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Abstract 23 

Left-censored missing values commonly exist in targeted metabolomics datasets and 24 

can be considered as missing not at random (MNAR). Improper data processing 25 

procedures for missing values will cause adverse impacts on subsequent statistical 26 

analyses. However, few imputation methods have been developed and applied to the 27 

situation of MNAR in the field of metabolomics. Thus, a practical left-censored 28 

missing value imputation method is urgently needed. We have developed an iterative 29 

Gibbs sampler based left-censored missing value imputation approach (GSimp). We 30 

compared GSimp with other three imputation methods on two real-world targeted 31 

metabolomics datasets and one simulation dataset using our imputation evaluation 32 

pipeline. The results show that GSimp outperforms other imputation methods in terms 33 

of imputation accuracy, observation distribution, univariate and multivariate analyses, 34 

and statistical sensitivity. The R code for GSimp, evaluation pipeline, vignette, 35 

real-world and simulated targeted metabolomics datasets are available at: 36 

https://github.com/WandeRum/GSimp. 37 

 38 

Author summary 39 

Missing values caused by the limit of detection/quantification (LOD/LOQ) were 40 

widely observed in mass spectrometry (MS)-based targeted metabolomics studies and 41 

could be recognized as missing not at random (MNAR). MNAR leads to biased 42 
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parameter estimations and jeopardizes following statistical analyses in different 43 

aspects, such as distorting sample distribution, impairing statistical power, etc. 44 

Although a wide range of missing value imputation methods was developed for 45 

–omics studies, a limited number of methods was designed appropriately for the 46 

situation of MNAR currently. To alleviate problems caused by MNAR and facilitate 47 

targeted metabolomics studies, we developed a Gibbs sampler based missing value 48 

imputation approach, called GSimp, which is public-accessible on GitHub. And we 49 

compared our method with existing approaches using an imputation evaluation 50 

pipeline on real-world and simulated metabolomics datasets to demonstrate the 51 

superiority of our method from different perspectives. 52 

 53 

Introduction 54 

Missing values are commonly observed in mass spectrometry (MS) based 55 

metabolomics datasets. Many statistical methods require a complete dataset, which 56 

makes missing data an inevitable problem for subsequent data analysis. Generally, 57 

there are three types of missing values, missing not at random (MNAR), missing at 58 

random (MAR) and missing completely at random (MCAR) [1,2]. Unexpected 59 

missing values are considered as MCAR if they originate from random errors and 60 

stochastic fluctuations during the data acquisition process (e.g., incomplete 61 

derivatization or ionization). MAR assumes the probability of a variable being 62 

missing depends on other observed variables [1,2]. Thus, missing values due to 63 
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suboptimal data preprocessing, e.g., inaccurate peak detection and deconvolution of 64 

co-eluting compounds can be defined as MAR. Targeted metabolomics studies have 65 

been widely used for the accurate quantification of specific groups of metabolites. 66 

Due to the limit of compound quantifications (LOQ), missing values are usually 67 

caused by signal intensities lower than LOQ, also known as left-censored missing, 68 

which can be assigned to MNAR. 69 

The processing of missing values has been developed and studied in MS data, which 70 

is an indispensable step in the metabolomics data processing pipeline [3]. One simple 71 

but naïve solution is the substitution of missing by determined values, such as zero, 72 

half of the minimum value (HM) or LOQ/c where c denotes a positive integer. 73 

Determined value substitutions, although commonly applied for dealing with missing 74 

values in metabolomics studies [4–6], can significantly affect the subsequent 75 

statistical analyses in different ways, e.g. underestimate variances of missing variables, 76 

decrease statistical power, fabricate pseudo-clusters among observations, etc. [1]. 77 

Advanced statistical imputation methods have been developed for –omics studies, e.g., 78 

k-nearest neighbors (kNN) imputation [7], singular value decomposition (SVD) 79 

imputation [8,9], random forest (RF) imputation [10]. Several metabolomics data 80 

analysis software tools provide different methods of dealing with missing values 81 

[11–15]. MetaboAnalyst [15–17], one widely used metabolomics analysis toolkit, 82 

provides Probabilistic PCA (PPCA), Bayesian PCA (BPCA) and SVD imputation. 83 

However, these methods are mainly aiming at imputing MCAR/MAR and not suitable 84 
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for the situation of MNAR. A limited number of approaches dealing with 85 

left-censored missing values were applied by researchers [18,19]. Quantile regression 86 

approach for left-censored missing (QRILC) imputes missing data using random 87 

draws from a truncated distribution with parameters estimated using quantile 88 

regression [20]. Although this imputation keeps the overall distribution of missing 89 

parts compared to determined value substitutions, it may produce random results 90 

since no more information is used for the prediction of missing parts. Another 91 

imputation method recently developed for MNAR is k-nearest neighbor truncation 92 

(kNN-TN) by Shah, et al. [21]. This approach applies Maximum Likelihood 93 

Estimators (MLE) for the means and standard deviations of missing variables based 94 

on truncated normal distribution. Then a Pearson correlation based kNN imputation 95 

method was implemented on standardized data. Although the author stated that 96 

kNN-TN could impute both MNAR and MAR, the imputed values were entirely 97 

dependent on the nearest neighbors while no constraint was placed upon the 98 

imputation. Thus, this approach might cause an overestimation of missing values. 99 

To reduce adverse effects caused by missing values during metabolomics data 100 

analyses, we developed a left-censored missing value imputation framework, GSimp, 101 

where a prediction model was embedded in an iterative Gibbs sampler. We then 102 

compared GSimp with HM, QRILC, and kNN-TN on two real-world metabolomics 103 

datasets and one simulation dataset to demonstrate the advantages of GSimp 104 

regarding imputation accuracy, observation distribution, univariate analysis, 105 
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multivariate analysis and sensitivity. Our findings indicate that GSimp is a robust 106 

method to handle left-censored missing values in targeted metabolomics studies. 107 

Results 108 

Gibbs sampler in GSimp 109 

A variable containing missing elements from FFA dataset was randomly selected to 110 

track the sequence of corresponding parameters and estimates across the first 500 111 

iterations out of a total of 2000 (100 × 20) iterations using GSimp. From Fig 1, we 112 

can observe that both fitted value ŷ and sample value ỹ reach to the convergence after 113 

iterations and the standard deviation estimate σ drop to a steady state with small 114 

values. In addition, an upper constraint for the distribution of ỹ indicated that it was 115 

drawn from a truncated normal distribution. 116 

 117 

Fig 1. Sequentially parameters updating in GSimp. The first 500 iterations out of a 118 

total of 2000 (100×20) iterations using GSimp where ŷ, ỹ and σ represent fitted value, 119 

sample value and standard deviation correspondingly. 120 

 121 

Imputation comparisons 122 

We evaluated four different MNAR imputation/substitution methods on FFA, BA 123 

targeted metabolomics and simulation datasets. First, we measured the imputation 124 

performances using label-free approaches. SOR was used to measure the imputation 125 
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accuracy regarding the imputed values of each missing variable. From the upper panel 126 

of Fig 2, we can observe that GSimp has the best performance with the lowest SOR 127 

across all varying numbers of missing variables in both FFA and BA datasets. To 128 

measure the extent of imputation induced distortion on observation distributions, the 129 

PCA-Procrustes analysis was conducted between the original data and imputed data. 130 

The lower panel of Fig 2 shows that GSimp has the lowest Procrustes sum of squared 131 

errors compared to other methods, which means GSimp kept the overall observation 132 

distribution of original dataset with the least distortions. 133 

 134 

Fig 2. Evaluations of different imputation methods using unlabeled approaches. 135 

SOR on FFA dataset (upper left) and BA dataset (upper right) along with different 136 

numbers of missing variables based on four imputation methods: HM (red circle), 137 

QRILC (green triangle), GSimp (blue square), and kNN-TN (purple cross). 138 

PCA-Procrustes sum of squared errors on FFA dataset (lower left) and BA dataset 139 

(lower right) along with different numbers of missing variables based on four 140 

imputation methods: HM (red circle), QRILC (green triangle), GSimp (blue square), 141 

and kNN-TN (purple cross). 142 

 143 

Then, we measured the imputation performances with binary labels provided. We 144 

compared the results of univariate and multivariate analyses for imputed and original 145 
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datasets. Since this is a case-control study, student’s t-tests were applied for univariate 146 

analyses. Then we compared the results by calculating Pearson’s correlation between 147 

log-transformed p-values calculated from imputed and original data for missing 148 

variables. Again, GSimp performs best with the highest correlations among four 149 

methods (upper panel of Fig 3) along with different numbers of missing variables, and 150 

it implies GSimp keeps the most biological variations regarding the univariate 151 

analyses results. For the multivariate analyses, we applied PLS-DA to distinguish the 152 

group differences. Similarly, we conducted PLS-Procrustes analysis while PLS was 153 

employed as a supervised dimension reduction technique. The lower panel of Fig 3 154 

demonstrates that GSimp preferably restores the original observation distribution with 155 

the lowest Procrustes sum of squared errors among four imputation methods. 156 

 157 

Fig 3. Evaluations of different imputation methods using labeled approaches. 158 

Pearson's correlation between log-transformed p-values of student’s t-tests on FFA 159 

dataset (upper left) and BA dataset (upper right) along with different numbers of 160 

missing variables based on four imputation methods: HM (red circle), QRILC (green 161 

triangle), GSimp (blue square), and kNN-TN (purple cross). PLS-Procrustes sum of 162 

squared errors on FFA dataset (lower left) and BA dataset (lower right) along with 163 

different numbers of missing variables based on four imputation methods: HM (red 164 

circle), QRILC (green triangle), GSimp (blue square), and kNN-TN (purple cross). 165 
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 166 

On the simulation dataset, we compared QRILC, kNN-TN, and GSimp using same 167 

approaches. Consistent results were recognized (S1 Fig), and GSimp presents the best 168 

performances on the simulation dataset with the lowest SOR and 169 

PCA/PLS-Procrustes sum of squared errors and the highest correlation of univariate 170 

analysis results. Moreover, to examine the influences of statistical power using 171 

different imputation methods, we calculated TPR as the capacities to detect 172 

differential variables on different imputation datasets. Again, with both p-cutoff of 173 

0.05 and 0.01, GSimp shows the overall highest TPR over different missing numbers 174 

(Fig 4). This implies that GSimp impairs the sensitivity to the least extent among 175 

three methods, which is reasonable since GSimp also keeps the highest correlation of 176 

p-values in previous comparisons. 177 

 178 

Fig 4. Evaluations of different imputation methods using TPR for various 179 

p-cutoffs on simulation dataset. TPR along with different numbers of missing 180 

variables based on three imputation methods: QRILC (green triangle), GSimp (blue 181 

square), and kNN-TN (purple cross) among different p-cutoff=0.05 (left panel), and 182 

0.01 (right panel). 183 

 184 
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Discussion 185 

The purpose of this study is to develop a left-censored missing value imputation 186 

approach for targeted metabolomics data analysis. We evaluated GSimp with other 187 

three imputation methods (a.k.a kNN-TN, QRILC, and HM) and suggested that 188 

GSimp was superior to others using different evaluation methods. To illustrate the 189 

performance of GSimp, we randomly selected one variable containing missing values 190 

from FFA dataset (Fig 5) to compare the imputed values and original values. 191 

Although determined value substitution (e.g. HM) were widely used by researchers in 192 

the field of metabolomics, our results indicated that HM could severely distort the 193 

data distribution (upper left panel of Fig 5), thus impairing subsequent analyses. In 194 

comparison, QRILC kept the overall data distribution and variances (upper right panel 195 

of Fig 5). However, random values could be generated by this approach since QRILC 196 

imputes each missing variable independently without utilizing the predictive 197 

information from other variables. Statistical learning based method, kNN-TN, applied 198 

a correlation based kNN algorithm with parameters of missing variables estimated 199 

with truncated normal distributions. This method utilized the information of highly 200 

correlated variables of targeted missing variable, thus kept a linear trend between 201 

original values and imputed values. However, since no constraint was applied for the 202 

imputation, a right shift of missing part might occur, causing imputed values to 203 

exceed the truncation point (lower left panel of Fig 5). In contrast, GSimp utilized the 204 

predictive information of other variables by employing a prediction model and held a 205 
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truncated normal distribution for each missing element simultaneously, which ensured 206 

a favorable linear trend between imputed and original values as well as a reasonable 207 

bound for the imputed values (lower right panel of Fig 5). 208 

 209 

Fig 5. Comparisons of imputed values and original values on an example 210 

variable. Scatter plots of imputed values (X-axis) and original values (Y-axis) on one 211 

example missing variable while non-missing elements represented as blue dots and 212 

missing elements as red dots based on four imputation methods: HM (upper left), 213 

QRILC (upper right), kNN-TN (lower left), and GSimp (lower right). Rug plots show 214 

the distributions of imputed values and original values. 215 

 216 

In our approach, truncated normal distribution was used for the constraint of 217 

imputation results in Gibbs sampler steps. We applied the minimum observed value of 218 

missing variable as an informative upper truncation point and -∞ as a non-informative 219 

lower truncation point considering the situation of left-censored missing. Other values 220 

could also be applied in real-world metabolomics analyses, such as a known LOQ of a 221 

metabolite can be set as an upper truncation point. Additionally, when signal intensity 222 

of certain compound is larger than the upper limit of quantification range or saturation 223 

during instrument analysis, an informative lower truncation point could be 224 

correspondingly applied for the right-censored missing value. What’s more, when 225 
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non-informative bounds for both upper and lower limits (e.g., +∞, -∞) were applied, 226 

our GSimp could be extended to the situation of MCAR/MAR. With the flexible 227 

usage of upper and lower limits, our approach may provide a versatile and powerful 228 

imputation technique for different missing types. For other –omics datasets with 229 

missing values (especially MNAR), e.g. single cell RNA-sequencing data, we could 230 

also apply this method with few modifications of our default settings. Thus, it is 231 

worthy to evaluate our approach, GSimp, in other complex scenarios in the future. 232 

Since GSimp employed an iterative Gibbs sampler method, a large number of 233 

iterations (iters_all=20, iters_each=100) are preferable for the convergence of 234 

parameters. However, as we tested on the simulation dataset with different number of 235 

iterations, a much less iterations (iters_all=10, iters_each=50) won't severely affect 236 

the imputation accuracy (S2 Fig). Among iterations for the whole data matrix, we 237 

applied a sequential imputation procedure for missing variables from the least number 238 

of missing values to the most. Such sequential approach improves imputation 239 

performances compared to parallel imputation approach. 240 

 241 

Materials and Methods 242 

Diabetes datasets 243 

We employed datasets from a study of comparing serum metabolites between obese 244 

subjects with diabetes mellitus (N=70) and healthy controls (N=130) where N 245 
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represents the number of observations. Dataset 1: a total of 42 free fatty acids (FFAs) 246 

were identified and quantified in those participants in order to evaluate their FFA 247 

profiles [22]. Dataset 2: a total of 34 bile acids (BAs) were identified and quantified 248 

in a similar way using different analytical protocol [23]. 249 

 250 

Simulation dataset 251 

For the simulation dataset, we first calculated the covariance matrix Cov based on the 252 

whole diabetes dataset (P=76) where P represents the number of variables. Then we 253 

generated two separated data matrices with the same number of 80 observations from 254 

multivariate normal distributions, representing two different biological groups. For 255 

each data matrix, the sample mean of each variable was drawn from a normal 256 

distribution N(0, 0.52) and Cov was kept using SVD. Then, two data matrices were 257 

horizontally (column-wise) stacked together as a complete data matrix (N×P=160×76) 258 

so that group differences were simulated and covariance was kept. 259 

 260 

MNAR generation 261 

For two real-world targeted metabolomics datasets, we generated a series of MNAR 262 

datasets by using the missing proportion (number of missing variables/number of total 263 

variables) from 0.1 to 0.6 in a step of 0.05 with MNAR cut-off for each missing 264 

variable drawn from a uniform distribution U(0.1, 0.5) The elements lower than the 265 

corresponding cut-off were removed and replaced with NA. For the simulation dataset, 266 
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we generated a series of MNAR datasets by using the missing proportion from 0.1 to 267 

0.8 step by 0.1 with MNAR cut-off drawn from U(0.3, 0.6) for a more rigorous 268 

testing. 269 

 270 

Prediction model 271 

A prediction model was employed for the prediction of missing values by setting a 272 

targeted missing variable as outcome and other variables as predictors. Different 273 

prediction models, e.g., linear regression, elastic net [24], regression trees [25] and 274 

random forest [26], etc. could be embedded in our imputation framework. Elastic net 275 

was applied in our approach as an ideal prediction model considering its stability, 276 

accuracy, and efficiency. This model is a regularized regression with the combination 277 

of L1 and L2 penalties of the LASSO [27] and ridge [28] methods. The estimates of 278 

regression coefficients in elastic net are defined as  279 

�� �  argmin��� � ���� � ���1 � ��/2����
� � ������� (1) 280 

The L2 penalty �1 � ��/2����
� improves the model’s robustness by controlling the 281 

multicollinearities among variables which are widely existed in high-dimensional 282 

–omics data. And the L1 penalty �����  controls the number of predictors by 283 

assigning zero coefficients to the "unnecessary" predictors. From a Bayesian point of 284 

view, the regularization is a mixture of Gaussian and Laplacian prior distributions of 285 

coefficients which can pull the full model of maximum likelihood estimates 286 

� � ���� towards the null model of prior coefficients distribution, thus controls the 287 
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risk of overfitting and increase the model robustness. R package glmnet was used for 288 

the elastic net. We set hyperparameters λ as 0.01 (default setting for high-dimensional 289 

data) and α as 0.5 (an equally mixture of LASSO and ridge penalties) [29]. 290 

 291 

Gibbs sampler 292 

Gibbs sampler is a Markov Chain Monte Carlo (MCMC) technique that sequentially 293 

updates parameters while others are fixed. It can be used to generate posterior 294 

samples. For each missing variable in the dataset, we applied a Gibbs sampler to 295 

impute the missing values by sampling from a truncated normal distribution with 296 

prediction model fitted value as mean and root mean square deviation (RMSD) of 297 

missing part as standard deviation while truncated by specified cut-points. Assuming 298 

we have a n × p data matrix X = (X1, X2, X3, …, Xp) with only one variable Xj 299 

containing left-censored missing values. We denote Xj as y and the missing part as ym 300 

with length m and non-missing part as yf with length f, and the rest of matrix X-j as X’. 301 

We can then set the lower truncation point lo as -∞ (centralized data) or 0 (original 302 

data) and upper hi as the minimum value of yf or a given LOQ. The truncation bounds 303 

ensure imputation results are constrained within [lo, hi]. Then, the Gibbs sampler 304 

approach can be described as following steps: 305 

Step-1 (initialization): we initialize missing values (QRILC in our case), and get y’; 306 

Step-2 (prediction): we then build a prediction model (elastic net in our case): y’ ~ X’; 307 

Step-3 (estimation): based on the prediction model, we get the predicted value ŷ and 308 
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the root mean square deviation (RMSD) of missing part � � �∑ �����
�  ���

� 
��
���

�
 where 309 

��

�  and ���
 are ith initialized/imputed value and fitted value respectively; 310 

Step-4 (sampling): we draw sample ���
 from a truncated normal distribution 311 

�����
, ��   �!", #$�% for ith missing element and update y’. 312 

We iteratively repeat step-2 to step-4 and update Xj. 313 

 314 

GSimp framework 315 

A whole data matrix X = (X1, X2, X3, …, Xp) contains a number of k (k ≤ p) 316 

left-censored missing variables. We present our imputation framework as following 317 

algorithm. 318 

Algorithm: Gibbs sampler based left-censored missing value imputation approach 
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Require: X an n × p data matrix, iters_all the number of iterations for imputing the 
whole matrix X, iters_each the number of iterations for imputing each missing 

variable, a vector of upper limits U (+∞ for non-missing variables) and a vector of 

lower limits L (-∞ for non-missing variables) with length p. 

1. &�� � initialize the missing values for X; 
2. K � vector of indices of missing variables in X with increasing amount of 

missing values; 
3. for 1:iters_all do 
4. for j in K do 

5. '′

� &�
��, '′ can be divided into two parts: '�

′

 is a vector of the 

imputed part (original missing part) with length m and '
�

′

 is a vector 

of the non-missing part with length f while n = m + f; 

6. &′ � &��
��, represents the matrix X with jth column removed;  

7. lo � Lj and hi� Uj; 
8. for 1:iters_each do 
9. Gibbs sampler step 2 to 4; 
10. end for 

11. Update &�
��; 

12. end for 
13. end for 
14. return &�� 

 319 

Other imputation approaches 320 

Other three left-censored missing imputation/substitution methods were conducted in 321 

our study for performance comparison: 322 

• kNN-TN (Truncation k-nearest neighbors imputation) [21]: this method applied a 323 

Newton-Raphson (NR) optimization to estimate the truncated mean and standard 324 
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deviation. Then, Pearson correlation was calculated based on standardized data 325 

followed by correlation-based kNN imputation. 326 

• QRILC (Quantile Regression Imputation of Left-Censored data) [18,30]: this 327 

method imputes missing elements randomly drawing from a truncated distribution 328 

estimated by a quantile regression. R package imputeLCMD was applied for this 329 

imputation approach. 330 

• HM (Half of the Minimum): This method replaces missing elements with half of 331 

the minimum of non-missing elements in the corresponding variable. 332 

Assessments of performance 333 

The assessments of imputation performance were conducted using an imputation 334 

evaluation pipeline from our previous study with both unlabeled and labeled 335 

measurements [31], which is accessible through: 336 

https://github.com/WandeRum/MVI-evaluation. Unlabeled measurements include the 337 

NRMSE-based sum of ranks (SOR), principal component analysis (PCA)-Procrustes 338 

analysis while labeled measurements include correlation analysis for univariate results, 339 

partial least square (PLS)-Procurstes analysis. R package vegan was applied for 340 

Procrustes analysis [32] and ropls was applied for PLS analysis [33]. 341 

Furthermore, we evaluated the impacts of different imputation methods on the 342 

statistical sensitivity of detecting biological variances. On the simulation dataset, we 343 

calculated p-values from student’s t-tests between two groups from original as well as 344 

imputed datasets. We marked a set S as real differential variables at a significant level 345 
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of p-cutoff (e.g. 0.05) from original simulation data, and a set S’ as detected 346 

differential variables at the same significant level from imputed simulation data. Then 347 

we calculated the true positive rate ()* �  # �� �� � ��


# �� �
 to evaluate the effects of 348 

different imputation methods in terms of detecting differential variables. 349 

 350 

Conclusion 351 

A practical left-censored missing value imputation method is needed in the field of 352 

metabolomics. We develop a new imputation approach GSimp that outperforms 353 

traditional determined value substitution method (HM) and other approaches (QRILC, 354 

and kNN-TN) for MNAR situations. GSimp utilized predictive information of 355 

variables and held a truncated normal distribution for each missing element 356 

simultaneously via embedding a prediction model into the Gibbs sampler framework. 357 

With proper modifications on the parameter settings, e.g. truncation points, GSimp 358 

may be applicable to handle different types of missing values and in different -omics 359 

studies, thus deserved to be further explored in the future. 360 

  361 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 9, 2017. ; https://doi.org/10.1101/177410doi: bioRxiv preprint 

https://doi.org/10.1101/177410


 20 

References 362 

1.  Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical 363 

models [Internet]. Cambridge University Press. 2006. doi:10.2277/0521867061 364 

2.  Little RJ a, Rubin DB. Statistical Analysis with Missing Data. Statistical 365 

analysis with missing data Second edition. 2002. doi:10.2307/1533221 366 

3.  Hrydziuszko O, Viant MR. Missing values in mass spectrometry based 367 

metabolomics: An undervalued step in the data processing pipeline. 368 

Metabolomics. 2012;8: 161–174. doi:10.1007/s11306-011-0366-4 369 

4.  Guo L, Milburn M V, Ryals JA, Lonergan SC, Mitchell MW, Wulff JE, et al. 370 

Plasma metabolomic profiles enhance precision medicine for volunteers of 371 

normal health. Proc Natl Acad Sci. 2015;112: E4901–E4910. 372 

doi:10.1073/pnas.1508425112 373 

5.  Liu J-J, Ghosh S, Kovalik J-P, Ching J, Choi HW, Tavintharan S, et al. 374 

Profiling of plasma metabolites suggests altered mitochondrial fuel usage and 375 

remodelling of sphingolipid metabolism in individuals with type 2 diabetes and 376 

kidney disease. Kidney Int Reports. 2016;2: 470–480. 377 

doi:10.1016/j.ekir.2016.12.003 378 

6.  Butte NF, Liu Y, Zakeri IF, Mohney RP, Mehta N, Voruganti VS, et al. Global 379 

metabolomic profiling targeting childhood obesity in the Hispanic population. 380 

Am J Clin Nutr. 2015;102: 256–267. doi:10.3945/ajcn.115.111872 381 

7.  Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, et al. 382 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 9, 2017. ; https://doi.org/10.1101/177410doi: bioRxiv preprint 

https://doi.org/10.1101/177410


 21 

Missing value estimation methods for DNA microarrays. Bioinformatics. 383 

2001;17: 520–525. doi:10.1093/bioinformatics/17.6.520 384 

8.  Hastie T, Tibshirani R, Sherlock G. Imputing missing data for gene expression 385 

arrays. Tech Report, Div Biostat Stanford Univ. 1999; 1–9.  386 

9.  Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods - A 387 

bioconductor package providing PCA methods for incomplete data. 388 

Bioinformatics. 2007;23: 1164–1167. doi:10.1093/bioinformatics/btm069 389 

10.  Stekhoven DJ, Bühlmann P. Missforest-Non-parametric missing value 390 

imputation for mixed-type data. Bioinformatics. 2012;28: 112–118. 391 

doi:10.1093/bioinformatics/btr597 392 

11.  Mak TD, Laiakis EC, Goudarzi M, Fornace AJ. MetaboLyzer: A novel 393 

statistical workflow for analyzing postprocessed LC-MS metabolomics data. 394 

Anal Chem. 2014;86: 506–513. doi:10.1021/ac402477z 395 

12.  Katajamaa M, Miettinen J, Oresic M. MZmine: toolbox for processing and 396 

visualization of mass spectrometry based molecular profile data. 397 

Bioinformatics. 2006;22: 634–6. doi:10.1093/bioinformatics/btk039 398 

13.  Kessler N, Neuweger H, Bonte A, Langenkämper G, Niehaus K, Nattkemper 399 

TW, et al. MeltDB 2.0-advances of the metabolomics software system. 400 

Bioinformatics. 2013;29: 2452–2459. doi:10.1093/bioinformatics/btt414 401 

14.  Luedemann A, Von Malotky L, Erban A, Kopka J. TagFinder: Preprocessing 402 

software for the fingerprinting and the profiling of gas chromatography-mass 403 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 9, 2017. ; https://doi.org/10.1101/177410doi: bioRxiv preprint 

https://doi.org/10.1101/177410


 22 

spectrometry based metabolome analyses. Methods Mol Biol. 2012;860: 404 

255–286. doi:10.1007/978-1-61779-594-7_16 405 

15.  Xia J, Sinelnikov I V., Han B, Wishart DS. MetaboAnalyst 3.0-making 406 

metabolomics more meaningful. Nucleic Acids Res. 2015;43: W251–W257. 407 

doi:10.1093/nar/gkv380 408 

16.  Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: A web server for 409 

metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37. 410 

doi:10.1093/nar/gkp356 411 

17.  Xia J, Mandal R, Sinelnikov I V., Broadhurst D, Wishart DS. MetaboAnalyst 412 

2.0-a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 413 

2012;40. doi:10.1093/nar/gks374 414 

18.  Lazar C, Gatto L, Ferro M, Bruley C, Burger T. Accounting for the Multiple 415 

Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to 416 

Compare Imputation Strategies. J Proteome Res. 2016;15: 1116–1125. 417 

doi:10.1021/acs.jproteome.5b00981 418 

19.  Shah JS, Rai SN, DeFilippis AP, Hill BG, Bhatnagar A, Brock GN. Distribution 419 

based nearest neighbor imputation for truncated high dimensional data with 420 

applications to pre-clinical and clinical metabolomics studies. BMC 421 

Bioinformatics. 2017;18: 114. doi:10.1186/s12859-017-1547-6 422 

20.  Lazar C, Gatto L, Ferro M, Bruley C, Burger T. Accounting for the Multiple 423 

Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to 424 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 9, 2017. ; https://doi.org/10.1101/177410doi: bioRxiv preprint 

https://doi.org/10.1101/177410


 23 

Compare Imputation Strategies. J Proteome Res. 2016;15: 1116–1125. 425 

doi:10.1021/acs.jproteome.5b00981 426 

21.  Shah JS, Rai SN, DeFilippis AP, Hill BG, Bhatnagar A, Brock GN. Distribution 427 

based nearest neighbor imputation for truncated high dimensional data with 428 

applications to pre-clinical and clinical metabolomics studies. BMC 429 

Bioinformatics. 2017;18: 114. doi:10.1186/s12859-017-1547-6 430 

22.  Ni Y, Zhao L, Yu H, Ma X, Bao Y, Rajani C, et al. Circulating Unsaturated 431 

Fatty Acids Delineate the Metabolic Status of Obese Individuals. 432 

EBioMedicine. 2015;2: 1513–1522. doi:10.1016/j.ebiom.2015.09.004 433 

23.  Lei S, Huang F, Zhao A, Chen T, Chen W, Xie G, et al. The ratio of 434 

dihomo-γ-linolenic acid to deoxycholic acid species is a potential biomarker 435 

for the metabolic abnormalities in obesity. FASEB J. Federation of American 436 

Societies for Experimental Biology; 2017; fj.201700055R. 437 

doi:10.1096/fj.201700055R 438 

24.  Zou H, Hastie T. Regularization and variable selection via the elastic net. J R 439 

Stat Soc Ser B Stat Methodol. 2005;67: 301–320. 440 

doi:10.1111/j.1467-9868.2005.00503.x 441 

25.  Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression 442 

Trees. The Wadsworth statisticsprobability series. 1984. 443 

doi:10.1371/journal.pone.0015807 444 

26.  Breiman L. Random forests. Mach Learn. 2001;45: 5–32. 445 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 9, 2017. ; https://doi.org/10.1101/177410doi: bioRxiv preprint 

https://doi.org/10.1101/177410


 24 

doi:10.1023/A:1010933404324 446 

27.  Tibshirani R. Regression Selection and Shrinkage via the Lasso [Internet]. 447 

Journal of the Royal Statistical Society B. 1996. pp. 267–288. 448 

doi:10.2307/2346178 449 

28.  Hoerl AE, Kennard RW. Ridge Regression: Biased Estimation for 450 

Nonorthogonal Problems. Technometrics. 1970;12: 55–67. 451 

doi:10.1080/00401706.1970.10488634 452 

29.  Friedman AJ, Hastie T, Simon N, Tibshirani R, Hastie MT. Lasso and 453 

Elastic-Net Regularized Generalized Linear Models [Internet]. 2015. Available: 454 

http://www.jstatsoft.org/v33/i01/. 455 

30.  Lazar C. Imputation of left-censored missing data using QRILC method 456 

[Internet]. 2015.  457 

31.  Wei R, Wang J, Su M, Jia E, Chen T, Ni Y. Missing Value Imputation Approach 458 

for Mass Spectrometry-based Metabolomics Data. bioRxiv. 2017; Available: 459 

http://biorxiv.org/content/early/2017/08/17/171967.abstract 460 

32.  Oksanen J. Multivariate Analysis of Ecological Communities in R: vegan 461 

tutorial [Internet]. 2015.  462 

33.  Thévenot EA, Roux A, Xu Y, Ezan E, Junot C. Analysis of the Human Adult 463 

Urinary Metabolome Variations with Age, Body Mass Index, and Gender by 464 

Implementing a Comprehensive Workflow for Univariate and OPLS Statistical 465 

Analyses. J Proteome Res. 2015;14: 3322–3335. 466 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 9, 2017. ; https://doi.org/10.1101/177410doi: bioRxiv preprint 

https://doi.org/10.1101/177410


 25 

doi:10.1021/acs.jproteome.5b00354 467 

  468 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 9, 2017. ; https://doi.org/10.1101/177410doi: bioRxiv preprint 

https://doi.org/10.1101/177410


 26 

Supporting information 469 

 470 

S1 Fig. Evaluations of different imputation methods on simulation dataset. SOR 471 

(upper left), PCA-Procrustes sum of squared errors (upper right), Pearson's correlation 472 

between log-transformed p-values of student’s t-tests (lower left), and PLS-Procrustes 473 

sum of squared errors (lower right) on simulation dataset along with different 474 

numbers of missing variables based on three imputation methods: QRILC (green 475 

triangle), GSimp (blue square), and kNN-TN (purple cross). 476 

 477 

S2 Fig. Evaluations of different numbers of iterations using GSimp on simulation 478 

dataset. SOR on simulation dataset along with different numbers of missing variables 479 

based on four different numbers of iterations: iters_each=50 and iters_all=20 (red 480 

circle), iters_each=100 and iters_all=20 (green triangle), iters_each=50 and 481 

iters_all=10 (blue square), iters_each=100 and iters_all=10 (purple cross). 482 
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