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Abstract  14 

Everyday visual environments are spatially structured in that objects often appear at 15 

typical locations in space: for example, lamps hang from the ceiling, whereas carpets lie 16 

on the floor. As a consequence, objects repeatedly occupy similar visual field locations. 17 

The long-term experience with these spatial regularities prompts the hypothesis that the 18 

visual system is tuned to such retinotopic object locations. A key prediction is that 19 

typically positioned objects should be coded more efficiently. To test this prediction, we 20 

recorded electroencephalography (EEG) while participants viewed briefly presented 21 

objects appearing in their typical locations (e.g., an airplane in the upper visual field) or in 22 

atypical locations (e.g., an airplane in the lower visual field). Multivariate pattern analysis 23 

applied to the EEG data revealed that object classification depended on positional 24 

regularities: Objects were classified more accurately when positioned typically, rather 25 

than atypically, already at 140 ms, suggesting that relatively early stages of object 26 

processing are tuned to typical retinotopic locations. Our results confirm the prediction 27 

that long-term experience with objects occurring at specific locations leads to enhanced 28 

perceptual processing when these objects appear in their typical locations. This may 29 

indicate a neural mechanism for efficient natural scene processing, where a large number 30 

of typically positioned objects needs to be processed.  31 
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1 Introduction 32 

Visual objects are enclosed entities that can in principle be moved around freely. 33 

However, in everyday environments object positions are often quite constrained. For 34 

instance, consider the predictability in the locations of objects in a living room: The sofa is 35 

facing the TV, a table is in between the two, a lamp hangs from the ceiling, whereas 36 

carpets lie on the floor. This example illustrates that the object content of natural scenes 37 

is organized in repeatedly occurring positional structures (Bar, 2000; Chun, 2002). Many 38 

previous studies have investigated how inter-object relationships in these positional 39 

structures (e.g., lamps appearing above tables) impact behavioral performance and 40 

neural processing (Biederman, Mezzanotte, & Rabinowitz, 1982; Kaiser, Stein, & Peelen, 41 

2014; Oliva & Torralba, 2007; Wolfe, Võ, Evans, & Greene, 2011). However, positional 42 

object structures often also imply that individual objects are associated with particular 43 

locations in space (e.g., lamps appearing in the upper part of a scene). It has recently 44 

been proposed that the visual system is tuned to these regularities (Kaiser & Haselhuhn, 45 

2017; Kravitz, Vinson, & Baker, 2008), which could facilitate neural processing for 46 

individual objects appearing in their typical real-world locations. 47 

Such location-specific variations in object coding are suggested by previous results 48 

that indicate the co-representation of object identity and location information in visual 49 

cortex: (1) cortical responses depend on the position of the object in the visual field  50 

(Hemond, Kanwisher, & Op de Beeck, 2007; Hasson, Levy, Behrmann, Hendler, & Malach, 51 

2002), (2) object selective cortex contains information about both an object’s identity and 52 

its location (Cichy, Chen, & Haynes, 2011; Golomb & Kanwisher, 2011; Hong, Yamins, Majaj, 53 

& DiCarlo, 2017; Kravitz, Kriegeskorte, & Baker, 2010; Schwarzlose, Swisher, Dang, & 54 

Kanwisher, 2008), and (3) information about object identity and location emerge at 55 
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similar time points in visual processing  (Isik, Meyers, Leibo, & Poggio, 2014; Carlson, 56 

Hogendoorn, Kanai, Mesik, & Turret, 2011). 57 

The link between identity and location information in object processing creates 58 

the possibility that the two properties interact. In everyday environments, the visual 59 

system is repeatedly faced with positional structures, where individual object positions 60 

are highly predictable. Through this repeated exposure, retinotopic object-coding 61 

mechanisms could get tuned to typical object locations, forming neural channels that 62 

integratively process an object’s identity and its location. Such location-specific 63 

processing channels would enhance the processing of an object when it appears in its 64 

typical locations within a scene – and within the visual field. Evidence for such a 65 

processing enhancement has been found in the domain of person perception, where 66 

typical configurations impact cortical responses to individual face and body parts (Chan, 67 

Kravitz, Truong, Arizpe, & Baker, 2010; de Haas et al., 2016; Henriksson, Mur, & 68 

Kriegeskorte, 2015). For example, in face-selective visual cortex, response patterns are 69 

better discriminable for typically, as compared to atypically, positioned face parts (de 70 

Haas et al., 2016), revealing visual processing channels that are tuned to the spatial 71 

regularities in the face. 72 

 Here, we test the prediction that the positional regularities contained in natural 73 

scenes can similarly facilitate the processing of everyday objects appearing in their typical 74 

locations. Participants viewed objects associated with upper and lower visual field 75 

locations (e.g., a lamp or a carpet) (Figure 1A) while we recorded electroencephalography 76 

(EEG). We used multivariate classification on the EEG data (Contini, Wardle, & Carlson, 77 

2017) to track the time course of object coding with high temporal precision. Analyses 78 

revealed that after 140ms visual processing of objects is affected by their typical real-79 
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world locations: Objects appearing in their typical locations (e.g., a lamp in the upper 80 

visual field and a carpet in the lower visual field) could be decoded more successfully than 81 

objects appearing in atypical locations (e.g., a carpet in the upper visual field and a lamp 82 

in the lower visual field). These results suggest that early, rather than late, stages of 83 

visual processing are tuned to the positional object structure of real-world scenes. 84 
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2 Materials and Methods 85 

2.1 Participants 86 

Thirty-four healthy adults (mean age 26.4 years, SD = 5.4; 23 female) completed 87 

the experiment. The sample size was set a-priori, based on considerations regarding 88 

statistical power: A sample size of 34 is needed for detecting a simple effect with a 89 

medium effect size of d = 0.5 with a probability of more than 80%. All participants had 90 

normal or corrected-to-normal vision, provided informed consent and received monetary 91 

reimbursement or course credits for their participation. All procedures were approved by 92 

the ethical committee of the Department of Education and Psychology of the Freie 93 

Universität Berlin and were in accordance with the Declaration of Helsinki. 94 

2.2 Stimuli  95 

The stimulus set consisted of greyscale images of six objects associated with 96 

typical visual field locations, of which three were associated with upper visual field 97 

locations (lamp, airplane, and hat) and three were associated with lower visual field 98 

locations (carpet, boat, and shoe). For each object, ten exemplars were used (see Figure 99 

1A for stimulus examples). The images were matched for overall luminance (using the 100 

SHINE toolbox; Willenbockel et al., 2010) and displayed on a white background.  101 

To ensure that the six objects could be reliably linked to a specific location, we 102 

validated the association of the six objects with a specific part of the visual field in two 103 

ways. First, we assessed the typical spatial distribution of each object in natural scenes, 104 

assuming that natural scene photographs represent a snapshot of the visual field roughly 105 

approximating natural viewing conditions. Hence, the distribution of the objects in the 106 

scene image should be similar to their distribution across the visual field. To objectively 107 

measure the typical position of each object within a scene, we queried a huge number of 108 
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scene photographs (>100,000) from the LabelMe toolbox, where human observers 109 

annotated single objects by drawing labelled polygons (Russell, Torralba, Murphy, & 110 

Freeman, 2008). For all scenes containing a specific object we computed the mean pixel 111 

coordinate of the area labeled as belonging to the object and then averaged these 112 

positions across scenes. The resulting “typical” object locations showed that, as 113 

expected, the upper visual field objects were associated with locations (y: vertical 114 

coordinate from bottom (0) to top (1) of the scene) in the upper parts of scenes (lamp: y 115 

= 0.61, SD = 0.17; airplane: y = 0.52, SD = 0.20; hat: y = 0.53, SD = 0.25), while lower visual 116 

field objects were associated with locations in the lower part of scenes scenes (carpet: y = 117 

0.17, SD = 0.13; boat: y = 0.33, SD = 0.23; shoe: y = 0.31, SD = 0.20). The typical location in 118 

scenes differed significantly between objects associated with the upper and lower visual 119 

field, t > 13.3, p < .001, for all pairwise comparisons. Figure 1B shows the distribution of 120 

object locations along the vertical axis of the scenes, split into 7 bins. 121 

 Second, we sought to demonstrate a correspondence between this automated, 122 

scene-based measure and people’s explicit associations of the objects with particular 123 

locations in space. We thus asked a set of participants (between 60 and 70 participants; 124 

including the participants of the current study, after the completion of the EEG 125 

experiment) to indicate the typical locations in which they expect to see each of the six 126 

objects. In this task, participants were asked to drag the image of a single exemplar of 127 

each object to its typical location on a computer screen (imagining that the computer 128 

screen represents their field of view in a natural scene). The central part of the screen – 129 

where the object initially appeared – was blocked (indicated by a grey circle), so that 130 

participants (1) could not place the object in a central location of the screen, and (2) had 131 

to move the object before proceeding. As expected, participants more often chose upper 132 
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screen positions (y: vertical coordinate from bottom (0) to top (1) of the screen) for the 133 

upper visual field objects (lamp: y = 0.65, SD = 0.19; airplane: y = 0.67, SD = 0.20; hat: y = 134 

0.57, SD = 0.20), and lower screen positions for the lower visual field objects (carpet: y = 135 

0.29, SD = 0.22; boat: y = 0.36, SD = 0.18; shoe: y = 0.30, SD = 0.18). The vertical locations 136 

chosen by the participants differed significantly between objects associated with the 137 

upper and lower visual field, t > 6.04, p < .001, for all pairwise comparisons. Figure 1C 138 

shows the distribution of vertical object locations on the screen, split into 7 bins. The 139 

scene-based measure and participants’ explicit assessment thus provided converging 140 

evidence for the association of the objects with specific spatial locations. 141 

 142 

 143 

Figure 1. A) Example Stimuli. Ten different exemplar images of six objects each (here, one 144 

example image for each object shown) were used as stimuli, of which three objects were 145 

associated with the upper visual field (lamp, airplane, hat) and three were associated 146 

with the lower visual field (carpet, boat, shoe). B) To validate our assessment of visual 147 

field associations, we automatically extracted the positions for each object in a large set 148 

of labelled scene photographs taken from the LabelMe scene database (Russell et al., 149 

2008). For each scene, we determined the relative position of the object along the 150 

vertical axis, and plotted the distribution across 7 bins (m: number of scenes for each 151 

object). C) Additionally, we asked a group of participants to indicate for each object the 152 
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position that it typically occupies in the visual field by dragging the object to the desired 153 

location. We then computed the distribution of relative locations along the vertical axis of 154 

the screen, split into 7 bins (n: number of participants that indicated the typical location 155 

for each object). Both measures confirmed the spatial priors associated with the six 156 

objects. 157 

 158 

2.3 Experimental Design 159 

To test whether objects are processed differently when presented in typical and 160 

atypical locations within the visual field, the objects were presented in the upper or lower 161 

visual field (Figure 2A). On every trial, one object exemplar was presented in one of the 162 

two locations for 150ms, followed by a variable inter-trial interval (randomly jittered, from 163 

1250ms to 1750ms). Stimuli were presented at 3.25° vertical eccentricity and subtended a 164 

visual angle of maximally 3° in horizontal and vertical axes. Stimulus presentation was 165 

controlled using the Psychtoolbox (Brainard, 1997). Participants were asked to detect 166 

one-back repetitions on an object level (e.g., two different airplanes in direct succession; 167 

see Figure 2A). Repetitions occurred on 13% of the trials and equally often for typically and 168 

atypically positioned repetition targets and for the top and bottom locations. Participants 169 

performed accurately on this task (mean accuracy 96%, SD = 2%), with no difference in 170 

accuracy between typically and atypically positioned objects, t(33) = 0.87, p = .391. One-171 

back repetition trials were removed from all EEG analyses. The whole experiment 172 

consisted of 1656 trials (including 216 repetition trials). The 1440 non-repetition trials 173 

consisted of 12 repetitions of each object exemplar in each location (i.e., 120 repetitions 174 

per object and location). The experiment was split into 8 runs, and participants could take 175 

breaks between the runs. Twelve participants completed an extended experimental 176 
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session with 2760 trials (including 360 repetition trials), which additionally contained the 177 

same conditions at large eccentricities in half of the trials; these additional data are not 178 

reported here. The 2400 non-repetition trials consisted of 10 repetitions of each object 179 

exemplar in each of the four locations (i.e., 100 repetitions per object and location). The 180 

extended experiment was split into 12 runs. 181 

 182 

 183 

Figure 2. Paradigm and Classification Logic. A) Stimuli were presented for 150 ms in upper 184 

or lower visual field locations, corresponding to an object’s typical or an atypical location. 185 

Participants were instructed to detect occasional one-back repetitions on an object-186 

category level (irrespective of the stimulus location) by pressing a button. Colors 187 

indicating the two regularity conditions are shown for illustrative purposes only. B) 188 

Multivariate classification was performed on response patterns across all electrodes, 189 

separately for each pairwise combination of objects (exemplified here by airplane and 190 

shoe in regular locations). The data was split into two sets: a training set consisting of all 191 

(but one) trials for each object and a testing set consisting of the two left-out trials. LDA 192 

classifiers were repeatedly trained and tested until every trial was left out once and 193 

accuracy was averaged across these repetitions. C) The pairwise classification analysis 194 

was repeated for each 10 ms time bin, resulting in a 12-by-12 matrix of pairwise 195 
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classification accuracies (with an empty diagonal) at every time point. To determine 196 

differences between typically and atypically positioned objects, pairwise comparisons 197 

within the typically placed objects (pink rectangle, upper left) and within the atypically 198 

placed objects (purple rectangle, lower right) were averaged and compared (Figure 3).  199 

 200 

2.4 EEG recording and preprocessing 201 

The EEG was recorded using an EASYCAP 64-channel system and a Brainvision 202 

actiCHamp amplifier. The 64 electrodes were arranged in accordance with the standard 203 

10-10 system. The data was recorded at a sampling rate of 1000 Hz and filtered online 204 

between 0.5 and 70 Hz. For one participant, due to a technical problem, only data from 32 205 

electrodes was recorded. All electrodes were referenced online to the Fz electrode. 206 

Offline preprocessing was performed in MATLAB, using the FieldTrip toolbox 207 

(Oostenveld, Fries, Maris, & Schoffelen, 2011). The continuous EEG data was epoched into 208 

trials ranging from 150ms before stimulus onset to 750ms after stimulus onset. Trials 209 

containing movement-related artefacts were visually identified and excluded from all 210 

analyses. Blink and eye movement artifacts were identified and removed using 211 

Independent Components Analysis (ICA) and visual inspection of the resulting 212 

components. To increase the signal-to-noise ratio of the classification analyses (Carlson, 213 

Tovar, Alink, & Kriegeskorte, 2013), the data was downsampled to 100Hz.  214 

2.5 EEG classification procedure 215 

Multivariate classification analyses were carried out in MATLAB using the 216 

CoSMoMVPA toolbox (Oosterhof, Connolly, & Haxby, 2016). Classification was performed 217 

separately for each 10ms time bin, resulting in classification time courses with 10 ms 218 

resolution. The analysis was performed pairwise, for all possible combinations of the six 219 
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objects appearing in the two locations. Linear discriminant analysis (LDA) classifiers were 220 

always trained and tested on data from two conditions (e.g., an airplane in the upper 221 

visual field versus a carpet in the lower visual field), using a leave-one-out partitioning 222 

scheme (Figure 2B). The testing set consisted of all but one trials for each of the two 223 

conditions, while one trial for each of the two conditions was held back and used for 224 

classifier testing. This procedure was repeated until every trial was left out once. Classifier 225 

performance was averaged across these repetitions. The pairwise decoding analysis 226 

resulted in 12-by-12 matrix of decoding accuracies at each time point (reflecting all 227 

comparisons between the six objects appearing in the two locations) (Figure 2C).  228 

2.6 Overall classification dynamics 229 

To assess the overall classification dynamics over time, we computed the general 230 

discriminability of the twelve different conditions. All pairwise classification accuracies 231 

were averaged, revealing a time course of object decoding independently of the 232 

positional regularities. This time course of overall classification accuracy was used to 233 

define time points of interest at the peaks of the classification time series, where 234 

classification performance was particularly pronounced. Using a “region of interest” logic 235 

frequently applied in fMRI analyses (Poldrack, 2007), we used these peaks as “time points 236 

of interest” to increase the detection power of subsequent analyses.  237 

2.7 Object classification in typical and atypical locations 238 

To determine an effect of positional regularity on object decoding, we compared 239 

performance when classifying among typically positioned objects versus among atypically 240 

positioned objects. Pairwise classification accuracies were averaged for all comparisons 241 

between typically positioned objects (e.g., an airplane in the upper visual field versus a 242 

shoe in the lower visual field) and for all comparisons between atypically positioned 243 
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objects (e.g., a shoe in the upper visual field versus an airplane in the lower visual field) 244 

(Figure 2C). Subsequently, the two resulting classification time series (for typically and 245 

atypically positioned objects) were compared. To increase the statistical power of this 246 

comparison, we specifically focused on the effect of positional regularity at the peaks in 247 

overall classification.  248 

2.8 Sensor-space searchlight analysis 249 

To investigate which sensors contributed most to the observed effects, we 250 

performed a sensor-space searchlight analysis. For this analysis, the pairwise classification 251 

procedure was repeated for neighborhoods of seven adjacent electrodes around each 252 

individual electrode; the resulting classification accuracy was then mapped onto a scalp 253 

representation. This procedure allowed us to infer the approximate spatial distribution of 254 

classification differences between typically and atypically positioned objects. As for one 255 

participant only data from 32 electrodes was available, this participant was not included 256 

in the searchlight analysis. 257 

2.9 Statistical testing 258 

To identify significant effects across time we used a threshold-free cluster-259 

enhancement procedure (Smith & Nichols, 2009) with default parameters. Multiple 260 

comparison correction was based on a sign-permutation test (with null distributions 261 

created from 10,000 bootstrapping iterations) as implemented in CoSMoMVPA 262 

(Oosterhof et al., 2016). The resulting statistical maps were thresholded at Z > 1.96 (i.e., p 263 

< .05). The same procedure was employed for identifying significant sites across 264 

electrodes in the sensor-space searchlight analysis. For assessing the significance of 265 

effects at the overall classification peaks, repeated-measures ANOVAs and paired t-tests 266 

were performed.  267 
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3 Results 268 

3.1 Temporal dynamics of pairwise object classification 269 

In a first step, we characterized the overall response dynamics observed in the 270 

pairwise classification analysis, which allowed us to restrict subsequent analyses to time 271 

points where classification performance was particularly pronounced.  For this, we 272 

computed an overall measure of pairwise classification by averaging across all unique off-273 

diagonal elements of the pairwise classification matrices (Figure 2C), resulting in a single 274 

classification time series. This analysis revealed robust above-chance classification 275 

starting from 70 ms after stimulus onset and prominently peaking at 140 ms and 220 ms 276 

(Figure 3A). These two clear peaks in the classification time series were used as time 277 

points of interest for subsequent analyses, as we reasoned that differences between 278 

typically and atypically positioned objects would be most pronounced at time points at 279 

which objects were most discriminable.  280 
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 281 

Figure 3. Classification Results. A) Overall pairwise classification performance was 282 

computed by averaging all pairwise decoding time series, revealing significant decoding 283 

accuracy starting at 70 ms after stimulus onset and peaking at 140 ms and 220 ms. 284 

Asterisks above data curves indicate above-chance classification (p < .05, corrected for 285 

multiple comparisons).  B) Classification time series for typically and atypically positioned 286 

objects were computed by averaging all pairwise classification time series comparing 287 

typically and atypically positioned objects, respectively. Classification of typically and 288 

atypically positioned pairs showed comparable temporal dynamics, both peaking at the 289 
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time points identified in the overall decoding. Asterisks indicate above-chance 290 

classification (p < .05, corrected for multiple comparisons). C) At the first decoding peak 291 

(140 ms), but not the second peak (220 ms), classification was more accurate for typically 292 

than for atypically positioned objects. The asterisk indicates a significant difference (p < 293 

.05). Error bars reflect standard errors. D) A sensor-space classification searchlight 294 

revealed that the regularity effect (difference between the classification of typically and 295 

atypically positioned objects) at the 140 ms peak is most pronounced in occipital and 296 

temporal electrodes. Circles indicate electrodes exhibiting a significant regularity effect 297 

(p < .05, corrected for multiple comparisons). 298 

 299 

3.2 Classification of objects when positioned typically and atypically 300 

 To test whether neural representations differ for typically and atypically 301 

positioned objects, we compared classification performance for all typically and all 302 

atypically positioned objects. We averaged all pairwise classification time courses that 303 

corresponded to comparisons within regular pairs (e.g., an airplane in the upper visual 304 

field versus a boat in the lower visual field) and comparisons within irregular pairs (e.g., 305 

an airplane in the lower visual field versus a boat in the upper visual field) (Figure 3B). The 306 

classification time series for typically and atypically positioned objects showed a similar 307 

temporal structure and both replicated the peak structure observed in the overall 308 

decoding, allowing for a meaningful comparison between typically and atypically 309 

positioned objects at the classification peaks. We thus restricted statistical comparisons 310 

to two time points of interest: the peak times observed in the overall decoding (140 ms 311 

and 220 ms). For the early peak at 140ms, we found higher classification accuracy for 312 

typically than for atypically positioned objects, t(33) = 3.04, p = .005, while for the later 313 
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peak at 220ms, no such difference emerged, t(33) = 0.69, p = .495, interaction with peak 314 

time, F(1,33) = 7.44, p = .010 (Figure 3C). This pattern of results suggests that earlier 315 

stages of object processing (as reflected in the decoding peak at 140 ms) benefit from 316 

typical object locations, while relatively later object representations (at 220 ms after 317 

stimulus onset) are not sensitive to positional regularities.  318 

 To estimate the spatial extent of the early regularity effect, we performed a 319 

searchlight analysis in sensor space. We repeatedly performed the pairwise classification 320 

analysis for neighborhoods of seven adjacent sensors, using only data from the early 321 

peak at 140 ms. To quantify the regularity benefit, we then computed the difference 322 

between all pairwise comparisons of typically positioned objects and all pairwise 323 

comparisons of atypically positioned objects at every sensor location. This analysis 324 

revealed a significant regularity effect in posterior and lateral electrodes (19 significant 325 

electrode sites) (Figure 3D), suggesting that the enhanced classification for regularly 326 

positioned objects originates from visual areas of the occipital and temporal cortices.  327 

3.3 Classification within and between locations 328 

Our classification approach collapsed across pairwise comparisons within the 329 

same location and between different locations, so that classifiers could rely on 330 

information from both an object’s identity and its location. A recent study on location 331 

priors in face-part processing (de Haas et al., 2016) has found effects of positional 332 

regularities only when comparing response patterns between locations. To investigate 333 

whether also the regularity effects for objects are differently pronounced when 334 

classifying between the two locations or within the same location, we separately looked 335 

at the regularity effect for all comparisons between locations (e.g., an airplane in the 336 

upper visual field versus a shoe in the lower visual field) (Figure 4A) and all comparisons 337 
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within location (e.g., an airplane in the upper visual field versus a hat in the upper visual 338 

field) (Figure 4B). We found a main effect of visual field comparison, F(1,33) = 365.70, p < 339 

.001, with higher classification accuracies for classifying between locations (where the 340 

classifier can use the stimulus’ location) than within location (where the classifier has no 341 

location information available), and an interaction of the within-between comparison and 342 

peak latency, F(1,33) = 72.30, p < .001, with a relatively more pronounced early peak when 343 

classifying between locations. Replicating our previous results, the analysis produced a 344 

significant peak X regularity interaction, F(1,33) = 9.83, p = .004, with a regularity benefit 345 

at the 140 ms peak, t(33) = 3.15, p = .004, but not the 220 ms peak, t(33) = 1.05, p = .301. 346 

Crucially, this pattern of results did not depend on the type of classification (between 347 

locations versus within location), F(1,33) = 2.53, p = .121, suggesting that typical real-world 348 

locations comparably boost early object classification when objects appear in similar or 349 

different locations (Figure 4C,D).  350 
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 351 

Figure 4. Between-Locations versus Within-Location Classification. We compared peak 352 

decoding for typically and atypically positioned objects separately for comparisons 353 

between different locations (e.g., an airplane in the upper visual field versus a shoe in the 354 

lower visual field) (A) and within the same location (e.g., an airplane in the upper visual 355 

field versus a hat in the upper visual field) (B). For both comparison types, we found a 356 

similar pattern (C, D) with a benefit for typically positioned objects at the 140 ms peak. 357 

Importantly, the patterns of results for between-locations and within-location 358 

classification were statistically indistinguishable (see Results). Error bars reflect standard 359 

errors.  360 
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4 Discussion 361 

4.1 Summary 362 

Here, we demonstrate that positional regularities contained in real-world scenes 363 

impact brain responses to individual objects. Using multivariate classification of EEG data, 364 

we show that object coding across the visual field is affected by the typical real-world 365 

location of the object. When objects are presented in frequently experienced locations, 366 

EEG response patterns at 140 ms after stimulus onset are better discriminable than when 367 

the same objects are presented in atypical locations. This advantage for typically 368 

positioned objects was equally pronounced for classification between locations and 369 

within the same location. Using a sensor-space searchlight analysis, we show that the 370 

effect was primarily localized in posterior and lateral sensors, suggesting that typically 371 

positioned objects gain an advantage during early perceptual processing.  372 

4.2 Early stages of object coding are sensitive to typical locations 373 

Our results support the hypothesis that extensive experience with natural scene 374 

structure can enhance object coding when objects appear in typical locations of the visual 375 

field. This finding demonstrates that visual processing channels are preferentially tuned 376 

to specific objects appearing in specific locations (Kaiser & Haselhuhn, 2017; Kravitz et al., 377 

2008). Crucially, our EEG classification approach allowed us to pinpoint the latency of this 378 

regularity benefit: We demonstrate that object processing at 140 ms after stimulus onset 379 

is affected by positional regularity. The timing of the effect suggests that objects 380 

appearing in typical visual field locations gain an advantage during early, perceptual 381 

processing, rather than through top-down interactions within visual cortex or feedback 382 

from frontal areas; previous M/EEG studies have suggested that such feedback processes 383 

impact visual responses only at later stages, starting shortly before 200 ms (Bar et al., 384 
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2006; Fahrenfort, van Leeuwen, Olivers, & Hogendoorn, 2017). As opposed to the 385 

difference in early object processing, later representations (at 220 ms after stimulus 386 

onset) do not depend on the location of the object. This result concurs with the 387 

increasing location tolerance over the time course of object classification, peaking at 388 

around 180 ms (Isik et al., 2014), mirroring the increase in receptive field size along the 389 

visual stream (Kravitz, Saleem, Baker, Ungerleider, & Mishkin, 2013). 390 

4.3 Visual versus categorical sources of the regularity benefit 391 

What is the content of the location-specific object representations emerging at 392 

140 ms? Peaks in the M/EEG decoding in this time range have been previously associated 393 

with visual category processing in object-selective cortex (Cichy, Pantazis, & Oliva, 2014, 394 

2016; Carlson et al., 2013). Our searchlight analysis reveals the strongest regularity effect 395 

over lateral occipital and temporal electrode sites, suggesting that the effect originates 396 

from object-selective visual cortex. Whether processing differences in these object-397 

selective regions reflect genuine category processing differences or whether they reflect 398 

differential coding of category-associated visual features is a debated question (Bracci, 399 

Ritchie, & op de Beeck, 2017; Peelen & Downing, 2017). While some data suggest that 400 

visual properties explain most of the variance in object-selective responses (e.g., Baldassi 401 

et al., 2013), a recent MEG decoding study has demonstrated category-selective, rather 402 

than visually (shape-) driven, responses from as early as 130 ms after stimulus onset 403 

(Kaiser, Azzalini, & Peelen, 2016). To determine if the regularity benefit observed here can 404 

be linked to differences in the processing of particular visual features or true categorical 405 

processing differences, future studies need to employ stimuli that vary more extensively 406 

in their visual characteristics. 407 

4.4 Positional structures in multiple and individual objects 408 
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Natural environments contain positional regularities on different levels, both on 409 

the levels of multiple (e.g., a lamps typically hang above tables) and individual objects 410 

(e.g., a lamp is typically in the upper visual field). Previous research has primarily focused 411 

on the latter: Recent behavioral studies have demonstrated that regularity structures in 412 

multi-object arrangement facilitate behavior in capacity-limited visual tasks (Gronau & 413 

Shachar, 2014; Kaiser et al., 2014; Kaiser, Stein, & Peelen, 2015; Stein, Kaiser, & Peelen, 414 

2015), and neuroimaging studies demonstrated that they enable the brain to integrate 415 

information across objects that appear in frequently experienced arrangements (Baeck, 416 

Wagemans, & Op de Beeck, 2013; Kaiser & Peelen, 2017; Kaiser et al., 2014).  417 

Here, we provide the first evidence that typical regularity structures also impact 418 

the neural representation of individual objects. Our finding thus raises the question 419 

whether the previously reported regularity effects in multi-object perception can be 420 

reduced to the effects of typical individual object location. On a behavioral level, some 421 

previous studies oppose this notion by demonstrating that the benefits of multi-object 422 

regularities cannot be explained by the relative location of the constituent objects (Kaiser 423 

et al., 2014, 2015; Stein et al., 2015). Although these results suggest that positional 424 

regularities in multi-object and single-object processing offer complementary benefits, 425 

further research is needed. Future studies will need to systematically manipulate 426 

positional structures on different levels (from individual objects to multi-object 427 

arrangements) to explore how regularities on multiple levels interact on a neural level. 428 

4.5 Positional structures beyond person perception 429 

Positional regularities have been studied in humans and non-human primates 430 

largely in the context of face and body perception, where parts are arranged in highly 431 

predictable configurations (e.g., the features of a human face). fMRI studies in humans 432 
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have demonstrated that individual face and body parts are processed more efficiently 433 

when they appear in typical visual field locations (Chan et al., 2010; de Haas et al., 2016).  434 

Single-cell recordings in monkeys demonstrated that location biases can impact cortical 435 

responses to face parts as early as 100 ms after stimulus onset (Issa & DiCarlo, 2012), 436 

suggesting a benefit at early stages of perceptual processing.  437 

Our results complement these findings by showing that such location-specific 438 

object processing is not restricted to the face/body domain: The inherent structure of 439 

natural scenes can similarly impact early processing (140 ms after stimulus onset) of 440 

object information across the visual field. Our findings thus highlight that location-specific 441 

tuning in object processing may form a general principle that shapes visual processing 442 

mechanisms for spatially predictable information. Future research could test whether 443 

regularity structures also affect other domains where the visual input consists of multiple 444 

parts that are constrained by spatial regularities. For example, through extensive 445 

experience with reading written text, the neural mechanisms for perceiving letters could 446 

get tuned to their typical spatial locations within words (Kaiser & Haselhuhn, 2017; 447 

Vinckier et al., 2007).  448 

4.6 Location-specific object coding and efficient scene perception 449 

A major challenge for the visual system when processing natural scenes is the 450 

large number of individual objects they contain. The concurrent representation of 451 

multiple objects is limited by an overlap in processing resources, as indexed by reduced 452 

neural responses when multiple objects need to be processed (Cohen, Konkle, Rhee, 453 

Nakayama, & Alvarez, 2014; Desimone & Duncan, 1995; Franconeri, Alvarez, & Cavanagh, 454 

2013). The preferential coding for typically positioned objects revealed here may 455 

contribute to efficient scene processing by reducing this inter-object competition. By 456 
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coding the objects of a scene via separable location-specific processing channels that are 457 

optimally tuned to objects typically appearing in these locations, the overlap in neural 458 

processing resources can be reduced. Linking this increase in neural efficiency to a 459 

facilitation of perceptual performance could help to understand the efficient processing 460 

of highly complex natural environments.   461 
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