

GIVE: toward portable genome browsers for
personal websites

AUTHORS

Xiaoyi Cao1,2, Zhangming Yan1,2, Qiuyang Wu1,2, Alvin Zheng1, Sheng Zhong1,2*

1 Department of Bioengineering, 2 4D Nucleome Network Organizational Hub, University of
California San Diego, La Jolla, CA, USA 92093

* Correspondence: szhong@ucsd.edu

ABSTRACT

Growing popularity and diversity of genomic data demands portable and versatile genome
browsers. Here, we present an open source programming library, called GIVE that facilitates
creation of personalized genome browsers without requiring a system administrator. By inserting
HTML tags, one can add to a personal webpage interactive visualization of multiple types of
genomics data, including genome annotation, “linear” quantitative data (wiggle), and genome
interaction data. GIVE includes a graphical interface called HUG (HTML Universal Generator)
that automatically generates HTML code for displaying user chosen data, which can be copy-
pasted into user’s personal website or saved and shared with collaborators. The simplicity of use
was enabled by encapsulation of novel data communication and visualization technologies,
including new data structures, a memory management method, and a double layer display method.
GIVE is available at: http://www.givengine.org/.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

INTRODUCTION

Genomics data have become increasingly popular and diverse, posing new challenges to
personalized data management and visualization [1-4]. On the one hand, people interested in
making their genomic data public required “researchers and policy makers [to anticipate] when
people share their genome on Facebook” [5]. This movement asks for development of portable,
versatile, and easily deployable genome browsers. Ideally, a portable data visualization tool can
work like Google map, that can be inserted into personal websites. On the other hand, new data
types especially those representing genome-wide interactions, including genome-interaction data
(Hi-C [6], ChIA-PET [7]), transcriptome-genome interaction data (MARGI [8], GRID-seq [9])
and transcriptome interaction data (PARIS [10], MARIO [11], LIGR-seq [12], SPLASH [13])
require compatible visualization tools, and ideally these data should be able to seamlessly
displayed in parallel to other data types including RNA-seq [14], ChIP-seq [15], ATAC-seq [16].

It was envisioned that future genome browsers could work like Google map, of which users with
small efforts can insert a customized version into their own websites [17]. Redeployable genome
browsers are developed toward this goal [17-20]. Still, releasing websites with interactive
visualization of genomic data would generally require systems administration, database and web
programming work. The GIVE project is aimed to automate these work and offer a portable and
lightweight genome browser with complementary advantages of genome browser websites [1, 21],
desktop executables [22], and personal homepages and blogs.

We created the open source GIVE programming library to meet diverse needs of users with various
levels of sophistication. A feature called GIVE HUG (HTML Universal Generator) provides a
graphical interface to interactively generate HTML codes for displaying user chosen datasets.
Users can save and share the HTML file with collaborators or copy-paste the HTML codes into
her/his websites, which would lead to embedded interactive data display. Users can use GIVE to
create custom genome browsers without hosting a data server, where all the data are retrieved on-
demand from public data servers. Users who choose to host data on their own server can do so
with commands provided in GIVE-Toolbox. With a few lines of HTML codes, GIVE enables a
website to retrieve, integrate, and display diverse data types hosted by multiple servers, including
large public depositories and custom-built servers. Such simplicity of use comes from
encapsulation of new data management, communication, and visualization technologies made
available by the GIVE development team. The cores of these technologies are new data structures
and a memory management algorithm.

RESULTS

Overview of the GIVE library

GIVE is composed of an HTML tag library and GIVE-Toolbox. The former is a library of HTML
tags for data visualization. GIVE-Toolbox is a set of command line commands, which automates
all necessary database operations. For any public datasets for which the metadata can be found in
GIVE data hub, users can directly use GIVE’s HTML tags to display such data, without invoking
GIVE-Toolbox.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

GIVE’s HTML tag library provides flexibility to build a variety of genome browsers, for example
a single-cell transcriptome website [23] (https://singlecell.givengine.org/), an epigenome website
[24, 25] (https://encode.givengine.org/, Figure S1), an genome interaction website [26]
(https://mcf7.givengine.org/, Figure 1), and an RNA-chromatin interaction website [27]
(https://margi.givengine.org/, Figure 2). With GIVE, users can build data visualization websites
without hosting actual data (data are hosted on public data servers) or data hosting websites or
websites that displays composite datasets hosted on user’s server and public servers. The GIVE-
enabled HTML files can also be used and shared as custom software, which encapsulate both data
and visualization capability.

Automatic webpage generation with GIVE HUG (HTML Universal Generator)

GIVE data hub and its embedded feature HUG enable automatic generation of interactive
visualization webpages for user chosen datasets. GIVE data hub is a web page for browsing the
metadata of genomic datasets hosted on public data servers (Figure S2). Inside this web page is a
database of metadata, including data type, data description, and the web address of the actual
dataset. When a user browses GIVE data hub, the metadata are retrieved and displayed on-demand,
ensuring consistency of displayed information with the underlying database. All metadata in GIVE
data hub are validated by GIVE development team to ensure correctness of information. Users are
welcome to submit metadata of additional datasets hosted on public data servers through an online
metadata submission form.

HUG automatically generates HTML webpages for any user chosen datasets. To use HUG, users
can click “HTML Generator Mode” in data hub website (Figure S2), select any datasets and click
the “Generate” button (Figure S3). A separate window will pop up that summarizes the user chosen
datasets and provide the generated HTML code (Figure S4). Like Google map, this data-containing
genome visualization HTML code can be copy-pasted into a personal website or saved and shared.
Users can interactively change a few display parameters using the top portion of this interactive
window and hit “Update code” button, leading to a new HTML code incorporating user-designated
visualization parameters (Figure S4). HUG offers the simplest way of generating GIVE-powered
genome browser websites.

GIVE data hub and HUG also serve as an interactive tutorial for adding and managing datasets
with GIVE-Toolbox and using GIVE’s HTML tags for data visualization, which will be discussed
in the next section.

Managing custom data with GIVE-Toolbox

To add and manage custom data, users should first download and run GIVE’s main executable
called GIVE-Docker. GIVE-Docker can be executed on all mainstream operating systems without
system specific configuration. When executed, GIVE-Docker automatically sets up a web server
and a database system. Also packaged within this executable is a toolbox (GIVE-Toolbox) that
automates all database operations into command line commands (Table S1), thus relieving the user
from working with a database language. Using the website hosting single-cell transcriptomes
(https://singlecell.givengine.org/) as an example, we provide a line-by-line example of building a

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

website hosting custom data. After downloading and running GIVE-Docker, we will issue GIVE-
Toolbox provided commands to initialize a reference genome, add gene annotations, and load
custom data (Table S2), following by inserting HTML tags to display the data (Last row, Table
S2).

Without additional coding, the website is automatically equipped with a few interactive features.
These features were enabled by JavaScript codes that were encapsulated within the GIVE’s HTML
tags. Visitors to this website can input new genome coordinates (Figure S5A), choose any subset
of data tracks to display (Figure S5B), or change genome coordinates by dragging the coordinates
to left or right by mouse (Figure S5C) or zoom in or out the genome by scrolling the mouse wheel
while the mouse pointer is on top of the genome coordinate area (Figure S5C).

Double layer display of genome interaction data

GIVE implements a double layer display strategy for visualization of genome interaction data. In
this display format, two genomic coordinates are plotted in parallel (central panel of Figure 1,
Panels B and C of Figure 2). Interactions between genomic regions are displayed as links of
correspondent genomic regions between the top and bottom coordinates. When intensity values
are associated with the links, the intensities are displayed in a red (large) to green (small) color
scale (central panel, Figure 1). This double layer display strategy has two advantages. First, the
top and the bottom coordinates can cover different genomic regions, making it flexible to visualize
long range interactions (Figure 1). Users can shift or zoom the top and the bottom coordinates
independently, making it easy to visualize for example interactions from the XIST locus (RNA
end, Figure 2B-C) to the entire X chromosome (DNA end, Figure 2B-C). This double layer design
also makes it intuitive to display asymmetric interactions, for example interactions from RNA (top
lanes, Figure 2) to DNA (bottom lanes, Figure 2).

New data structures for transfer and visualization of genomic data

We developed two data structures for optimal speed in transferring and visualizing genomic data.
These data structures and their associated technologies are essential to GIVE. However, all the
technologies described in this section are behind the scene. A website developer who uses GIVE
does not have to recognize the existence of these data structures.

We will introduce the rationales for developing the new data structures with a use scenario. When
a user browses a genomic region, all genome annotation and data tracks within this genomic region
should be transferred from the web server to the user’s computer. At this moment, only the data
within this genomic region require transfer and display (Figure 3A). Next, the user shifts the
genomic region to the left or right. Ideally, the previous data in user’s computer should be re-
utilized without transferring again, and only the new data in the additional genomic region should
be transferred. After data transfer, the previous data and the new data in user’s computer should
be combined (Figure 3B).

Next, the user zooms out. This action changes the resolution of genome. It is unnecessary to
transfer and infeasible to display data at the previous granularity. At this point, the program should

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

adjust the granularity of the already transferred data, and then transfer additional data at the new
granularity (Figure 3C). When the user zooms in, the program would adjust to finer granularity,
and transfer data at this resolution (Figure 3D). In summary, what is needed is a multiscale data
container that can add or remove data from both sides of a genomic window.

To substantiate the above described multiscale data container, we developed two data structures
named Oak and Pine. Oak handles sparse data tracks such as genome annotation, gene tracks, peak
tracks, and interaction regions (BED, interaction data). Pine deals with dense data track in bigWig
format [28]). Once the user changes the viewing area, Oak and Pine automatically adjust to the
optimal tree structure for holding the data in the viewing area, which may involve change of data
granularity, change of tree depths, adding or merging nodes, and rearrangement node assignment
to branches. These operations minimize data transfer over the internet as well as the amount of
data loaded in computer memory.

To optimize the use of memory, we developed an algorithm for removing obsolete data from the
memory (“withering”). When the data stored in Oak or Pine nodes have not been accessed by the
user for a long time, data in these nodes will be dumped and memory is recycled.

METHODS

Using HTML tag library

Use of GIVE’s HTML tags do not require any downloading or installation. The simplest way of
trying out GIVE’s HTML tags is to use HUG, a graphical interface that will generate an HTML
file for user chosen datasets.

Instead of using HUG, a web developer can import the entire GIVE library to a web page by
inserting the following two lines (Lines 1, 2).

<script src="https://www.givengine.org/bower_components/webcomponentsjs/webcomponents-lite.min.js"></script> (Line 1)

<link rel="import" href="https://www.givengine.org/components/chart-controller/chart-controller.html"> (Line 2)

To display genomics data, the web developer can use either the <chart-controller> tag or the
<chart-area> tag. The <chart-controller> tag will display genomic data as well as genome
navigation features such as shifting, zooming (Figure S5C). For example, adding the following
line in addition to the two lines above would create a website similar to that in Figure S5 (Line 3).

<chart-controller title-text="Single-cell RNA-Seq" group-id-list='["genes", "singleCell", "customTracks"]' num-of-
subs="1"></chart-controller> (Line 3)

Here, the title-text attribute sets the title text of a website. The <chart-area> tag will display the
track data without metadata controls such as data selection buttons and input box for genomic
coordinates, while retaining some interactive capacities including dragging and zooming. This
option provides the developer greater flexibility for website design. In addition, the <chart-area>
tag is compatible with mobile apps.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

Using GIVE-Toolbox

GIVE-Toolbox is a set of command line tools offered to manage custom data (Table S1). These
command line tools automate data related operations and relieve website developers from directly
programming with a database language (MySQL). In addition to comprehensive documentation
and tutorials (Table S3), executing each tool with –h argument will output usage instruction.
GIVE-Toolbox is our recommended option; however, developers can choose to directly work
MySQL instead.

Running GIVE-Docker as a standalone executable

Utilizing Docker’s container technology (https://www.docker.com), we encapsulated GIVE’s
codes and all the environmental requirements and database including Apache, MySQL, PHP into
a fully packaged executable called GIVE-Docker. This standardized executable can be deployed
without system specific configuration to all mainstream operating systems and cloud computing
services, including Linux, macOS, Windows 10, AWS, and Azure. This standalone executable
does not require system administration or installation of any prerequisite compiler or database, and
therefore is the recommended option. Use of GIVE HTML tag library does not require running
GIVE-Docker.

Experienced programmers can choose custom installation instead of using GIVE-Docker. A step
by step guide of custom installation is provided in GIVE’s online manual.

Backstage technologies

The following technologies are wrapped inside the GIVE library. Website developers who use
GIVE do not have to understand them or even knowing their existence.

Query
A query is issued when the user views any genomic region (query region). A new query is issued
when the user changes the genomic region. A query induces two actions, which are data retrieval
and display of data.

Oak, a data structure
A data structure called Oak is developed to effectively load and transfer a subset of data in BED
format. The subset is defined as continuous genomic region within a chromosome. Oak is a type
of tree data structures, with nodes defined as follows.

A node is composed of a list of key-value pairs and a set of attributes. A key is a pair of starting
and ending genomic coordinates, termed left key and right key, respectively. When populated with
data, a node keeps the data for a genomic region defined by the first left key and the last right key.
The keys in a node partition the genomic region into non-overlapping sub-regions. A node can be
either a branch node or a leaf node. Their differences lie in the values. A branch node is a node
where the values are other nodes. A leaf node is a node where each value is a set of two lists of
data points (Figure S6). Each data point is a row of a BED file. When populated with data, the first
list contains all the rows in the BED file where the start position matches the left key. The second

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

list contains all the rows where the start and the end positions cover (span across) the left key. A
value in a leaf node can also be empty. Leaf nodes with empty values are used to mark the genomic
regions outside the query region.

Creating an Oak instance, populating data, and updating Oak
An Oak instance will be created, populated with data, or get updated in response to a query. These
actions accomplish data transfer from server to user’s computer. Only the data within the queried
region will be transferred. Hereafter we will refer an Oak instance as an Oak.

When the query region is on a new chromosome, an Oak will be created as follows. Every unique
start position in the BED file that is contained within the query region is used to create a leaf node.
The genomic regions on queried chromosome but outside the query region are inserted as pairs of
keys and empty values (placeholders) to the nodes with the nearest keys. The leaf nodes are ordered
by their first left keys and sequentially linked by their pointers. A root node is created with all the
leaf nodes are its children. This initial tree is fed into a self-balancing algorithm [29, 30] to
construct a weight balanced tree, thus finishes the construction of an Oak.

When the query region is on a previously queried chromosome, the query region will be compared
with the Oak of that chromosome and the overlapping region will be identified. The data of the
overlapping region are already loaded in the Oak and therefore for the purpose of saving time this
should not be loaded again. The data in the rest of the query region will be loaded to the Oak. This
is done by first creating a leaf node for every additional unique start position, removing the
placeholder key-value pairs, and adding new placeholder key-value pairs for the rest of the
chromosome. The weight balancing algorithm [29] is invoked again to re-balance this Oak. The
weight balancing step prepares the Oak for efficient response to future queries.

Pine, a data structure
A data structure called Pine is developed to effectively load and transfer a subset of data in bigWig
format. The subset is defined as continuous genomic region within a chromosome. Pine can
automatically determine the data granularity, which avoids transferring data at a higher than
necessary resolution. The resolution of displayed data is limited by the number of pixels on the
screen. Pine instances are always constructed to the appropriate depth and match the limit of the
resolution.

A node consists of a list of key-value pairs and a set of attributes. The attributes are the same as
that of Oak nodes, except for having one additional attribute, called data summary. The data
summary includes the following metrics for this node (the genomic region defined by the first left
key and the last right key of this node): the number of bases, sum of values (summing over every
base), sum of squares of the values, maximum value, and minimum value. A key is a pair of starting
and ending genomic coordinates, termed left key and right key, respectively. The keys in a node
partition the genomic region into non-overlapping sub-regions. A node can be either a branch node
or a leaf node. Their differences lie in the values. A branch node is a node where the values are
other nodes (Figure S7A). A leaf node is a node where each value is a list of data points (Figure
S7B). Each data point is a row (binary format) of a bigWig file.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

A node in Pine can have an empty key-value list and an empty data summary, and in this case we
call it a placeholder node.

Creating a Pine instance, populating data, and updating Pine
A Pine is created when a query to a new chromosome is issued. A Pine is created with the following
steps. First, the depth of the Pine tree is calculated as:

݄ݐ݌݁݀	݁݁ݎܶ ൌ ሻ݄ݐ݈݃݊݁	݁݉݋ݏ݋݉݋ݎ௡ሺ݄ܿ݃݋ሺ݈	݈݃݊݅݅݁ܥ െ	 .ሻሻ (Equation 1)݊݋݅ݐݑ݈݋ݏ݁ݎ௡ሺ݃݋݈

The limit of the resolution (length of genomic region per pixel) is the total length of the queried
genomic region (viewing area) divided by the number of horizontal pixels, namely the width of
the SVG element in JavaScript.

Next, a root node is created with keys covering the entire chromosome, where the query region is
contained within. Until reaching the calculated depth, for any node that overlaps with the query
region, create a fixed number (n, n=20 in the current release) of child nodes by equal partitioning
its genomic region. If any of the created child node does not overlap with the query region, use a
placeholder node. For each node, point the pointer to the “right hand” node at the same depth.
Thus, a Pine is created. This Pine has not loaded with actual data.

To load data, every leaf node issues a request to retrieve the summary data of its covered region
(between the first left key and the last right key), which will be responded by a PHP function
wrapped within GIVE. This function returns summary data between the input coordinates from
the bigWig file. After filling the summary data for all nodes at the deepest level, all parent nodes
will be filled, where the summary data are calculated from the summary data of their child nodes.
This process continues until reaching the root node.

A Pine will be updated when a new query partially overlaps with a previous query. In this case,
the new depth (d2) is calculated using Equation 1. This depth (d2) reflects the new data granularity.
If d2 is greater than the previous depth, extend the Pine by adding placeholder nodes until d2 is
reached. From root to depth d2-1, if any placeholder node overlaps with the query region, partition
it by creating n child nodes. If any of the newly created child node does not overlap with the query
region, use a placeholder node. For any newly created node, point the pointer to the “right hand”
node at the same depth. At this step, the Pine structure is updated into proper depth. Finally, at
depth d2, retrieve summary data for every non-placeholder node that has not had summary data.
Update the summary data of their parent nodes until reaching the root. In this way, only the new
data within the query region that had not been transferred before will get transferred.

Memory management
We developed a memory management algorithm called “withering”. Every time a query is issued,
this algorithm is invoked to dump the obsolete data, which are not used in the previous 10 queries.
“Withering” works as follows: all nodes are added with a new integer attribute called ‘life span’.
When a node is created, its life span is set to 10. Every time a query is issued, all nodes overlapping
with the query region as well as all their ancestral nodes get their life span reset to 10. The other

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

nodes that do not overlap with the query region get their life span reduced by 1. All the nodes with
life span equals 0 are replaced by placeholder nodes.

DISCUSSION

The GIVE library is designed to reduce the need for specialized knowledge and programming time
for building web-based genome browsers. GIVE is open source software. The open source nature
allows the community at large to contribute to enhancing GIVE. The name GIVE (Genome
Interaction Visualization Engine) was given when this project started with a smaller goal.
Although it has grown into a more general-purpose library, we have decided to keep the acronym.

An important technical consideration is efficient data transfer between the server and user’s
computers. This is because users typically wish to get an instant response when browsing data. To
this end, we developed several technologies to optimize the speed of data transfer. The central idea
is in three folds, including 1) only transferring the data in the query region, 2) minimizing repeated
data transfer by reusing previously transferred data, and 3) only transferring data at the necessary
resolution. To implement these ideas, we developed two new approaches to index the genome, and
formalized these approaches with two new data structures, named Oak and Pine.

The Oak and Pine are indexing systems for sparse data (BED) and dense data (bigWig),
respectively. BED data typically store genomic segments that have variable lengths. Given this
particular feature, we did not index the genome base-by-base but rather developed a new strategy
(Oak) to index variable-size segments. The bigWig files contain base-by-base data, which for a
large genomic region can become too slow for web browsing. We therefore designed the Pine data
structure that can automatically assess and adjust data granularity, which exponentially cut down
unnecessary data transfer.

ADDITIONAL INFORMATION

GIVE website is at http://www.givengine.org, which provides samples websites, tutorial, manual,
and GIVE executable. A mirror website is at: https://sites.google.com/view/givengine. Source
codes are available at GitHub (https://github.com/Zhong-Lab-UCSD/Genomic-Interactive-
Visualization-Engine) and at Zenodo (DOI: 10.5281/zenodo.1134907). A total of 9 demos and
tutorials with real codes and complete instructions are provided GIVE manual (Table S3)
(https://github.com/Zhong-Lab-UCSD/Genomic-Interactive-Visualization-
Engine/tree/master/tutorials).

ACKNOWLEDGEMENT

We thank the open source community especially Adel Qalieh, Yuan Liu and authors of the Polymer
programming library [31]. This work is funded by NIH U01CA200147 and DP1HD087990.

COMPETING INTREST

Sheng Zhong is a cofounder and a board member of Genemo Inc., which however does not do
business related to work described in this paper.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

REFERENCES

1. Tyner C, Barber GP, Casper J, Clawson H, Diekhans M, Eisenhart C, Fischer CM, Gibson D, Gonzalez
JN, Guruvadoo L, et al: The UCSC Genome Browser database: 2017 update. Nucleic Acids
Research 2017, 45:D626‐D634.

2. Zhou X, Maricque B, Xie M, Li D, Sundaram V, Martin EA, Koebbe BC, Nielsen C, Hirst M, Farnham
P, et al: The Human Epigenome Browser at Washington University. Nat Meth 2011, 8:989‐990.

3. Li R, Liu Y, Li T, Li C: 3Disease Browser: A Web server for integrating 3D genome and disease‐
associated chromosome rearrangement data. Sci Rep 2016, 6:34651.

4. Wang Y, Zhang B, Zhang L, An L, Xu J, Li D, Choudhary M, Li Y, Hu M, Hardison R, et al: The 3D
Genome Browser: a web‐based browser for visualizing 3D genome organization and long‐range
chromatin interactions. bioRxiv 2017.

5. 23andMe: When People Share their Genome on Facebook.
https://blog.23andme.com/23andme‐and‐you/when‐people‐share‐their‐genome‐on‐facebook/;
2011.

6. Lieberman‐Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR,
Sabo PJ, Dorschner MO, et al: Comprehensive mapping of long‐range interactions reveals folding
principles of the human genome. Science 2009, 326:289‐293.

7. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, et al: An
oestrogen‐receptor‐alpha‐bound human chromatin interactome. Nature 2009, 462:58‐64.

8. Sridhar B, Rivas‐Astroza M, Nguyen TC, Chen W, Yan Z, Cao X, Hebert L, Zhong S: Systematic
Mapping of RNA‐Chromatin Interactions In Vivo. Curr Biol 2017, 27:610‐612.

9. Li X, Zhou B, Chen L, Gou LT, Li H, Fu XD: GRID‐seq reveals the global RNA‐chromatin interactome.
Nat Biotechnol 2017, 35:940‐950.

10. Lu Z, Zhang QC, Lee B, Flynn RA, Smith MA, Robinson JT, Davidovich C, Gooding AR, Goodrich KJ,
Mattick JS, et al: RNA Duplex Map in Living Cells Reveals Higher‐Order Transcriptome Structure.
Cell 2016, 165:1267‐1279.

11. Nguyen TC, Cao X, Yu P, Xiao S, Lu J, Biase FH, Sridhar B, Huang N, Zhang K, Zhong S: Mapping
RNA‐RNA interactome and RNA structure in vivo by MARIO. Nat Commun 2016, 7:12023.

12. Sharma E, Sterne‐Weiler T, O'Hanlon D, Blencowe BJ: Global Mapping of Human RNA‐RNA
Interactions. Mol Cell 2016, 62:618‐626.

13. Aw JG, Shen Y, Wilm A, Sun M, Lim XN, Boon KL, Tapsin S, Chan YS, Tan CP, Sim AY, et al: In Vivo
Mapping of Eukaryotic RNA Interactomes Reveals Principles of Higher‐Order Organization and
Regulation. Mol Cell 2016, 62:603‐617.

14. Ozsolak F, Milos PM: RNA sequencing: advances, challenges and opportunities. Nat Rev Genet
2011, 12:87‐98.

15. Zhou VW, Goren A, Bernstein BE: Charting histone modifications and the functional organization
of mammalian genomes. Nat Rev Genet 2011, 12:7‐18.

16. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ: Transposition of native chromatin
for fast and sensitive epigenomic profiling of open chromatin, DNA‐binding proteins and
nucleosome position. Nat Methods 2013, 10:1213‐1218.

17. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH: JBrowse: a next‐generation genome
browser. Genome Res 2009, 19:1630‐1638.

18. Stein LD: Using GBrowse 2.0 to visualize and share next‐generation sequence data. Brief
Bioinform 2013, 14:162‐171.

19. Barrios D, Prieto C: D3GB: An Interactive Genome Browser for R, Python, and WordPress. J
Comput Biol 2017, 24:447‐449.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

20. Carrere S, Gouzy J: myGenomeBrowser: building and sharing your own genome browser.
Bioinformatics 2017, 33:1255‐1257.

21. Zhou X, Maricque B, Xie M, Li D, Sundaram V, Martin EA, Koebbe BC, Nielsen C, Hirst M, Farnham
P, et al: The Human Epigenome Browser at Washington University. Nat Methods 2011, 8:989‐
990.

22. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP:
Integrative genomics viewer. Nat Biotechnol 2011, 29:24‐26.

23. Biase FH, Cao X, Zhong S: Cell fate inclination within 2‐cell and 4‐cell mouse embryos revealed
by single‐cell RNA sequencing. Genome Research 2014, 24:1787‐1796.

24. The ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human
genome. Nature 2012, 489:57‐74.

25. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD, et al: A
comparative encyclopedia of DNA elements in the mouse genome. Nature 2014, 515:355‐364.

26. Mourad R, Hsu PY, Juan L, Shen C, Koneru P, Lin H, Liu Y, Nephew K, Huang TH, Li L: Estrogen
induces global reorganization of chromatin structure in human breast cancer cells. PLoS One
2014, 9:e113354.

27. Sridhar B, Rivas‐Astroza M, Nguyen TC, Chen W, Yan Z, Cao X, Hebert L, Zhong S: Systematic
Mapping of RNA‐Chromatin Interactions In Vivo. Current Biology 2017, 27:602‐609.

28. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D: BigWig and BigBed: enabling browsing of
large distributed datasets. Bioinformatics 2010, 26:2204‐2207.

29. Bayer R, McCreight EM: Organization and maintenance of large ordered indexes. Acta
Informatica 1972, 1:173‐189.

30. Comer D: Ubiquitous B‐Tree. ACM Comput Surv 1979, 11:121‐137.
31. Polymer Authors: Polymer. 1.9.3 edition. https://www.polymer‐project.org/; 2017.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

FIGURE LEGENDS

Figure 1. Screenshot of a custom genome browser hosting epigenome and genome interaction datasets. The top
genomic coordinate covers the entire chromosome 17 (chr17:1-81195210). The first three data tracks from the
top are RNA-seq, H3K27ac ChIP-seq, Pol2 ChIP-seq data in MCF-7 cells, shown corresponding to the top
genomic coordinate. The bottom genomic coordinate at the shows chr17:45000000-55000000. The bottom three
data tracks are RNA-seq, H3K27ac ChIP-seq, Pol2 ChIP-seq data shown corresponding to the bottom coordinate.
The Hi-C interaction data in the center panel shows Hi-C derived links between the genomic regions (top
coordinate) to other genomic regions (bottom coordinate). The strengths of the Hi-C derived genomic interactions
are plotted in color scale, with red being strongest and green being weakest.

Figure 2. A custom website hosting genome-wide RNA-DNA interaction datasets. Panels from top to bottom are
(A) genome coordinates (chrX:73500000-74500000) and Genes, (B) RNA-DNA interaction data in human
embryonic (H9) stem cells, with the RNA end (top) and the DNA end (bottom) shown with different resolutions
(coordinate bars), (C) RNA-DNA interaction data in human embryonic kidney (HEK) cells, with the RNA end
(top) and the DNA end (bottom) shown with different resolutions (coordinate bars), (D) genes and genome
coordinates. Red arrow points to the genomic location of the Xist gene, where no RNA was produced in H9 (B)
but plenty of RNA was produced and interact with X chromosome is HEK (C). Data were produced by the
MARGI technology (Bharat et al., 2017).

Figure 3. Scenarios for browser use. A) Displaying a segment of the genome. While no data is stored in cache
(blank blocks), only those within the queried region needs to be fetched from the server (colored blocks) and is
stored in cache for later use; B) Shifting display window. Only the part not in cache needs to be fetched from
the server (colored blocks) and merged in cache; C) Zooming out. Existing cache data are used to recalculate
new cache at a coarser granularity level, after which non-overlapping data are requested; D) Zooming in.
Because no cached data exists at a finer granularity level, all data within the queried region needs to be fetched
at that level.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

FIGURES

Figure 1

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

Figure 2

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

Figure 3

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/177832doi: bioRxiv preprint

https://doi.org/10.1101/177832
http://creativecommons.org/licenses/by-nd/4.0/

