
Assessing the performance of

real-time epidemic forecasts

Sebastian Funk1,∗, Anton Camacho1,2, Adam J. Kucharski1,
Rachel Lowe1,3, Rosalind M. Eggo1, W. John Edmunds1

1 Center for the Mathematical Modelling of Infectious Diseases, London School of
Hygiene & Tropical Medicine, London, United Kingdom

2 Epicentre, Paris, France
3 Barcelona Institute for Global Health (ISGLOBAL), Barcelona, Spain

∗ Corresponding author. Email: sebastian.funk@lshtm.ac.uk

Abstract

Real-time forecasts based on mathematical models have become
increasingly important to help guide critical decision-making during
infectious disease outbreaks. Yet, epidemic forecasts are rarely evalu-
ated during or after the event, and it has not been established what
the best metrics for assessment are. Here, we disentangle different
components of forecasting ability by defining three metrics that as-
sess the calibration, sharpness and unbiasedness of forecasts. We use
this approach to analyse the performance of weekly district-level fore-
casts generated in real time during the 2013–16 Ebola epidemic in
West Africa, which informed a range of public health decisions dur-
ing the outbreak. We found forecasting performance with respect to
all three measures was good at short time horizons but deteriorated
for long-term forecasts. This suggests that forecasts provided useful
performance only a few weeks ahead of time, reflecting the high level
of uncertainty in the processes driving the trajectory of the epidemic.
Comparing the semi-mechanistic model we used during the epidemic
to two null models showed that the approach we chose performed best
with respect to probabilistic calibration but sharpness decreased more
rapidly for longer forecasting horizons than with simpler models. As
forecasts become a routine part of the toolkit in public health, stan-
dards for evaluation of performance will be important for assessing
quality and improving credibility of mathematical models, and for elu-
cidating difficulties and trade-offs when aiming to make the most useful
and reliable forecasts.
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Introduction

Forecasting the future trajectory of cases during an infectious disease out-
break can make an important contribution to public health and intervention
planning. Infectious disease modellers are now routinely asked for predic-
tions in real time during emerging outbreaks [1]. Forecasting targets usually
revolve around expected epidemic duration, size, or peak timing and in-
cidence [2–6], geographical distribution of risk [7], or short-term trends in
incidence [8, 9]. Despite their growing importance, however, the perfor-
mance of forecasts made during an outbreak is rarely investigated during or
after the event for their accuracy [8, 10].

Providing accurate forecasts during emerging epidemics comes with par-
ticular challenges as uncertainties about long-term circumstances, in partic-
ular human behavioural changes and public health interventions, can pre-
clude reliable long-term predictions [11–13]. Short-term forecasts with an
horizon of a few generations of transmission (e.g., a few weeks in the case of
Ebola), on the other hand, can yield important information on current and
anticipated outbreak behaviour and, consequently, guide immediate decision
making.

The most recent example of a large scale outbreak forecasting effort was
during the 2013–16 Ebola epidemic, which vastly exceeded the burden of
all previous outbreaks, with almost 30,000 reported cases of the disease,
resulting in over 10,000 deaths in the three most affected countries: Guinea,
Liberia and Sierra Leone. During the epidemic, several research groups
provided forecasts or projections at different time points, by fitting models
to the available time series and running them forward to predict the future
trajectory of the outbreak [14–24]. These were part of wider modelling
efforts to evaluate the expected effect of interventions and assess the risk
of international spread[25, 26]. One forecast that gained attention during
the epidemic was published in the summer of 2014, projecting that by early
2015 there might be 1.4 million cases [27]. While this number was based
on unmitigated growth in the absence of further intervention and proved a
gross overestimate, it was later highlighted as a particularly important “call
to arms” that served to trigger the international response that helped avoid
the worst-case scenario [28].

In contrast to one-off published forecasts, we produced weekly sub-
national real-time forecasts during the Ebola epidemic, starting on 28
November 2014. These were published on a dedicated web site and up-
dated every time a new set of data were available [29]. They were generated
using a model that has, in variations, been used to forecast bed demand
during the epidemic in Sierra Leone [19] and the feasibility of vaccine trials
late in the epidemic [30, 31]. During the epidemic, we provided sub-national
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forecasts for three most affected countries (at the level of counties in Liberia,
districts in Sierra Leone and prefectures in Guinea).

Here, we develop assessment metrics that elucidate different properties
of forecasts, in particular their probabilistic calibration, sharpness and un-
biasedness. Using these methods, we retrospectively assess the forecasts
we generated for Western Area in Sierra Leone, an area that saw one of
the greatest number of cases in the region and where our model was used
to inform bed capacity planning. To investigate the accuracy of forecasts
with different time horizons, we developed metrics to assess forecasts that
elucidate different properties of forecasts, in particular their probabilistic
calibration, sharpness and unbiasedness. In particular, we investigate the
accuracy of forecasts with different time horizons. The development of a
toolbox for assessment of real-time models is a critical step in preparedness
planning for future epidemics. With this in mind, we focus on diagnos-
tic tools for real-time and relatively short-term (i.e., a few weeks ahead)
probabilistic forecasts in emergency situations with limited data to guide
operational decisions.

Methods

Data sources

Numbers of suspected, probable and confirmed cases at sub-national levels
were initially compiled from daily Situation Reports (or SitReps) provided
in PDF format by Ministries of Health of the three affected countries during
the epidemic [19]. Data were automatically extracted from tables included
in the reports wherever possible and otherwise manually converted by hand
to machine-readable format and aggregated into weeks. From 20 November
2014, the World Health Organization (WHO) provided tabulated data on the
weekly number of confirmed and probable cases. These were compiled from
the patient database, which was continuously cleaned and took into account
reclassification of cases avoiding potential double-counting. However, the
patient database was updated with substantial delay so that the number of
reported cases would typically be underestimated in the weeks leading up
to the date of the forecast. Because of this, we used the SitRep data for
the most recent weeks until the latest week in which the WHO case counts
either equalled or exceeded the SitRep counts. For all earlier times, the
WHO data were used.
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Transmission model

We used a semi-mechanistic stochastic model of Ebola transmission de-
scribed previously [19, 32]. Briefly, the model was based on a Susceptible-
Exposed-Infectious-Recovered (SEIR) model with fixed incubation period of
9.4 days [33], following an Erlang distribution with shape 2. The country-
specific infectious period was determined by adding the average delay to hos-
pitalisation to the average time from hospitalisation to death or discharge,
weighted by the case-fatality rate. In the model, cases were reported with a
stochastic time-varying delay. On any given day, this was given by a gamma
distribution with mean equal to the country-specific average delay from on-
set to hospitalisation and standard deviation of 0.1 day. The time-varying
transmission rate was modelled using a daily Gaussian random walk with
fixed volatility (or standard deviation of step size). This imposed a rela-
tively weak prior on the time course of the transmission rate. It was chosen
to incorporate uncertainty in the behaviour of transmission intensity over
time, reflecting behavioural changes in the community, public health inter-
ventions or other factors affecting transmission for which information was
not available at the time. The volatility of the random walk was estimated
as part of the inference procedure (see below). Its value determined degree
to which the transmission rate could change each day. To ensure it remained
positive, we log-transformed the transmission rate. Its behaviour in time can
be written as

d log βt = σdWt (1)

where βt is the time-varying transmission rate, Wt is the Wiener process
and σ the volatility of the transmission rate. In fitting the model to the
time series of cases we extracted posterior predictive samples of trajectories,
which we used to generate forecasts.

Model fitting and forecasting

Each week, we fitted the model to the available case data leading up to
the date of the forecast. Observations were assumed to follow a negative
binomial distribution, approximated as a discretised normal distribution for
numerical convenience. Four parameters were estimated in the process: the
basic reproduction number R0 (uniform prior within (1, 5)), initial num-
ber of infectious people (uniform prior within (1, 400)), overdispersion of
reporting (uniform prior within (0, 0.5)) and volatility of the time-varying
transmission rate (uniform prior within (0, 0.5)). We confirmed from the
posterior distributions of the parameters that these priors did not set any
problematic bounds. Samples of the posterior distribution of parameters
and state trajectories were extracted using particle Markov chain Monte
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Carlo [34] as implemented in the ssm library [35]. For each forecast, 50,000
samples were extracted and thinned 5,000.

To produce forecasts, the value of the transmission rate was fixed to its
last value and the model run forward with a fixed transmission rate. In
other words, the forecasts should be interpreted as projections of what were
to happen if no further changes occurred to the transmission rate. We used
the samples of the posterior distribution generated using the Monte Carlo
algorithm to produce a range of predictive trajectories. We used point-wise
medians and confidence intervals across all these trajectories as forecasts
with a given time horizon of up to 10 weeks.

To assess the performance of the semi-mechanistic transmission model
we compared it to two simpler sub-models that represented its constituent
parts and served as null models: one that only contained the mechanistic
core of the semi-mechanistic model with a fixed transmission rate, and a
non-mechanistic model where the number of cases followed a Wiener process,
with forecasts generated assuming the weekly number of new cases was not
going to change. The simpler models were implemented in libbi [36] via the
RBi [37] and RBi.helpers [38] R packages [39].

Metrics

We assessed forecasts with respect to their calibration and sharpness, ex-
isting concepts in evaluating forecasts [40], as well as the ability of models
to avoid bias. For these three concepts, we developed scoring metrics that
take real values between 0 (worst possible performance) and 1 (best possi-
ble performance), and evaluated them using Monte-Carlo samples from the
predictive posterior distributions.

Calibration or reliability [41] of forecasts refers to the ability of a model
to correctly identify its own uncertainty in forecasting. It can be assessed
using the probability integral transform [42],

ut = Ft(xt) (2)

where xt is the observed data point at time t ∈ t1, . . . , tn, N being the
number of forecasts, and Ft is the (continuous) predictive cumulative prob-
ability distribution (CDF). If the true probability distribution of outcomes
is Gt then the forecasts Ft are said to be ideal if Ft = Gt at all times t. In
that case, ut is distributed uniformly.

To define a single calibration score C, we assessed the degree to which
the values ut were uniformly distributed, by dividing the interval [0, 1] into
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m� n sub-intervals of equal size and calculating

C(Ft, xt) = 1− m

2(m− 1)

∑
j

∣∣∣∣pj − 1

m

∣∣∣∣ (3)

where pj is the proportion of values of ut in the j-th sub-interval. A perfectly
calibrated model would yield pj = 1/m for all j, and C = 1. A very poorly
calibrated model would yield pj = 1 for some j, and C = 0.

Unbiasedness of forecasts is the ability of the model to not systematically
over- or underestimate data. We defined unbiasedess at time t as

Ut(Ft, xt) = 1− 2

∣∣∣∣∫ ∞
−∞

Ft(y)H(y − xt)dy − 0.5

∣∣∣∣ (4)

where H(x) is the Heaviside step function with the half-maximum conven-
tion H(0) = 1/2. It is equivalent to

Ut(Ft, xt) = 1− 2 |EFt [H(X − xt)]− 0.5| (5)

which can be estimated using a finite number of samples, such as the Monte-
Carlo samples generated in our inference procedure. Here, xt are the ob-
served data points, EFt is the expectation with respect to the predictive
CDF Ft and X are independent realisations of a variable with distribution
Ft. The most unbiased model would have exactly half of forecasts above or
equal to the data at time t and Ut = 1, whereas a completely biased model
would yield either all or no forecasts above the median and therefore have
Ut = 0. To get a single unbiasedness score U , we took the mean across
forecast time

U(Ft, xt) =
1

T

∑
t

Ut(Ft, xt), (6)

where T is the number of forecasting time points.

Sharpness is the ability of the model to generate predictions within a
narrow range of possible outcomes. It is a data-independent measure, that
is, it is purely a feature of the forecasts themselves. We defined sharpness
at time t as

St(Ft) = 1− MADM(y)

m(y)
, (7)

where y is a variable distributed according to Ft, and MADM(y) is the
normalised median absolute deviation about the median m(y) of y,

MADM(y) = m (|y −m(y)|) (8)
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The sharpest model would focus all forecasts on one point and have S = 1,
whereas a completely blurred forecast would have S → 0. Again, we used
Monte-Carlo samples X from Ft to estimate sharpness. To get a single
unbiasedness score S, we took the mean across forecast time

S(Ft, xt) =
1

T

∑
t

St(Ft, xt) (9)

We also evaluated forecasts using an established metric, the continuous
ranked probability score [CRPS, 43]. CRPS is a distance measure that mea-
sures forecasting performance at the scale of the predicted data, with 0 being
the ideal score. It reduces to the mean absolute error if the forecast is de-
terministic and can therefore be seen as its probabilistic generalisation. It
is defined as

CRPS(Ft, xt) = −
∫ ∞
−∞

(Ft(y)−H(y − xt))2 dy, (10)

A convenient equivalent formulation using independent samples from Ft

was suggested by Gneiting et al. [40] and is given by

CRPS(Ft, xt) = EFt |X − xt| −
1

2
EFt

∣∣X −X ′∣∣ , (11)

where X and X ′ are independent realisations of a random variable with
CDF Ft.

Sample size

The measures of calibration and unbiasedness we defined are, strictly speak-
ing, outcomes of finite random trials and therefore subject to limits even if
forecasts are ideal. To assess behaviour of calibration and unbiasedness un-
der ideal forecasts we conducted a simulation study by generating random
samples of varying number T (corresponding to the number of forecasts n).
For calibration C, we randomly sampled T proportions pj from a multino-
mial distibution with equal probability pj = 1/j for each j. For unbiased-
ness U , we randomly generated T samples from integers 1 . . . n (where n is
the number of posterior samples generated in our Monte-Carlo samples, for
comparison), calculating unbiasedness using the mean M of these samples
and

Uideal = 1− 2

∣∣∣∣Mn
∣∣∣∣ (12)
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Figure 1. Performance of an ideal forecaster, determined in a simulation
study as a function of the number of forecasts T (on a logarithmic scale),
with respect to (A) calibration (with m = 5) and (B) unbiasedness (with
n = 5000 samples). The number of forecasts assessed for Ebola in Western
Area (15–24) is shaded in grey.

Results

We first assessed the forecasting scores achievable as a function of the num-
ber of forecasts considered. Performance as measured by the forecasting
metrics of calibration and unbiasedness improves with the number of fore-
casts even when forecasts are perfect in a probabilistic sense (Fig. 1). For a
single forecast, calibration (which relies on uniformity of a histogram) and
unbiasedness cannot be defined. For the number of times we generated fore-
casts for the Western Area district of Sierra Leone (15–24, depending on the
number of forecast weeks), achievable values ranged from 0.66–0.86 (IQR,
calibration) and 0.83–0.96 (IQR, unbiasedness). Even if forecasts were per-
fect, it would take more than 100 forecasts to achieve scores greater than
0.8 for calibration and unbiasedness more than 95% of the time.

The forecasts generated during the Ebola epidemic were done by first
fitting the model up to the current time point and then running the model
forward with a the transmission rate fixed to its value at the last datapoint.
The semi-mechanistic model used to generate real-time forecasts during the
epidemic was able to reproduce the time up to the date of each forecast,
following the data closely by means of the smoothly varying transmission
rate (Fig. 2). The overall behaviour of the reproduction number was one
of a near-monotonic decline, from a median estimate of 2.9 (interquartile
range (IQR) 2.2–3.8, 95% credible interval (CI) 1.1–7.8) in the first fitted
week (beginning 10 August, 2014) to a median estimate of 1.3 (IQR 0.9–1.9,
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Figure 2. Example of model fits and forecasts produced during the Ebola
outbreak in Western Area, Sierra Leone, using a semi-mechanistic
model (A, B) and non-mechanistic (C) and deterministic mechanistic (D)
null models. Shown in all panels is the final fit (black line and grey
shading) to the data (black dots, panels A, C, D) and corresponding
evolution of the basic reproduction number for the semi-mechanistic
model (panel B, ignoring depletion of susceptibles because of small
numbers). Four-week forecasts generated at four different time points are
shown in red. Point-wise median state estimates are indicated by a solid
curve, interquartile ranges by dark shading, and 90% intervals by light
shading. The threshold reproduction number (R0 = 1), determining
whether case numbers are expected to increase or decrease, is indicated by
a dashed line.

95% CI 0.3–3.9) in early October, 1.4 (IQR 1.0–2.0, 95% CI 0.4–4.6) in early
November, 1.0 (IQR 0.7–1.4, 95% CI 0.2–3.0) in early December, 0.6 in early
January (IQR 0.4–0.9, 95% CI 0.1–1.9) and 0.3 at the end of the epidemic
in early Feburary (IQR 0.2–0.5, 95% CI 0.1–1.3).
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Figure 3. Performance of forecasts generated using the semi-mechanistic
model (green) compared to two null models (red: deterministic SEIR, blue:
constant incidence), as a function of the forecasting horizon:
(A) calibration, (B) unbiasedness and (C) sharpness. In (A) and (B), the
points indicate mean estimates and the error bars binomial 95% confidence
intervals, estimated using a bootstrap. In (C), the horizontal bar indicates
the median, top and bottom hinges the interquartile range (IQR), and the
length of the whiskers data points within 1.5 times the IQR from the
hinges. In (A) and (B), estimated performance of an ideal forecaster is
indicated by dashed and solid black curves, corresponding to the median
and interquartile range as in Fig. 1, respectively.

Applying the defined forecasting scores to our Ebola forecasts, we found
that probabilistic calibration of forecasts was close to the achievable opti-
mum for 1-week-ahead forecasts using the semi-mechanistic model (median:
0.67, IQR: 0.59–0.72), but rapidly deteriorated as the forecasting horizon
increased (Fig. 3). At 4 weeks ahead, the median calibration score was
0.38 (IQR: 0.33–0.43), dropping to 0.27 (IQR: 0.25–0.30) at 10 weeks. Fore-
casts using the semi-mechanistic models were slightly biased at short fore-
cast horizons, with bias increasing with lead time. The median estimate
of unbiasedness was 0.67 at a 1-week horizon (IQR: 0.47–0.86), dropping
to 0.55 (IQR: 0.45–0.69) at a 4-week horizon and 0.45 (IQR: 0.36–0.56)
at 10 weeks. Sharpness of the forecasts generated by the semi-mechanistic
model were initially high but deteriorated rapidly, from a median value of
0.77 for a forecasting horizon of 1 week (IQR: 0.74–0.81) to a median of
0.45 (IQR: 0.33–0.52) at 4 weeks and 0.10 (IQR: 0.02–0.15) at 10 weeks.

Comparing the semi-mechanistic model with a simpler mechanistic (i.e.,
pure deterministic SEIR) and a non-mechanistic (i.e., pure random walk)
model revealed trade-offs in forecasting performance (Fig. 3). The semi-
mechanistic model consistently performed best with respect to calibration,
at the expense of unbiasedness and sharpness, both of which were lower than
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for the non-mechanistic model. The non-mechanistic model was not as well
calibrated as the semi-mechanistic model, but produced largely unbiased
forecasts of high sharpness (median: 0.88, IQR: 0.86–0.90). While forecasts
generated by the mechanistic model were sharper than ones generated by
the semi-mechanistic model, the model generally yielded poor fits to the
data and forecasts, with low calibration (median: 0.16, IQR: 0.02–0.35) and
unbiasedness (median: 0.22, IQR: 0.14–0.35) scores, even at 1 week ahead.
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Figure 4. The Continuous Ranked Probability Score (CRPS) as a
function of (A) the number of weeks ahead for which the forecast was
generated and (B) the date of the forecast.

The CRPS is a probabilistic generalisation of the mean absolute error
and can therefore be interpreted as the mean number of cases by which
the forecast missed the true number. It increased as the forecasting horizon
increased for all three models (Fig. 4A). At 1 week ahead, the median CRPS
of the semi-mechanistic model was 24 (IQR: 17–55), rising to 190 (IQR:
70–290) at 4 weeks and 1400 (700–2200) at 10 weeks. The non-mechanistic
model achieved similar but slightly lower CRPS at a 1 week horizon (median:
20, IQR: 10–47), with more significantly better scores at 4 weeks (median:
65, IQR: 47–89) and 10 weeks (median: 130, IQR: 70–170). The mechanistic
model yielded consistently higher CRPS than the two other models.

The behaviour of the CRPS of 1-week forecasts over time yields differ-
ences in the ability of the different models to predict the epidemic trajec-
tory at different time points (Fig. 4B). Generally, the CRPS of the semi-
mechanistic model increased, indicating poor performance, at times when
there was a change in direction of the epidemic trajectory, pointing to the
inability of the model to correctly predict such a change. The CRPS of
the non-mechanistic model, on the other hand, increased at times when the
number of cases underwent a large change from one week to the next. The
CRPS of the purely mechanistic model increased over time, indicating the
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increasingly poor performance of the model.

Discussion

Several groups produced and published forecasts over the course of the Ebola
epidemic, and the alleged failure of some to predict the correct number of
cases by several orders of magnitude generated some controversy around
the usefulness of mathematical models [17, 44]. Defining optimum way to
evaluated forecasts retrospectively, with respect to the specific aims of the
forecasting framework in question, is an area of research of paramount im-
portance. To our knowledge, we were the only research team making weekly
forecasts available to the public in real time, distributing them to a wide
range of international public health practitioners via a dedicated email list,
as well as on a publicly accessible web page. Because we did not have access
to data that would have allowed us to assess the importance of different
transmission routes (burials, hospitals and the community) we relied on a
simple, flexible model. More generally, outbreaks of emerging infectious dis-
eases in resource-poor settings are often characterised by limited data and a
need for short-term forecasts to inform bed demands and allocation of other
human and financial resources.

Applying a suite of assessment methods to our forecasts, we found they
consistently provided good probabilistic calibration, sharpness and unbi-
asedness at short time horizons, but performance deteriorated as forecast-
ing horizon increased. This reflects our lack of certainty about the under-
lying processes shaping the epidemic, from public health interventions by
numerous national and international agencies to changes in individual and
community behaviour. During the epidemic, we only published forecasts
up to 3 weeks ahead, as longer forecasting horizons were not considered
appropriate.

Our forecasts suffered from bias that worsened as the forecasting horizon
expanded. Generally, the forecasts tended to overestimate the number of
cases to be expected in the following weeks. This is most likely because we
assumed no future change in the transmission rate. In reality, transmission
decreased significantly over the course of the epidemic, probably due to a
combination of factors ranging from better provision of isolation beds to
increasing awareness of the outbreak and subsequent behavioural changes.
While our model captured changes in the transmission rate in model fits, it
did not forecast any trends such as a the observed decrease over time, but
assumed that it remained constant. Capturing such trends and modelling
the underlying causes would be an important future improvement of real-
time infectious disease models, and help move them from scenario forecasts
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towards true prediction.

The aim of any forecast should be to maximise the sharpness of predic-
tive distributions subject to calibration [40] while avoiding bias. In practice,
there can be trade-offs between achieving good outcomes on these mea-
sures, so that deciding whether the best forecast is the best calibrated, the
sharpest or the least biased, or some compromise between the three, is not a
straightforward task. Our assessment of forecasts using separate scores for
probabilistic calibration, unbiasedness and sharpness highlights the underly-
ing trade-offs. While the semi-mechanistic model we used during the Ebola
epidemic was better calibrated than two simpler models, one purely stochas-
tic and one purely mechanistic, this came at the expense of a decrease in the
sharpness of forecasts. Comparing the models using the CRPS, a score com-
bining assessment of calibration and sharpness, the simpler non-mechanistic
model would be preferred to the semi-mechanistic model because the greater
sharpness compensates for poorer calibration. In contrast, in the context
of forecasts during epidemics, probabilistic calibration while avoiding bias
should always be the main goal. This allows researchers to make meaningful
probabilistic statements (such as the chances of seeing the number of cases
exceed a set threshold in the upcoming weeks) that enable realistic assess-
ments of resource demand, the possible future course of the epidemic, as
well as the potential impact of public health measures.

Other models may have performed better than the ones presented here.
The deterministic SEIR model we used as a null model performed poorly on
all forecasting scores, and failed to capture the downturn of the epidemic in
Western Area. However, a well-calibrated mechanistic model that accounts
for all relevant dynamic factors and external influences could, in principle,
have been used to predict the behaviour of the epidemic reliably and pre-
cisely. Yet, lack of detailed data on transmission routes and risk factors
precluded the parameterisation of such a model and are likely to do so again
in future epidemics in resource-poor settings.

There is a wide range of non-mechanistic methods for time-series fore-
casting [45], which we did not consider. In practice, there might be consid-
erations beyond performance when choosing a model for forecasting. Our
model combined a mixture of a mechanistic core (the SEIR model) with
non-mechanistic variable elements. By using a flexible non-parametric form
of the time-varying transmission rate, the model provided a good fit to the
case series despite a high levels of uncertainty about the underlying process.
This had the advantage of allowing the assessment of intervention impact as
with a traditional mechanistic model. For example, the impact of a vaccine
could be modelled by moving individuals from the susceptible into the recov-
ered compartment [30, 31]. At the same time, the model is flexible enough
to fit most time series, and this flexibility might mask underlying misspec-
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ifications. More generally, when choosing between model performance and
the ability to explicitly account for the impact of interventions, a model that
accounts for the latter might be preferable.

Epidemic forecasts played an important and prominent role in the re-
sponse to and public awareness of the Ebola epidemic [28]. Forecasts are
currently being used for vaccine trial planning against Zika virus [46] and will
be called upon again to guide the response to the next emerging epidemic or
pandemic threat. Recent advances in computational and statistical meth-
ods now make it possible to fit models in near-real time, as demonstrated
by our weekly forecasts [29]. Better standards of forecasting assessments
are urgently needed, and retrospective or even real-time assessment of fore-
casts should become standard for epidemic forecasts to prove accuracy and
improve end-user trust. The metrics we have developed here or variations
thereof could become measures of forecasting performance that are routinely
used to evaluate and improve forecasts during epidemics. To facilitate this,
outbreak data must be made available openly and rapidly. Where possi-
ble, a multi-source data, such as epidemiological and genetic data, could
increase predictive power. However, it is the responsibility of researchers to
not only generate and publish forecasts during an ensuing emergency, but
to honestly and carefully assess forecast performance during and after the
event and ensure lessons are learned for the next impending epidemic.

References

[1] H. Heesterbeek et al. “Modeling Infectious Disease Dynamics in the
Complex Landscape of Global Health”. Science 6227 (2015), aaa4339–
aaa4339.

[2] E. Goldstein et al. “Predicting the epidemic sizes of influenza A/H1N1,
A/H3N2, and B: a statistical method”. PLoS Med 7 (2011), e1001051.

[3] E. Nsoesie, M. Mararthe, and J. Brownstein. “Forecasting peaks of
seasonal influenza epidemics”. PLoS currents (2013).

[4] W. Yang et al. “Forecasting influenza epidemics in Hong Kong”. PLoS
computational biology 7 (2015), e1004383.

[5] P. M. Dawson et al. “Epidemic predictions in an imperfect world:
modelling disease spread with partial data”. In: Proc. R. Soc. B. 1808.
The Royal Society. 2015, 20150205.

[6] M. Biggerstaff et al. “Results from the centers for disease control and
prevention’s predict the 2013–2014 Influenza Season Challenge”. BMC
Infectious Diseases 1 (2016), 357.

[7] R. Lowe et al. “Dengue outlook for the World Cup in Brazil: an early
warning model framework driven by real-time seasonal climate fore-
casts”. The Lancet infectious diseases 7 (2014), 619–626.

14

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/177451doi: bioRxiv preprint 

https://doi.org/10.1101/177451
http://creativecommons.org/licenses/by/4.0/


[8] M. A. Johansson et al. “Evaluating the performance of infectious dis-
ease forecasts: A comparison of climate-driven and seasonal dengue
forecasts for Mexico”. Scientific reports (2016).

[9] F. Liu et al. “Short-term forecasting of the prevalence of trachoma: ex-
pert opinion, statistical regression, versus transmission models”. PLoS
neglected tropical diseases 8 (2015), e0004000.

[10] R. Lowe et al. “Evaluating probabilistic dengue risk forecasts from a
prototype early warning system for Brazil”. Elife (2016), e11285.

[11] K. R. Moran et al. “Epidemic forecasting is messier than weather
forecasting: The role of human behavior and internet data streams in
epidemic forecast”. The Journal of Infectious Diseases suppl 4 (2016),
S404–S408.

[12] S. Funk et al. “The impact of control strategies and behavioural
changes on the elimination of Ebola from Lofa County, Liberia”. Phil
Trans Roy Soc B (1721 2017), 20160302.

[13] S. V. Scarpino and G. Petri. “On the predictability of infectious disease
outbreaks” (Mar. 21, 2017).

[14] D. Fisman, E. Khoo, and A. Tuite. “Early epidemic dynamics of the
west african 2014 ebola outbreak: estimates derived with a simple two-
parameter model.” PLOS Curr.: Outbreaks (2014).

[15] J. A. Lewnard et al. “Dynamics and control of Ebola virus trans-
mission in Montserrado, Liberia: a mathematical modelling analysis.”
Lancet Infect Dis 12 (Dec. 2014), 1189–1195.

[16] H. Nishiura and G. Chowell. “Early transmission dynamics of Ebola
virus disease (EVD), West Africa, March to August 2014”. Euro
Surveill (36 2014), 20894.

[17] C. M. Rivers et al. “Modeling the impact of interventions on an epi-
demic of Ebola in Sierra Leone and Liberia”. PLOS Curr.: Outbreaks
(2014).

[18] S. Towers, O. Patterson-Lomba, and C. Castillo-Chavez. “Temporal
variations in the effective reproduction number of the 2014 West Africa
Ebola outbreak”. PLOS Curr.: Outbreaks (2014).

[19] A. Camacho et al. “Temporal Changes in Ebola Transmission in Sierra
Leone and Implications for Control Requirements: a Real-Time Mod-
elling Study”. PLOS Curr.: Outbreaks (2015).

[20] F. Dong et al. “Evaluation of ebola spreading in west africa and de-
cision of optimal medicine delivery strategies based on mathematical
models”. Infection, Genetics and Evolution (Dec. 2015), 35–40.

[21] J. M. Drake et al. “Ebola cases and health system demand in Liberia”.
PLoS Biol 1 (2015), e1002056.

[22] S. Merler et al. “Spatiotemporal spread of the 2014 outbreak of Ebola
virus disease in Liberia and the effectiveness of non-pharmaceutical
interventions: a computational modelling analysis”. Lancet Infect Dis
2 (Feb. 2015), 204–211.

15

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/177451doi: bioRxiv preprint 

https://doi.org/10.1101/177451
http://creativecommons.org/licenses/by/4.0/


[23] C. Siettos et al. “Modeling the 2014 ebola virus epidemic–agent-based
simulations, temporal analysis and future predictions for liberia and
sierra leone”. PLOS Curr.: Outbreaks (2015).

[24] R. A. White et al. “Projected treatment capacity needs in Sierra
Leone”. PLOS Curr.: Outbreaks (2015).

[25] J.-P. Chretien, S. Riley, and D. B. George. “Mathematical modeling
of the West Africa Ebola epidemic”. eLife (Dec. 2015), e09186.

[26] G. Chowell et al. “Perspectives on model forecasts of the 2014–2015
Ebola epidemic in West Africa: lessons and the way forward”. BMC
Med 1 (2017), 42.

[27] M. I. Meltzer et al. “Estimating the future number of cases in
the Ebola epidemic–Liberia and Sierra Leone, 2014-2015.” MMWR
Surveill Summ (Sept. 2014), 1–14.

[28] T. R. Frieden and I. K. Damon. “Ebola in West Africa — CDC’s role
in epidemic detection, control, and prevention”. Emerging Infectious
Diseases 11 (2015), 1897.

[29] Center for the Mathematical Modelling of Infectious Dis-
eases. Visualisation and projections of the Ebola outbreak
in West Africa. http://ntncmch.github.io/ebola/. Archived at
http://www.webcitation.org/6oYEBYoeD on Feb 24, 2017. 2015.

[30] A. Camacho et al. “Estimating the probability of demonstrating vac-
cine efficacy in the declining Ebola epidemic: a Bayesian modelling
approach”. BMJ Open 12 (Dec. 2015), e009346.

[31] A. Camacho et al. “Real-time dynamic modelling for the design of
a cluster-randomized phase 3 Ebola vaccine trial in Sierra Leone”.
Vaccine (Dec. 2017).

[32] S. Funk et al. “Real-time forecasting of infectious disease dynamics
with a stochastic semi-mechanistic model”. Epidemics (Dec. 2017).

[33] WHO Ebola Response Team. “Ebola Virus Disease in West Africa -
The First 9 Months of the Epidemic and Forward Projections.” N Engl
J Med (Sept. 2014).

[34] C. Andrieu, A. Doucet, and R. Holenstein. “Particle Markov chain
Monte Carlo methods”. J R Stat Soc Ser B (2010), 269–342.

[35] J. Dureau, S. Ballesteros, and T. Bogich. “SSM: Inference for time
series analysis with State Space Models” (July 2013).

[36] L. Murray. “Bayesian State-Space Modelling on High-Performance
Hardware Using LibBi”. Journal of Statistical Software, Articles 10
(2015), 1–36. issn: 1548-7660.

[37] P. E. Jacob and S. Funk. RBi: R interface to LibBi. R package version
0.7.0. 2017.

[38] S. Funk. rbi.helpers: rbi helper functions. R package version 0.2. 2016.
[39] R Core Team. R: A Language and Environment for Statistical Comput-

ing. R Foundation for Statistical Computing. Vienna, Austria, 2017.

16

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/177451doi: bioRxiv preprint 

https://doi.org/10.1101/177451
http://creativecommons.org/licenses/by/4.0/


[40] T. Gneiting, F. Balabdaoui, and A. E. Raftery. “Probabilistic fore-
casts, calibration and sharpness”. Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology) 2 (Apr. 2007), 243–268.

[41] P. Friederichs and T. L. Thorarinsdottir. “Forecast verification for
extreme value distributions with an application to probabilistic peak
wind prediction”. Environmetrics 7 (2012), 579–594.

[42] A. P. Dawid. “Present Position and Potential Developments: Some
Personal Views: Statistical Theory: The Prequential Approach”. J R
Stat Soc [Ser A] 2 (1984), 278.

[43] H. Hersbach. “Decomposition of the continuous ranked probability
score for ensemble prediction systems”. Weather and Forecasting 5
(2000), 559–570.

[44] D. Butler. “Models overestimate Ebola cases.” Nature (7525 Nov.
2014), 18. issn: 1476-4687.

[45] C. Chatfield. Time-series Forecasting. Chapman and Hall/CRC Press,
Boca Raton, United States, 2000.

[46] World Health Organization. ?Efficacy trials of ZIKV Vaccines: end-
points, trial design, site selection.? WHO Workshop Meeting Report.
2017.

17

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/177451doi: bioRxiv preprint 

https://doi.org/10.1101/177451
http://creativecommons.org/licenses/by/4.0/

