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Abstract13

Real-time forecasts based on mathematical models can inform criti-14

cal decision-making during infectious disease outbreaks. Yet, epidemic15

forecasts are rarely evaluated during or after the event, and there is16

little guidance on the best metrics for assessment. Here, we propose an17

evaluation approach that disentangles different components of forecast-18

ing ability using metrics that separately assess the calibration, sharp-19

ness and unbiasedness of forecasts. This makes it possible to assess not20

just how close a forecast was to reality but also how well uncertainty21
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has been quantified. We used this approach to analyse the perfor-22

mance of weekly forecasts we generated in real time in Western Area,23

Sierra Leone, during the 2013–16 Ebola epidemic in West Africa. We24

investigated a range of forecast model variants based on the model fits25

generated at the time with a semi-mechanistic model, and found that26

good probabilistic calibration was achievable at short time horizons27

of one or two weeks ahead but models were increasingly inaccurate28

at longer forecasting horizons. This suggests that forecasts may have29

been of good enough quality to inform decision making requiring pre-30

dictions a few weeks ahead of time but not longer, reflecting the high31

level of uncertainty in the processes driving the trajectory of the epi-32

demic. Comparing forecasts based on the semi-mechanistic model to33

simpler null models showed that the best semi-mechanistic model vari-34

ant performed better than the null models with respect to probabilistic35

calibration, and that this would have been identified from the earliest36

stages of the outbreak. As forecasts become a routine part of the37

toolkit in public health, standards for evaluation of performance will38

be important for assessing quality and improving credibility of math-39

ematical models, and for elucidating difficulties and trade-offs when40

aiming to make the most useful and reliable forecasts.41

Introduction42

Forecasting the future trajectory of cases during an infectious disease out-43

break can make an important contribution to public health and intervention44

planning. Infectious disease modellers are now routinely asked for predic-45

tions in real time during emerging outbreaks (Heesterbeek et al., 2015).46

Forecasting targets can revolve around expected epidemic duration, size, or47

peak timing and incidence (Goldstein et al., 2011; Nsoesie et al., 2013; Yang48
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et al., 2015; Dawson et al., 2015), geographical distribution of risk (Lowe49

et al., 2014), or short-term trends in incidence (Johansson et al., 2016; Liu50

et al., 2015). However, forecasts made during an outbreak are rarely in-51

vestigated during or after the event for their accuracy, and only recently52

have forecasters begun to make results, code, models and data available for53

retrospective analysis.54

The growing importance of infectious disease forecasts is epitomised by55

the growing number of so-called forecasting challenges. In these, researchers56

compete in making predictions for a given disease and a given time hori-57

zon. Such initiatives are difficult to set up during unexpected outbreaks,58

and are therefore usually conducted on diseases known to occur seasonally,59

such as dengue (Johansson et al., 2016; National Oceanic and Atmospheric60

Administration, 2017; Centres for Disease Control and Prevention, 2017)61

and influenza (Biggerstaff et al., 2016). The Ebola Forecasting Challenge62

was a notable exception, triggered by the 2013–16 West African Ebola epi-63

demic and set up in June 2015. Since the epidemic had ended in most64

places at that time, the challenge was based on simulated data designed65

to mimic the behaviour of the true epidemic instead of real outbreak data.66

The main lessons learned were that 1) ensemble estimates outperformed all67

individual models, 2) more accurate data improved the accuracy of forecasts68

and 3) considering contextual information such as individual-level data and69

situation reports improved predictions (Viboud et al., 2017).70

In theory, infectious disease dynamics should be predictable within the71

timescale of a single outbreak (Scarpino and Petri, 2017). In practice, how-72

ever, providing accurate forecasts during emerging epidemics comes with73

particular challenges such as data quality issues and limited knowledge about74
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the processes driving growth and decline in cases. In particular, uncertainty75

about human behavioural changes and public health interventions can pre-76

clude reliable long-term predictions (Moran et al., 2016; Funk et al., 2017b).77

Yet, short-term forecasts with an horizon of a few generations of transmis-78

sion (e.g., a few weeks in the case of Ebola), can yield important information79

on current and anticipated outbreak behaviour and, consequently, guide im-80

mediate decision making.81

The most recent example of large-scale outbreak forecasting efforts was82

during the 2013–16 Ebola epidemic, which vastly exceeded the burden of83

all previous outbreaks with almost 30,000 reported cases of the disease, re-84

sulting in over 10,000 deaths in the three most affected countries: Guinea,85

Liberia and Sierra Leone. During the epidemic, several research groups pro-86

vided forecasts or projections at different time points, either by generating87

scenarios believed plausible, or by fitting models to the available time series88

and projecting them forward to predict the future trajectory of the out-89

break (Fisman et al., 2014; Lewnard et al., 2014; Nishiura and Chowell,90

2014; Rivers et al., 2014; Towers et al., 2014; Camacho et al., 2015b; Dong91

et al., 2015; Drake et al., 2015; Merler et al., 2015; Siettos et al., 2015;92

White et al., 2015). One forecast that gained attention during the epidemic93

was published in the summer of 2014, projecting that by early 2015 there94

might be 1.4 million cases (Meltzer et al., 2014). This number was based95

on unmitigated growth in the absence of further intervention and proved96

a gross overestimate, yet it was later highlighted as a “call to arms” that97

served to trigger the international response that helped avoid the worst-case98

scenario (Frieden and Damon, 2015). While that was a particularly dras-99

tic prediction, most forecasts made during the epidemic were later found100

to have overestimated the expected number of cases, which provided a case101
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for models that can generate sub-exponential growth trajectories (Chretien102

et al., 2015; Chowell et al., 2017).103

Traditionally, epidemic forecasts are assessed using aggregate metrics104

such as the mean absolute error (MAE, Chowell, 2017; Pei and Shaman,105

2017; Viboud et al., 2017). This, however, only assesses how close the most106

likely or average predicted outcome is to the true outcome. The ability107

to correctly forecast uncertainty, and to quantify confidence in a predicted108

event, is not assessed by such metrics. Appropriate quantification of uncer-109

tainty, especially of the likelihood and magnitude of worst case scenarios,110

is crucial in assessing potential control measures. Methods to assess proba-111

bilistic forecasts are now being used in other fields, but are not commonly112

applied in infectious disease epidemiology (Gneiting and Katzfuss, 2014;113

Held et al., 2017).114

We produced weekly sub-national real-time forecasts during the Ebola115

epidemic, starting on 28 November 2014. Plots of the forecasts were pub-116

lished on a dedicated web site and updated every time a new set of data117

were available (Center for the Mathematical Modelling of Infectious Dis-118

eases, 2015). They were generated using a model that has, in variations,119

been used to forecast bed demand during the epidemic in Sierra Leone (Ca-120

macho et al., 2015b) and the feasibility of vaccine trials later in the epi-121

demic (Camacho et al., 2015a; Camacho et al., 2017). During the epidemic,122

we provided sub-national forecasts for the three most affected countries (at123

the level of counties in Liberia, districts in Sierra Leone and prefectures in124

Guinea).125

Here, we apply assessment metrics that elucidate different properties of126

forecasts, in particular their probabilistic calibration, sharpness and bias.127
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Using these methods, we retrospectively assess the forecasts we generated128

for Western Area in Sierra Leone, an area that saw one of the greatest129

number of cases in the region and where our model informed bed capacity130

planning.131

Materials and Methods132

Data sources133

Numbers of suspected, probable and confirmed Ebola cases at sub-national134

levels were initially compiled from daily Situation Reports (or SitReps) pro-135

vided in PDF format by Ministries of Health of the three affected countries136

during the epidemic (Camacho et al., 2015b). Data were automatically137

extracted from tables included in the reports wherever possible and other-138

wise manually converted by hand to machine-readable format and aggre-139

gated into weeks. From 20 November 2014, the World Health Organization140

(WHO) provided tabulated data on the weekly number of confirmed and141

probable cases. These were compiled from the patient database, which was142

continuously cleaned and took into account reclassification of cases avoiding143

potential double-counting. However, the patient database was updated with144

substantial delay so that the number of reported cases would typically be145

underestimated in the weeks leading up to the date of the forecast. Because146

of this, we used the SitRep data for the most recent weeks until the latest147

week in which the WHO case counts either equalled or exceeded the SitRep148

counts. For all earlier times, the WHO data were used.149
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Transmission model150

We used a semi-mechanistic stochastic model of Ebola transmission de-151

scribed previously (Camacho et al., 2015b; Funk et al., 2017a). Briefly,152

the model was based on a Susceptible-Exposed-Infectious-Recovered (SEIR)153

model with fixed incubation period of 9.4 days (WHO Ebola Response Team,154

2014), following an Erlang distribution with shape 2. The country-specific155

infectious period was determined by adding the average delay to hospitalisa-156

tion to the average time from hospitalisation to death or discharge, weighted157

by the case-fatality rate. Cases were assumed to be reported with a stochas-158

tic time-varying delay. On any given day, this was given by a gamma distri-159

bution with mean equal to the country-specific average delay from onset to160

hospitalisation and standard deviation of 0.1 day. We allowed transmission161

to vary over time, to capture behavioural changes in the community, public162

health interventions or other factors affecting transmission for which infor-163

mation was not available at the time. The time-varying transmission rate164

was modelled using a daily Gaussian random walk with fixed volatility (or165

standard deviation of the step size) which was estimated as part of the in-166

ference procedure (see below). We log-transformed the transmission rate to167

ensure it remained positive. The behaviour in time can be written as168

d log βt = σdWt (1)169

where βt is the time-varying transmission rate, Wt is the Wiener process and170

σ the volatility of the transmission rate. The basic reproduction number R0,t171

at any time was obtained by multiplying βt with the infectious period. In172

fitting the model to the time series of cases we extracted posterior predictive173

samples of trajectories, which we used to generate forecasts.174
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Model fitting175

Each week, we fitted the model to the available case data leading up to176

the date of the forecast. Observations were assumed to follow a negative177

binomial distribution. Since the ssm software used to fit the model only178

implemented a discretised normal observation model, we used a normal ap-179

proximation of the negative binomial for observations, potentially introduc-180

ing a bias at small counts. Four parameters were estimated in the process:181

the initial basic reproduction number R0 (uniform prior within (1, 5)), initial182

number of infectious people (uniform prior within (1, 400)), overdispersion of183

the (negative binomial) observation process (uniform prior within (0, 0.5))184

and volatility of the time-varying transmission rate (uniform prior within185

(0, 0.5)). We confirmed from the posterior distributions of the parameters186

that these priors did not set any problematic bounds. Samples of the pos-187

terior distribution of parameters and state trajectories were extracted using188

particle Markov chain Monte Carlo (Andrieu et al., 2010) as implemented189

in the ssm library (Dureau et al., 2013). For each forecast, 50,000 samples190

were extracted and thinned to 5000.191

Predictive model variants192

We used the samples of the posterior distribution generated using the Monte193

Carlo sampler to produce predictive trajectories, using the final values of es-194

timated state trajectories as initial values for the forecasts and simulating195

the model forward for up to 10 weeks. While all model fits were generated196

using the same model described above, we tested a range of different predic-197

tive model variants to assess the quality of ensuing predictions. We tested198

variants where trajectories were stochastic (with demographic stochasticity199
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and a noisy reporting process), as well as ones where these sources of noise200

were removed for predictions. We further tested predictive model variants201

where the transmission rate continued to follow a random walk (unbounded,202

on a log-scale), as well as ones where the transmission rate stayed fixed dur-203

ing the forecasting period. Where the transmission rate remained fixed for204

prediction, we tested variants where we used the final value of the trans-205

mission rate and ones where this value would be averaged over a number206

of weeks leading up to the final fitted point, to reduce the potential influ-207

ence of the last time point, where the transmission rate may not have been208

well identified. We tested variants where the predictive trajectory would be209

based on the final values and start at the last time point, and ones where210

they would start at the penultimate time point, which could, again, be ex-211

pected to be better informed by the data. For each model and forecast212

horizon, we generated point-wise medians and credible intervals from the213

sample trajectories.214

Null models215

To assess the performance of the semi-mechanistic transmission model we216

compared it to three simpler null models: two representing the constituent217

parts of the semi-mechanistic model, and a non-mechanistic time series218

model. For the first null model, we used a deterministic model that only con-219

tained the mechanistic core of the semi-mechanistic model, that is a deter-220

ministic SEIR model with fixed transmission rate and parameters otherwise221
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the same as in the model described elsewhere (Camacho et al., 2015b):222

dS

dt
= −R0

∆

Ic + Ih
N

S (2)223

dE1

dt
= −R0

∆

Ic + Ih
N

S − 2νE1 (3)224

dE2

dt
= 2νE1 − 2νE2 (4)225

dIc
dt

= 2νE2 − τIc (5)226

dIh
dt

= τIc − γIh (6)227

dR

dt
= γIh (7)228

dA

dt
= τIc (8)229

Yt ∼ NB(At −At−1, φ) (9)230
231

where Yt are observations at times t, S is the number susceptible, E the232

number incubating (split into two compartments for Erlang-distributed per-233

manence times with shape 2), Ic is the number infectious and not yet no-234

tified, Ih is the number infectious and notified, R is the number recovered235

or dead, A is an accumulator for incidence, R0 is the basic reproduction236

number, ∆ = 1/τ + 1/ν is the mean time from onset to outcome, 1/ν is the237

mean incubation period, 1/τ + 1/γ is the mean duration of infectiousness,238

1/τ is the mean time from onset to hospitalisation 1/γ the mean duration239

from notification to outcome and NB(µ, φ) is a negative binomial distribu-240

tion with mean µ and overdispersion φ. All these parameters were taken241

from individual patient observations (WHO Ebola Response Team, 2014)242

except the overdispersion in reporting φ, and the basic reproduction num-243

ber R0, which were inferred using Markov-chain Monte Carlo with the same244

priors as in the semi-mechanistic model.245

For the second null model, we used an unfocused model where the weekly246
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incidence Z itself was modelled using a stochastic volatility model (without247

drift), that is a daily Gaussian random walk, and forecasts generated as-248

suming the weekly number of new cases was not going to change:249

d logZ = σdW (10)250

Yt ∼ NB(Zt, φ) (11)251
252

where Y are observations, σ is the intensity of the random walk and φ253

the overdispersion of reporting (both estimated using Markov-chain Monte254

Carlo) and dW is the Wiener process.255

Lastly, we used a null model based on a non-mechanistic Bayesian au-256

toregressive AR(1) time series model:257

αt+1 ∼ N (φαt, σα) (12)258

Y ∗t ∼ N (αt, σY ∗) (13)259

Yt = max (0, [Y ∗t ]) (14)260
261

where φ, σα and σY ∗ were estimated using Markov-chain Monte Carlo, and262

[. . .] indicates rounding to the nearest integer. An alternative model with263

Poisson distributed observations was discarded as it yielded poorer predic-264

tive performance.265

The deterministic and unfocused models were implemented in libbi (Mur-266

ray, 2015) via the RBi (Jacob and Funk, 2017) and RBi.helpers (Funk, 2016)267

R packages (R Core Team, 2018). The Bayesian autoregressive time series268

model was implemented using the bsts package (Scott, 2017).269
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Metrics270

The paradigm for assessing probabilistic forecasts is that they should max-271

imise the sharpness of predictive distributions subject to calibration (Gneit-272

ing et al., 2007). We therefore first assessed model calibration at a given273

forecasting horizon, before assessing their sharpness and other properties.274

Calibration or reliability (Friederichs and Thorarinsdottir, 2012) of fore-275

casts is the ability of a model to correctly identify its own uncertainty in276

making predictions. In a model with perfect calibration, the observed data277

at each time point look as if they came from the predictive probability dis-278

tribution at that time. Equivalently, one can inspect the probability integral279

transform of the predictive distribution at time t (Dawid, 1984),280

ut = Ft(xt) (15)281

where xt is the observed data point at time t ∈ t1, . . . , tn, n being the number282

of forecasts, and Ft is the (continuous) predictive cumulative probability283

distribution at time t. If the true probability distribution of outcomes at284

time t is Gt then the forecasts Ft are said to be ideal if Ft = Gt at all times285

t. In that case, the probabilities ut are distributed uniformly.286

In the case of discrete outcomes such as the incidence counts that were287

forecast here, the PIT is no longer uniform even when forecasts are ideal.288

In that case a randomised PIT can be used instead:289

ut = Pt(kt) + v (Pt(kt)− Pt(kt − 1)) (16)290
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where kt is the observed count, Pt(x) is the predictive cumulative probability291

of observing incidence k at time t, Pt(−1) = 0 by definition and v is standard292

uniform and independent of k. If Pt is the true cumulative probability293

distribution, then ut is standard uniform (Czado et al., 2009). To assess294

calibration, we therefore applied the Anderson-Darling test of uniformity to295

the probabilities ut. The resulting p-value was a reflection of how compatible296

the forecasts were with the null hypothesis of uniformity of the PIT, or of297

the data coming from the predictive probability distribution. We considered298

that there was no evidence to suggest a forecasting model was miscalibrated299

if the p-value found was greater than a threshold of p ≥ 0.1, some evidence300

that it was miscalibrated if 0.01 < p < 0.1, and good evidence that it301

was miscalibrated if p ≤ 0.01. In this context it should be noted, though,302

that uniformity of the (randomised) PIT is a necessary but not sufficient303

condition of calibration (Gneiting et al., 2007). The p-values calculated304

here merely quantify our ability to reject a hypothesis of good calibration,305

but cannot guarantee that a forecast is calibrated. Because of this, other306

indicators of forecast quality must be considered when choosing a model for307

forecasts.308

All of the following metrics are evaluated at every single data point. In309

order to compare the forecast quality of models, they are averaged across310

the data set.311

Sharpness is the ability of the model to generate predictions within a312

narrow range of possible outcomes. It is a data-independent measure, that313

is, it is purely a feature of the forecasts themselves. To evaluate sharpness314

at time t, we used the normalised median absolute deviation about the315

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 23, 2018. ; https://doi.org/10.1101/177451doi: bioRxiv preprint 

https://doi.org/10.1101/177451
http://creativecommons.org/licenses/by/4.0/


median (MADN) of y316

St(Pt) =
1

0.675
median (|y −median(y)|) (17)317

where y is a variable with CDF Pt, and division by 0.675 ensures that if318

the predictive distribution is normal this yields a value equivalent to the319

standard deviation. The MAD (i.e., the MADN without the normalising320

factor) is related to the interquartile range (and in the limit of infinite sample321

size takes twice its value), a common measure of sharpness (Gneiting and322

Katzfuss, 2014), but is more robust to outliers (Maronna et al., 2018). The323

sharpest model would focus all forecasts on one point and have S = 0,324

whereas a completely blurred forecast would have S → ∞. Again, we used325

Monte-Carlo samples from Pt to estimate sharpness.326

We further assessed the bias of forecasts to test whether a model system-327

atically over- or underpredicted. We defined the forecast bias at time t as328

329

Bt(Pt, xt) = 1− (Pt(xt) + Pt(xt − 1)) (18)330

The most unbiased model would have exactly half of predictive probabil-331

ity mass not concentrated on the data itself below the data at time t and332

Bt = 0, whereas a completely biased model would yield either all predictive333

probability mass above (Bt = 1) or below (Bt = −1) the data.334

We further evaluated forecasts using two strictly proper scoring rules,335

that is scores which are minimised if the predictive distribution is the same336

as the one generating the data. These scores combine the assessment of337

calibration and sharpness for comparison of overall forecasting skill. The338
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Ranked Probability Score (RPS, Epstein, 1969; Murphy, 1969) for count339

data is defined as (Czado et al., 2009)340

RPS(Pt, xt) =
∞∑
k=0

(Pt(k)− 1(k ≥ xt))2 . (19)341

It reduces to the mean absolute error (MAE) if the forecast is deterministic342

and can therefore be seen as its probabilistic generalisation for discrete fore-343

casts. A convenient equivalent formulation for predictions generated from344

Monte-Carlo samples is (Gneiting et al., 2007; Czado et al., 2009)345

RPS(Pt, xt) = EPt |X − xt| −
1

2
EPt

∣∣X −X ′∣∣ , (20)346

where X and X ′ are independent realisations of a random variable with347

cumulative distribution Pt.348

The Dawid-Sebastiani score (DSS) only considers the first two moments349

of the predictive distribution and is defined as (Czado et al., 2009)350

DSS(Pt, xt) =

(
xt − µPt

σPt

)2

+ 2 log σPt (21)351

where µPt and σPt are the mean and standard deviation of the predic-352

tive probability distribution, respectively, estimated here using Monte-Carlo353

samples.354

For comparison, we also evaluated forecasts using the absolute error (AE)355

of the median forecast, that is356

AE(Pt, xt) = |medianPt(X)− xt| (22)357

where X is a random variable with cumulative distribution Pt.358
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Results359

The semi-mechanistic model used to generate real-time forecasts during the360

epidemic was able to reproduce the trajectories up to the date of each fore-361

cast, following the data closely by means of the smoothly varying transmis-362

sion rate (Fig. 1). The overall behaviour of the reproduction number (ig-363

noring depletion of susceptibles which did not play a role at the population364

level given the relatively small proportion of the population infected) was365

one of a near-monotonic decline, from a median estimate of 2.9 (interquar-366

tile range (IQR) 2.1–4, 90% credible interval (CI) 1.2–6.9) in the first fitted367

week (beginning 10 August, 2014) to a median estimate of 1.3 (IQR 0.9–1.9,368

90% CI 0.4–3.7) in early November, 0.9 (IQR 0.6–1.3, 90% CI 0.2–2.2) in369

early December, 0.6 in early January (IQR 0.3–0.8, 90% CI 0.1–1.5) and 0.3370

at the end of the epidemic in early February (IQR 0.2–0.4, 90% CI 0.1–0.9).371
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Figure 1. Final fit of the semi-mechanistic model to the Ebola
outbreak in Western Area, Sierra Leone. (A) Final fit of the
reported weekly incidence (black line and grey shading) to the data (black
dots). (B) Corresponding dynamics of the reproduction number (ignoring
depletion of susceptibles). Point-wise median state estimates are indicated
by a solid line, interquartile ranges by dark shading, and 90% intervals by
light shading. The threshold reproduction number (R0 = 1), determining
whether case numbers are expected to increase or decrease, is indicated by
a dashed line. In both plots, a dotted vertical line indicates the date of the
first forecast assessed in this manuscript (24 August 2014).
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The epidemic lasted for a total of 27 weeks, with forecasts generated372

starting from week 3. For m-week ahead forecasts this yielded a sample size373

of 25 −m forecasts to assess calibration. Calibration of forecasts from the374

semi-mechanistic model were good for a maximum of one or two weeks, but375

deteriorated rapidly at longer forecasting horizons (Fig. 2). The two semi-376

mechanistic forecast model variants with best calibration performance used377

deterministic dynamics starting at the last fitted data point (Table 1). Of378

these two, the forecast model that kept the transmission rate constant from379

the value at the last data point performed slightly better across forecast380

horizons than one that continued to change the transmission rate following381

a random walk with volatility estimated from the time series. There was382

no evidence of miscalibration in both of the models with best calibration383

performance for two-week ahead forecasts, but increasing evidence of mis-384

calibration for forecast horizons of three weeks or more. Calibration of all385

model variants was poor four weeks or more ahead, and all the stochastic386

model variants were miscalibrated for any forecast horizon, including the one387

we used to publish forecasts during the Ebola epidemic (stochastic, starting388

at the last data point, no averaging of the transmission rate, no projected389

volatility).390

The calibration of the best semi-mechanistic forecast model variant (de-391

terministic dynamics, transmission rate fixed and starting at the last data392

point) was better than for any of the null models (Fig. 3A and Table 2)393

for up to three weeks. While there was no evidence for miscalibration of394

the autoregressive null model for 1-week-ahead forecasts, there was good395

evidence of miscalibration for longer forecast horizons. There was some ev-396

idence of miscalibration of the unfocused null model, which assumes that397

the same number of cases will be reported in the weeks following the week398
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Predictive model variant Forecast horizon (weeks)

stochasticity start transmission averaged 1 2 3 4

deterministic at last data point varying no 0.28 0.1 0.02 <0.01
deterministic at last data point fixed no 0.26 0.14 0.03 <0.01
deterministic at last data point fixed 2 weeks 0.24 0.03 <0.01 <0.01
deterministic at last data point fixed 3 weeks 0.21 <0.01 <0.01 <0.01
deterministic 1 week before varying no 0.05 0.02 <0.01 <0.01
deterministic 1 week before fixed no 0.09 0.02 <0.01 <0.01
deterministic 1 week before fixed 2 weeks 0.09 <0.01 <0.01 <0.01
deterministic 1 week before fixed 3 weeks 0.03 <0.01 <0.01 <0.01
stochastic at last data point varying no 0.02 0.02 <0.01 <0.01
stochastic at last data point fixed no 0.02 0.02 <0.01 <0.01
stochastic at last data point fixed 2 weeks 0.01 <0.01 <0.01 <0.01
stochastic at last data point fixed 3 weeks <0.01 <0.01 <0.01 <0.01
stochastic 1 week before varying no <0.01 <0.01 <0.01 <0.01
stochastic 1 week before fixed no <0.01 <0.01 <0.01 <0.01
stochastic 1 week before fixed 2 weeks <0.01 <0.01 <0.01 <0.01
stochastic 1 week before fixed 3 weeks <0.01 <0.01 <0.01 <0.01

Table 1. Calibration of forecast model variants of the
semi-mechanistic model. Calibration (p-value of the Anderson-Darling
test of uniformity) of deterministic and stochastic forecasts starting either
at the last data point or one week before, with varying (according to a
Gaussian random walk) or fixed transmission rate either starting from the
last value of the transmission rate or from an average over the last 2 or 3
weeks, at different forecast horizons up to 4 weeks. The p-values
highlighted in bold reflect predictive models with no evidence of
miscalibration. The second row corresponds to the highlighted model in
Fig. 2A.

during which the forecast was made, for 1 week ahead and good evidence399

of miscalibration beyond. Calibration of the deterministic null model was400

poor for all forecast horizons.401

The semi-mechanistic and deterministic models showed a tendency to402

overestimate the predicted number of cases, while the autoregressive and403

null models tended to underestimate (Fig. 3B and and Table 2). This bias404

increased with longer forecast horizons in all cases. The semi-mechanistic405
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Figure 2. Calibration of forecasts from the semi-mechanistic
model. (A) Calibration of model variants (p-value of Anderson-Darling
test) as a function of the forecast horizon. Shown in dark red is the best
calibrated forecasting model variant (corresponding to the second row of
Table 1). Other model variants are shown in light red. (B) Comparison of
one-week forecasts of reported weekly incidence generated using the best
semi-mechanistic model variant to the subsequently released data. The
data are shown as a thick line, and forecasts as dots connected by a thin
line. Dark shades of grey indicate the point-wise interquartile range, and
lighter shades of grey the point-wise 90% credible interval.

model with best calibration progressed from a 12% bias at 1 week ahead to406

20% (2 weeks), 30% (3 weeks), 40% (4 weeks) and 44% (5 weeks) overesti-407

mation. At the same time, this model showed rapidly decreasing sharpness408

as the forecast horizon increased (Fig. 3C and and Table 2). This is re-409

flected in the proper scoring rules that combine calibration and sharpness,410

with smaller values indicating better forecasts (Fig. 3D-E and and Table 2).411

At 1-week ahead, the mean RPS values of the autoregressive, unfocused and412

best semi-mechanistic forecasting models were all around 30. At increas-413

ing forecasting horizon, the RPS of the semi-mechanistic model grew faster414

than the RPS of the autoregressive and unfocused null models. The DSS415

of the semi-mechanistic model, on the other hand, was very similar to the416

one of the autoregressive and better than that of the other null models at417

a forecast horizon of 1 week, with the autoregressive again performing best418

at increasing forecast horizons.419
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Figure 3. Forecasting metrics and scores of the best
semi-mechanistic model variant compared to null models. Metrics
shown are (A) calibration (p-value of Anderson-Darling test, greater values
indicating better calibration, dashed lines at 0.1 and 0.01), (B) bias (less
bias if closer to 0), (C) sharpness (MAD, sharper models having values
closer to 0), (D) RPS (better values closer to 0), (E) DSS (better values
closer to 0) and (F) AE (better values closer to 0), all as a function of the
forecast horizon.

Focusing purely on the median forecast (and thus ignoring both cali-420

bration and sharpness), the absolute error (AE, Fig.3F and Table 2) was421

lowest (42) for the best semi-mechanistic model variant at 1-week ahead422

forecasts, although similar to the autoregressive and unfocused null models.423

With increasing forecasting horizon, the absolute error increased at a faster424

rate than for the autoregressive and unfocused null models.425

We lastly studied the calibration behaviour of the models over time;426

that is, using the data and forecasts available up to different time points427

during the epidemic (Fig. 4). This shows that from very early on, not much428

changed in the ranking of the different semi-mechanistic model variants.429

Comparing the best semi-mechanistic forecasting model to the null models,430

again, for almost the whole duration of the epidemic calibration of the semi-431
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Model Calibration Sharpness Bias RPS DSS AE

1 week ahead
Semi-mechanistic 0.26 91 0.13 31 9.2 42
Autoregressive 0.1 61 -0.17 31 9.1 43
Deterministic 0.03 340 0.24 97 11 130
Unfocused <0.01 41 -0.024 35 13 47

2 weeks ahead
Semi-mechanistic 0.14 150 0.2 50 12 65
Autoregressive 0.03 77 -0.18 43 9.9 60
Deterministic <0.01 400 0.35 120 12 160
Unfocused <0.01 42 -0.044 48 16 61

3 weeks ahead
Semi-mechanistic 0.03 230 0.3 81 15 93
Autoregressive 0.02 90 -0.17 53 11 73
Deterministic <0.01 490 0.45 160 13 210
Unfocused <0.01 44 -0.058 60 29 71

Table 2. Forecasting metrics and scores of the best
semi-mechanistic model variant compared to null models. The
values shown are the same scores as in Fig. 3, for forecasting horizons up
to three weeks. The p-values for calibration highlighted in bold reflect
predictive models with no evidence of miscalibration.

mechanistic model was best for forecasts 1 or 2 weeks ahead.432

Discussion433

Probabilistic forecasts aim to quantify the inherent uncertainty in predicting434

the future. In the context of infectious disease outbreaks, they allow the435

forecaster to go beyond merely providing the most likely future scenario436

and quantify how likely that scenario is to occur compared to other possible437

scenarios. While correctly quantifying uncertainty in predicted trajectories438

has not commonly been the focus in infectious disease forecasting, it can439

have enormous practical implications for public health planning. Especially440

during acute outbreaks, decisions are often made based on so-called “worst-441
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Figure 4. Calibration over time. Calibration scores of the forecast up
to the time point shown on the x-axis. (A) Semi-mechanistic model
variants, with the best model highlighted in dark red and other model
variants are shown in light red. (B) Best semi-mechanistic model and null
models. In both cases, 1-week (left) and 2-week (right) calibration (p-value
of Anderson-Darling test) are shown.

case scenarios” and their likelihood of occurring. The ability to adequately442

assess the magnitude as well as the probability of such scenarios requires443

accuracy at the tails of the predictive distribution, in other words good444

calibration of the forecasts.445

Probabilistic forecasts need to be assessed using metrics that go beyond446

the simple difference between the central forecast and what really happened.447

Applying a suite of assessment methods to the forecasts we produced for448

Western Area, Sierra Leone, we found that probabilistic calibration of semi-449

mechanistic model variants varied, with the best ones showing good calibra-450

tion for up to 2-3 weeks ahead, but performance deteriorated rapidly as the451

forecasting horizon increased. This reflects our lack of knowledge about the452

underlying processes shaping the epidemic at the time, from public health453
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interventions by numerous national and international agencies to changes in454

individual and community behaviour. During the epidemic, we only pub-455

lished forecasts up to 3 weeks ahead, as longer forecasting horizons were not456

considered appropriate.457

Our forecasts suffered from bias that worsened as the forecasting hori-458

zon expanded. Generally, the forecasts tended to overestimate the number459

of cases to be expected in the following weeks, as did most other forecasts460

generated during the outbreak (Chretien et al., 2015). This is in line with461

previous findings where our model was applied to predict simulated data of462

a hypothetical Ebola outbreak (Funk et al., 2017a). Log-transforming the463

transmission rate in order to ensure positivity skewed the underlying dis-464

tribution and made very high values possible. Moreover, we did not model465

a trend in the transmission rate, whereas in reality transmission decreased466

over the course of the epidemic, probably due to a combination of factors467

ranging from better provision of isolation beds to increasing awareness of468

the outbreak and subsequent behavioural changes. While our model cap-469

tured changes in the transmission rate in model fits, it did not forecast any470

trends such as the observed decrease over time. Capturing such trends and471

modelling the underlying causes would be an important future improvement472

of real-time infectious disease models used for forecasting.473

There are trade-offs between achieving good outcomes for the different474

forecast metrics we used. Deciding whether the best forecast is the best cal-475

ibrated, the sharpest or the least biased, or some compromise between the476

three, is not a straightforward task. Our assessment of forecasts using sep-477

arate metrics for probabilistic calibration, sharpness and bias highlights the478

underlying trade-offs. While the best calibrated semi-mechanistic model479
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variant showed better calibration performance than the null models, this480

came at the expense of a decrease in the sharpness of forecasts. Compar-481

ing the models using the RPS alone, the semi-mechanistic model of best482

calibration performance would not necessarily have been chosen. Following483

the paradigm of maximising sharpness subject to calibration, we therefore484

recommend to treat probabilistic calibration as a prerequisite to the use of485

forecasts, in line with what has recently been suggested for post-processing486

of forecasts (Wilks, 2018). Probabilistic calibration is essential for mak-487

ing meaningful probabilistic statements (such as the chances of seeing the488

number of cases exceed a set threshold in the upcoming weeks) that enable489

realistic assessments of resource demand, the possible future course of the490

epidemic including worst-case scenarios, as well as the potential impact of491

public health measures. Once calibration is ensured, other criteria such as492

the RPS or DSS can be used to select the best model for forecasts, or to493

generate weights for ensemble forecasts combining several models. Such en-494

semble forecasts have become a standard in weather forecasting (Gneiting495

and Raftery, 2005) and have more recently shown promise for infectious496

disease forecasts (Yamana et al., 2016; Yamana et al., 2017; Viboud et al.,497

2017).498

Other models may have performed better than the ones presented here.499

Because we did not have access to data that would have allowed us to assess500

the importance of different transmission routes (burials, hospitals and the501

community) we relied on a relatively simple, flexible model. The determinis-502

tic SEIR model we used as a null model performed poorly on all forecasting503

scores, and failed to capture the downturn of the epidemic in Western Area.504

On the other hand, a well-calibrated mechanistic model that accounts for505

all relevant dynamic factors and external influences could, in principle, have506
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been used to predict the behaviour of the epidemic reliably and precisely.507

Yet, lack of detailed data on transmission routes and risk factors precluded508

the parameterisation of such a model and are likely to do so again in future509

epidemics in resource-poor settings. Future work in this area will need to510

determine the main sources of forecasting error, whether structural, obser-511

vational or parametric, as well as strategies to reduce such errors (Pei and512

Shaman, 2017).513

In practice, there might be considerations beyond performance when514

choosing a model for forecasting. Our model combined a mechanistic515

core (the SEIR model) with non-mechanistic variable elements. By using516

a flexible non-parametric form of the time-varying transmission rate, the517

model provided a good fit to the case series despite a high levels of uncer-518

tainty about the underlying process. Having a model with a mechanistic519

core came with the advantage of enabling the assessment of interventions520

just as with a traditional mechanistic model. For example, the impact of a521

vaccine could be modelled by moving individuals from the susceptible into522

the recovered compartment (Camacho et al., 2015a; Camacho et al., 2017).523

At the same time, the model was flexible enough to visually fit a wide variety524

of time series, and this flexibility might mask underlying misspecifications.525

More generally, when choosing between forecast performance and the ability526

to explicitly account for the impact of interventions, a model that accounts527

for the latter might, in some cases, be preferable. Where possible, the guid-528

ing principle in assessing real-time models and predictions for public health529

should be the quality of the recommended decisions based on the model530

results (Probert et al., 2018).531

Epidemic forecasts played a prominent role in the response to and public532
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awareness of the Ebola epidemic (Frieden and Damon, 2015). Forecasts have533

been used for vaccine trial planning against Zika virus (World Health Orga-534

nization, 2017) and will be called upon again to inform the response to the535

next emerging epidemic or pandemic threat. Recent advances in computa-536

tional and statistical methods now make it possible to fit models in near-real537

time, as demonstrated by our weekly forecasts (Center for the Mathematical538

Modelling of Infectious Diseases, 2015). Such repeated forecasts are a pre-539

requisite for the use of metrics that assess not only how close the predictions540

were to reality, but also how well uncertainty in the predictions has been541

quantified. An agreement on standards of forecast assessment is urgently542

needed in infectious disease epidemiology, and retrospective or even real-543

time assessment of forecasts should become standard for epidemic forecasts544

to prove accuracy and improve end-user trust. The metrics we have used545

here or variations thereof could become measures of forecasting performance546

that are routinely used to evaluate and improve forecasts during epidemics.547

For forecast assessment to happen in practice, evaluation strategies must548

be planned before the forecasts are generated. In order for such evaluation549

to be performed retrospectively, all forecasts as well as the data, code and550

models they were based on should be made public at the time, or at least551

preserved and decisions recorded for later analysis. We published weekly up-552

dated aggregate graphs and numbers during the Ebola epidemic, yet for full553

transparency it would have been preferable to allow individuals to download554

raw forecasts for further analysis.555

If forecasts are not only produced but also evaluated in real time, this556

can give valuable insights into strengths, limitations, and reasonable time557

horizons. In our case, by tracking the performance of our forecasts, we558
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would have noticed the poor calibration of the model variant chosen for559

the forecasts presented to the public, and instead selected better calibrated560

variants. At the same time, we did not store the predictive distribution561

samples for any area apart from Western Area in order to better use available562

storage space, and because we did not deem such storage valuable at the563

time. This has precluded a broader investigation of the performance of our564

forecasts.565

At the same time, research into modelling and forecasting methodology566

and predictive performance at times during which there is no public health567

emergency should be part of pandemic preparedness activities. To facilitate568

this, outbreak data must be made available openly and rapidly. Where avail-569

able, combination of multiple sources, such as epidemiological and genetic570

data, could increase predictive power. It is only on the basis of systematic571

and careful assessment of forecast performance during and after the event572

that predictive ability of computational models can be improved and lessons573

be learned to maximise their utility in future epidemics.574
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