrium and the participants' adaptation to their immediate 

environment. The remaining 232 scans were corrected for slice timing, and then realigned to the 

middle volume to correct for head motion. Participant with head motion exceeding 2.0 mm in 

any dimension throughout the course of scans was discarded from further analysis. Subsequently, 

registered images were spatially normalized to Montreal Neurological Institute (MNI) template 

(resampling voxel size = 3 × 3 × 4 mm
3
). Next, nuisance signals representing motion parameters, 

white matter, and cerebrospinal fluid signals were regressed out in order to control the potential 

impact of physiological artifacts. Here, we used the Friston 24-parameter model, including 6 

motion parameters, 6 temporal derivatives, and their squares (Friston et al., 1996; Satterthwaite 

et al., 2013) to regress out head motion effects. This approach is based on recent research 

demonstrating that higher-order models are more effective at reducing the effects of head 

movements (Power et al., 2012; Yan et al., 2013). Then, ater the spatial smoothing (full width at 

half maximum = 6 mm Gaussian kernel), bandpass filtering (0.009–0.08 Hz) was performed. 

These preprocessing steps were followed by the standard protocol published (Yan et al., 2016). 

Brain graphs were constructed for each subject as a 264 × 264-node graph, labeled by functional 

systems (Power et al., 2011). Edge weights were calculated as the Fisher z-transformed 

correlation (Pearson’s r) between each pair of nodes, and negatively weighted edges were 

removed from each correlation matrix to eliminate potential misinterpretation of negative edge 

weights. For a specific system, within-system connectivity was calculated as the mean 

node-to-node z-value of all nodes of that system to each other. The mean within-system 

connectivity means the average value of within-system connectivity over all of the systems. 

The results indicated that mean within-system connectivity would decrease with age. When we 

applied linear and nonlinear (second-degree polynomial) fits to within-system connectivity, we 

found that the age function was fit significantly both by linear model (adjusted R
2
= 0.177, p< 

0.001) and nonlinear model (adjusted R
2
= 0.195, p< 0.001). While, the quadratic model had a 

higher R
2 

than the linear model, which implied a preservation of within-system connectivity 

during the early adult lifespan (Fig. 6). 

Usage Notes 

We encourage other labs to use this dataset in publication under the requirement of citing this 

article. All data is free to download from the International Data-sharing Initiative (INDI) under the 

CC-BY-NC license. We hope that all users of the data will acknowledge the original authors by 

citing this publication.  
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Figure 1 The distribution of participants based on age and gender. Participants were separated 

into 11 groups based on their age and displayed in male and female respectively. X-axis indicates 

the age group and Y-axis indicates the number of the participants. Blue bar indicates male 

participants and red bar indicates female participants, as well as the exact numbers of them are 

shown on the corresponding bar. Note that, for a relatively balance of distribution, the age span 

was set as 4 years in the first two groups, and 6 years in the rest of groups. 

 

Figure 2 The distributions of the several representative QA measures of the structural MRI across 

all participants. 

SNR is the abbreviation of Signal-to-Noise Ratio. It indicates the mean intensity within gray 

matter divided by the standard deviation of the values outside the brain. Higher values are 

better (Magnotta, Friedman & BIRN, 2006). 

FBER is the abbreviation of Foreground to Background Energy Ratio. It indicates the variance of 

voxels inside the brain divided by the variance of voxels outside the brain. Higher values are 

better. 

Qi1 means Percent Artifact Voxels, which implies proportion of voxels outside the brain with 

artifacts to the total number of voxels outside the brain. Lower values are better (Mortamet et al., 

2009). 

 

Figure 3 The distributions of the several representative QA measures of the resting-state fMRI 

across participants. 

SNR is the abbreviation of Signal-to-Noise Ratio. It indicates the mean intensity within gray 
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matter divided by the standard deviation of the values outside the brain. Higher values are 

better �Magnotta, Friedman & BIRN, 2006). 

FBER is the abbreviation of Foreground to Background Energy Ratio. It indicates the variance of 

voxels inside the brain divided by the variance of voxels outside the brain. Higher values are 

better. 

Mean FD means Mean Fractional Displacement-Jenkinson. It is a measure of subject head motion, 

which compares the motion between the current and previous volumes. This is calculated by 

summing the absolute value of displacement changes in the x, y and z directions and rotational 

changes about those three axes. The rotational changes are given distance values based on the 

changes across the surface of a 80mm radius sphere. Lower values are better (Jenkinson et al., 

2002; Yan et al., 2013). 

 

Figure 4 The affect of mean FD to age and SNR. The X-axes indicate age and SNR value 

respectively. The Y-axes indicate mean FD values. 

 

Figure 5 Brain regions with GMV reduction in normal aging. L-R means from left brain 

hemisphere to right hemisphere. 

 

Figure 6 Within-system connectivity decline with aging. A demonstrates the negative correlation 

between age and mean connectivity. B displays the different brain networks (Power et al., 2011) 

involved in this analysis. The mean connectivity in A was calculated by averaging the intrinsic 

functional connectivity within each of the networks. C displays the functional connectivity 

matrices of three representative age groups. The networks were arranged as the same order as B. 

It can be seen that the within-system connectivity apparently declines with aging. 
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Figure 1 

The distribution of participants based on age and gender. Participants were separated into 11 

groups based on their age and displayed in male and female respectively. X-axis indicates the age 

group and Y-axis indicates the number of the participants. Blue bar indicates male participants 

and red bar indicates female participants, as well as the exact numbers of them are shown on the 

corresponding bar. Note that, for a relatively balance of distribution, the age span was set as 4 

years in the first two groups, and 6 years in the rest of groups. 
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Figure 2 The distributions of the several representative QA measures of the structural MRI across 

all participants. 

SNR is the abbreviation of Signal-to-Noise Ratio. It indicates the mean intensity within gray 

matter divided by the standard deviation of the values outside the brain. Higher values are 

better (Magnotta, Friedman & BIRN, 2006). 

FBER is the abbreviation of Foreground to Background Energy Ratio. It indicates the variance of 

voxels inside the brain divided by the variance of voxels outside the brain. Higher values are 

better. 

Qi1 means Percent Artifact Voxels, which implies proportion of voxels outside the brain with 

artifacts to the total number of voxels outside the brain. Lower values are better (Mortamet et al., 

2009). 
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Figure 3 The distributions of the several representative QA measures of the resting-state fMRI 

across participants. 

SNR is the abbreviation of Signal-to-Noise Ratio. It indicates the mean intensity within gray 

matter divided by the standard deviation of the values outside the brain. Higher values are 

better �Magnotta, Friedman & BIRN, 2006). 

FBER is the abbreviation of Foreground to Background Energy Ratio. It indicates the variance of 

voxels inside the brain divided by the variance of voxels outside the brain. Higher values are 

better. 

Mean FD means Mean Fractional Displacement-Jenkinson. It is a measure of subject head motion, 

which compares the motion between the current and previous volumes. This is calculated by 

summing the absolute value of displacement changes in the x, y and z directions and rotational 

changes about those three axes. The rotational changes are given distance values based on the 

changes across the surface of a 80mm radius sphere. Lower values are better (Jenkinson et al., 

2002; Yan et al., 2013). 
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Figure 4 The affect of mean FD to age and SNR. The X-axes indicate age and SNR value 

respectively. The Y-axes indicate mean FD values. 
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Figure 5 Brain regions with GMV reduction in normal aging. L-R means from left brain 

hemisphere to right hemisphere. 
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Figure 6 Within-system connectivity decline with aging. A demonstrates the negative correlation 

between age and mean connectivity. B displays the different brain networks (Power et al., 2011) 

involved in this analysis. The mean connectivity in A was calculated by averaging the intrinsic 

functional connectivity within each of the networks. C displays the functional connectivity 

matrices of three representative age groups. The networks were arranged as the same order as B. 

It can be seen that the within-system connectivity apparently declines with aging.  
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